flux-schnell-jisung / README.md
zouzoumaki's picture
Model card auto-generated by SimpleTuner
25521a4 verified
|
raw
history blame
2.53 kB
metadata
license: creativeml-openrail-m
base_model: black-forest-labs/FLUX.1-schnell
tags:
  - stable-diffusion
  - stable-diffusion-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - lora
  - template:sd-lora
inference: true
widget:
  - text: unconditional (blank prompt)
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_0_0.png
  - text: sks close up
    parameters:
      negative_prompt: blurry, cropped, ugly
    output:
      url: ./assets/image_1_0.png

flux-schnell-jisung

This is a LoRA derived from black-forest-labs/FLUX.1-schnell.

The main validation prompt used during training was:

sks close up

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 1024x1024

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
sks close up
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 333
  • Training steps: 2839
  • Learning rate: 0.0001
  • Effective batch size: 2
    • Micro-batch size: 1
    • Gradient accumulation steps: 2
    • Number of GPUs: 1
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: bf16
  • Quantised: Yes: int8-quanto
  • Xformers: Not used
  • LoRA Rank: 16
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

jisung

  • Repeats: 0
  • Total number of images: 17
  • Total number of aspect buckets: 1
  • Resolution: 0.262144 megapixels
  • Cropped: True
  • Crop style: center
  • Crop aspect: square

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-schnell'
adapter_id = 'zouzoumaki/flux-schnell-jisung'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "sks close up"


pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=1024,
    height=1024,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")