File size: 10,814 Bytes
2c26ac8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

"""ResNe(X)t 3D stem helper."""

import torch.nn as nn


def get_stem_func(name):
    """
    Retrieves the stem module by name.
    """
    trans_funcs = {"x3d_stem": X3DStem, "basic_stem": ResNetBasicStem}
    assert (
        name in trans_funcs.keys()
    ), "Transformation function '{}' not supported".format(name)
    return trans_funcs[name]


class VideoModelStem(nn.Module):
    """
    Video 3D stem module. Provides stem operations of Conv, BN, ReLU, MaxPool
    on input data tensor for one or multiple pathways.
    """

    def __init__(
        self,
        dim_in,
        dim_out,
        kernel,
        stride,
        padding,
        inplace_relu=True,
        eps=1e-5,
        bn_mmt=0.1,
        norm_module=nn.BatchNorm3d,
        stem_func_name="basic_stem",
    ):
        """
        The `__init__` method of any subclass should also contain these
        arguments. List size of 1 for single pathway models (C2D, I3D, Slow
        and etc), list size of 2 for two pathway models (SlowFast).

        Args:
            dim_in (list): the list of channel dimensions of the inputs.
            dim_out (list): the output dimension of the convolution in the stem
                layer.
            kernel (list): the kernels' size of the convolutions in the stem
                layers. Temporal kernel size, height kernel size, width kernel
                size in order.
            stride (list): the stride sizes of the convolutions in the stem
                layer. Temporal kernel stride, height kernel size, width kernel
                size in order.
            padding (list): the paddings' sizes of the convolutions in the stem
                layer. Temporal padding size, height padding size, width padding
                size in order.
            inplace_relu (bool): calculate the relu on the original input
                without allocating new memory.
            eps (float): epsilon for batch norm.
            bn_mmt (float): momentum for batch norm. Noted that BN momentum in
                PyTorch = 1 - BN momentum in Caffe2.
            norm_module (nn.Module): nn.Module for the normalization layer. The
                default is nn.BatchNorm3d.
            stem_func_name (string): name of the the stem function applied on
                input to the network.
        """
        super(VideoModelStem, self).__init__()

        assert (
            len(
                {
                    len(dim_in),
                    len(dim_out),
                    len(kernel),
                    len(stride),
                    len(padding),
                }
            )
            == 1
        ), "Input pathway dimensions are not consistent. {} {} {} {} {}".format(
            len(dim_in),
            len(dim_out),
            len(kernel),
            len(stride),
            len(padding),
        )

        self.num_pathways = len(dim_in)
        self.kernel = kernel
        self.stride = stride
        self.padding = padding
        self.inplace_relu = inplace_relu
        self.eps = eps
        self.bn_mmt = bn_mmt
        # Construct the stem layer.
        self._construct_stem(dim_in, dim_out, norm_module, stem_func_name)

    def _construct_stem(self, dim_in, dim_out, norm_module, stem_func_name):
        trans_func = get_stem_func(stem_func_name)

        for pathway in range(len(dim_in)):
            stem = trans_func(
                dim_in[pathway],
                dim_out[pathway],
                self.kernel[pathway],
                self.stride[pathway],
                self.padding[pathway],
                self.inplace_relu,
                self.eps,
                self.bn_mmt,
                norm_module,
            )
            self.add_module("pathway{}_stem".format(pathway), stem)

    def forward(self, x):
        assert (
            len(x) == self.num_pathways
        ), "Input tensor does not contain {} pathway".format(self.num_pathways)
        # use a new list, don't modify in-place the x list, which is bad for activation checkpointing.
        y = []
        for pathway in range(len(x)):
            m = getattr(self, "pathway{}_stem".format(pathway))
            y.append(m(x[pathway]))
        return y


class ResNetBasicStem(nn.Module):
    """
    ResNe(X)t 3D stem module.
    Performs spatiotemporal Convolution, BN, and Relu following by a
        spatiotemporal pooling.
    """

    def __init__(
        self,
        dim_in,
        dim_out,
        kernel,
        stride,
        padding,
        inplace_relu=True,
        eps=1e-5,
        bn_mmt=0.1,
        norm_module=nn.BatchNorm3d,
    ):
        """
        The `__init__` method of any subclass should also contain these arguments.

        Args:
            dim_in (int): the channel dimension of the input. Normally 3 is used
                for rgb input, and 2 or 3 is used for optical flow input.
            dim_out (int): the output dimension of the convolution in the stem
                layer.
            kernel (list): the kernel size of the convolution in the stem layer.
                temporal kernel size, height kernel size, width kernel size in
                order.
            stride (list): the stride size of the convolution in the stem layer.
                temporal kernel stride, height kernel size, width kernel size in
                order.
            padding (int): the padding size of the convolution in the stem
                layer, temporal padding size, height padding size, width
                padding size in order.
            inplace_relu (bool): calculate the relu on the original input
                without allocating new memory.
            eps (float): epsilon for batch norm.
            bn_mmt (float): momentum for batch norm. Noted that BN momentum in
                PyTorch = 1 - BN momentum in Caffe2.
            norm_module (nn.Module): nn.Module for the normalization layer. The
                default is nn.BatchNorm3d.
        """
        super(ResNetBasicStem, self).__init__()
        self.kernel = kernel
        self.stride = stride
        self.padding = padding
        self.inplace_relu = inplace_relu
        self.eps = eps
        self.bn_mmt = bn_mmt
        # Construct the stem layer.
        self._construct_stem(dim_in, dim_out, norm_module)

    def _construct_stem(self, dim_in, dim_out, norm_module):
        self.conv = nn.Conv3d(
            dim_in,
            dim_out,
            self.kernel,
            stride=self.stride,
            padding=self.padding,
            bias=False,
        )
        self.bn = norm_module(num_features=dim_out, eps=self.eps, momentum=self.bn_mmt)
        self.relu = nn.ReLU(self.inplace_relu)
        self.pool_layer = nn.MaxPool3d(
            kernel_size=[1, 3, 3], stride=[1, 2, 2], padding=[0, 1, 1]
        )

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        x = self.pool_layer(x)
        return x


class X3DStem(nn.Module):
    """
    X3D's 3D stem module.
    Performs a spatial followed by a depthwise temporal Convolution, BN, and Relu following by a
        spatiotemporal pooling.
    """

    def __init__(
        self,
        dim_in,
        dim_out,
        kernel,
        stride,
        padding,
        inplace_relu=True,
        eps=1e-5,
        bn_mmt=0.1,
        norm_module=nn.BatchNorm3d,
    ):
        """
        The `__init__` method of any subclass should also contain these arguments.

        Args:
            dim_in (int): the channel dimension of the input. Normally 3 is used
                for rgb input, and 2 or 3 is used for optical flow input.
            dim_out (int): the output dimension of the convolution in the stem
                layer.
            kernel (list): the kernel size of the convolution in the stem layer.
                temporal kernel size, height kernel size, width kernel size in
                order.
            stride (list): the stride size of the convolution in the stem layer.
                temporal kernel stride, height kernel size, width kernel size in
                order.
            padding (int): the padding size of the convolution in the stem
                layer, temporal padding size, height padding size, width
                padding size in order.
            inplace_relu (bool): calculate the relu on the original input
                without allocating new memory.
            eps (float): epsilon for batch norm.
            bn_mmt (float): momentum for batch norm. Noted that BN momentum in
                PyTorch = 1 - BN momentum in Caffe2.
            norm_module (nn.Module): nn.Module for the normalization layer. The
                default is nn.BatchNorm3d.
        """
        super(X3DStem, self).__init__()
        self.kernel = kernel
        self.stride = stride
        self.padding = padding
        self.inplace_relu = inplace_relu
        self.eps = eps
        self.bn_mmt = bn_mmt
        # Construct the stem layer.
        self._construct_stem(dim_in, dim_out, norm_module)

    def _construct_stem(self, dim_in, dim_out, norm_module):
        self.conv_xy = nn.Conv3d(
            dim_in,
            dim_out,
            kernel_size=(1, self.kernel[1], self.kernel[2]),
            stride=(1, self.stride[1], self.stride[2]),
            padding=(0, self.padding[1], self.padding[2]),
            bias=False,
        )
        self.conv = nn.Conv3d(
            dim_out,
            dim_out,
            kernel_size=(self.kernel[0], 1, 1),
            stride=(self.stride[0], 1, 1),
            padding=(self.padding[0], 0, 0),
            bias=False,
            groups=dim_out,
        )

        self.bn = norm_module(num_features=dim_out, eps=self.eps, momentum=self.bn_mmt)
        self.relu = nn.ReLU(self.inplace_relu)

    def forward(self, x):
        x = self.conv_xy(x)
        x = self.conv(x)
        x = self.bn(x)
        x = self.relu(x)
        return x


class PatchEmbed(nn.Module):
    """
    PatchEmbed.
    """

    def __init__(
        self,
        dim_in=3,
        dim_out=768,
        kernel=(1, 16, 16),
        stride=(1, 4, 4),
        padding=(1, 7, 7),
        conv_2d=False,
    ):
        super().__init__()
        if conv_2d:
            conv = nn.Conv2d
        else:
            conv = nn.Conv3d
        self.proj = conv(
            dim_in,
            dim_out,
            kernel_size=kernel,
            stride=stride,
            padding=padding,
        )

    def forward(self, x, keep_spatial=False):
        x = self.proj(x)
        if keep_spatial:
            return x, x.shape
        # B C (T) H W -> B (T)HW C
        return x.flatten(2).transpose(1, 2), x.shape