zhong-al commited on
Commit
2c26ac8
·
1 Parent(s): aa912e2

Add model + config files

Browse files
Files changed (13) hide show
  1. .gitattributes +1 -0
  2. __init__.py +0 -0
  3. cfg.py +13 -0
  4. checkpoint_epoch_00075.pyth +3 -0
  5. config.yml +492 -0
  6. configuration_x3d.py +9 -0
  7. helpers/cfg.py +1286 -0
  8. helpers/head.py +146 -0
  9. helpers/norm.py +110 -0
  10. helpers/resnet.py +927 -0
  11. helpers/stem.py +320 -0
  12. modeling_x3d.py +15 -0
  13. x3d.py +350 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ checkpoint_epoch_00075.pyth filter=lfs diff=lfs merge=lfs -text
__init__.py ADDED
File without changes
cfg.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
3
+
4
+ from x3d_model.helpers.cfg import get_cfg
5
+
6
+ def load_config(path_to_config=None):
7
+ # Setup cfg.
8
+ cfg = get_cfg()
9
+
10
+ # Load config from cfg.
11
+ if path_to_config is not None:
12
+ cfg.merge_from_file(path_to_config)
13
+ return cfg
checkpoint_epoch_00075.pyth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:66ea6f31835ec44a91c7df23e304f429872c091b34a5447cd62ad7f1d1b3837e
3
+ size 43662374
config.yml ADDED
@@ -0,0 +1,492 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ AUG:
2
+ AA_TYPE: rand-m9-mstd0.5-inc1
3
+ COLOR_JITTER: 0.4
4
+ ENABLE: false
5
+ GEN_MASK_LOADER: false
6
+ INTERPOLATION: bicubic
7
+ MASK_FRAMES: false
8
+ MASK_RATIO: 0.0
9
+ MASK_TUBE: false
10
+ MASK_WINDOW_SIZE:
11
+ - 8
12
+ - 7
13
+ - 7
14
+ MAX_MASK_PATCHES_PER_BLOCK: null
15
+ NUM_SAMPLE: 1
16
+ RE_COUNT: 1
17
+ RE_MODE: pixel
18
+ RE_PROB: 0.25
19
+ RE_SPLIT: false
20
+ AVA:
21
+ ANNOTATION_DIR: /mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/
22
+ BGR: false
23
+ DETECTION_SCORE_THRESH: 0.9
24
+ EXCLUSION_FILE: ava_val_excluded_timestamps_v2.2.csv
25
+ FRAME_DIR: /mnt/fair-flash3-east/ava_trainval_frames.img/
26
+ FRAME_LIST_DIR: /mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/
27
+ FULL_TEST_ON_VAL: false
28
+ GROUNDTRUTH_FILE: ava_val_v2.2.csv
29
+ IMG_PROC_BACKEND: cv2
30
+ LABEL_MAP_FILE: ava_action_list_v2.2_for_activitynet_2019.pbtxt
31
+ TEST_FORCE_FLIP: false
32
+ TEST_LISTS:
33
+ - val.csv
34
+ TEST_PREDICT_BOX_LISTS:
35
+ - ava_val_predicted_boxes.csv
36
+ TRAIN_GT_BOX_LISTS:
37
+ - ava_train_v2.2.csv
38
+ TRAIN_LISTS:
39
+ - train.csv
40
+ TRAIN_PCA_JITTER_ONLY: true
41
+ TRAIN_PREDICT_BOX_LISTS: []
42
+ TRAIN_USE_COLOR_AUGMENTATION: false
43
+ BENCHMARK:
44
+ LOG_PERIOD: 100
45
+ NUM_EPOCHS: 5
46
+ SHUFFLE: true
47
+ BN:
48
+ GLOBAL_SYNC: false
49
+ NORM_TYPE: sync_batchnorm
50
+ NUM_BATCHES_PRECISE: 200
51
+ NUM_SPLITS: 1
52
+ NUM_SYNC_DEVICES: 1
53
+ USE_PRECISE_STATS: true
54
+ WEIGHT_DECAY: 0.0
55
+ CONTRASTIVE:
56
+ BN_MLP: false
57
+ BN_SYNC_MLP: false
58
+ DELTA_CLIPS_MAX: .inf
59
+ DELTA_CLIPS_MIN: -.inf
60
+ DIM: 128
61
+ INTERP_MEMORY: false
62
+ KNN_ON: true
63
+ LENGTH: 239975
64
+ LOCAL_SHUFFLE_BN: true
65
+ MEM_TYPE: 1d
66
+ MLP_DIM: 2048
67
+ MOCO_MULTI_VIEW_QUEUE: false
68
+ MOMENTUM: 0.5
69
+ MOMENTUM_ANNEALING: false
70
+ NUM_CLASSES_DOWNSTREAM: 400
71
+ NUM_MLP_LAYERS: 1
72
+ PREDICTOR_DEPTHS: []
73
+ QUEUE_LEN: 65536
74
+ SEQUENTIAL: false
75
+ SIMCLR_DIST_ON: true
76
+ SWAV_QEUE_LEN: 0
77
+ T: 0.07
78
+ TYPE: mem
79
+ DATA:
80
+ COLOR_RND_GRAYSCALE: 0.0
81
+ DECODING_BACKEND: torchvision
82
+ DECODING_SHORT_SIZE: 256
83
+ DUMMY_LOAD: false
84
+ ENSEMBLE_METHOD: max
85
+ IN22K_TRAINVAL: false
86
+ IN22k_VAL_IN1K: ''
87
+ INPUT_CHANNEL_NUM:
88
+ - 3
89
+ INV_UNIFORM_SAMPLE: true
90
+ IN_VAL_CROP_RATIO: 0.875
91
+ LOADER_CHUNK_OVERALL_SIZE: 0
92
+ LOADER_CHUNK_SIZE: 0
93
+ MEAN:
94
+ - 0.45
95
+ - 0.45
96
+ - 0.45
97
+ MULTI_LABEL: true
98
+ NUM_FRAMES: 16
99
+ PATH_LABEL_SEPARATOR: ' '
100
+ PATH_PREFIX: kabr/KABR/dataset/image
101
+ PATH_TO_DATA_DIR: kabr/KABR/annotation
102
+ PATH_TO_PRELOAD_IMDB: ''
103
+ RANDOM_FLIP: true
104
+ REVERSE_INPUT_CHANNEL: true
105
+ SAMPLING_RATE: 5
106
+ SKIP_ROWS: 0
107
+ SSL_BLUR_SIGMA_MAX:
108
+ - 0.0
109
+ - 2.0
110
+ SSL_BLUR_SIGMA_MIN:
111
+ - 0.0
112
+ - 0.1
113
+ SSL_COLOR_BRI_CON_SAT:
114
+ - 0.2
115
+ - 0.2
116
+ - 0.2
117
+ SSL_COLOR_HUE: 0.1
118
+ SSL_COLOR_JITTER: true
119
+ SSL_MOCOV2_AUG: false
120
+ STD:
121
+ - 0.225
122
+ - 0.225
123
+ - 0.225
124
+ TARGET_FPS: 30
125
+ TEST_CROP_SIZE: 300
126
+ TIME_DIFF_PROB: 0.0
127
+ TRAIN_CROP_NUM_SPATIAL: 1
128
+ TRAIN_CROP_NUM_TEMPORAL: 1
129
+ TRAIN_CROP_SIZE: 300
130
+ TRAIN_JITTER_ASPECT_RELATIVE: []
131
+ TRAIN_JITTER_FPS: 0.0
132
+ TRAIN_JITTER_MOTION_SHIFT: false
133
+ TRAIN_JITTER_SCALES:
134
+ - 300
135
+ - 400
136
+ TRAIN_JITTER_SCALES_RELATIVE: []
137
+ TRAIN_PCA_EIGVAL:
138
+ - 0.225
139
+ - 0.224
140
+ - 0.229
141
+ TRAIN_PCA_EIGVEC:
142
+ - - -0.5675
143
+ - 0.7192
144
+ - 0.4009
145
+ - - -0.5808
146
+ - -0.0045
147
+ - -0.814
148
+ - - -0.5836
149
+ - -0.6948
150
+ - 0.4203
151
+ USE_OFFSET_SAMPLING: false
152
+ DATA_LOADER:
153
+ ENABLE_MULTI_THREAD_DECODE: false
154
+ NUM_WORKERS: 8
155
+ PIN_MEMORY: true
156
+ DEMO:
157
+ BUFFER_SIZE: 0
158
+ CLIP_VIS_SIZE: 10
159
+ COMMON_CLASS_NAMES:
160
+ - watch (a person)
161
+ - talk to (e.g., self, a person, a group)
162
+ - listen to (a person)
163
+ - touch (an object)
164
+ - carry/hold (an object)
165
+ - walk
166
+ - sit
167
+ - lie/sleep
168
+ - bend/bow (at the waist)
169
+ COMMON_CLASS_THRES: 0.7
170
+ DETECTRON2_CFG: COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml
171
+ DETECTRON2_THRESH: 0.9
172
+ DETECTRON2_WEIGHTS: detectron2://COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl
173
+ DISPLAY_HEIGHT: 0
174
+ DISPLAY_WIDTH: 0
175
+ ENABLE: false
176
+ FPS: 30
177
+ GT_BOXES: ''
178
+ INPUT_FORMAT: BGR
179
+ INPUT_VIDEO: kabr/KABR/dataset/video/G0103.mp4
180
+ LABEL_FILE_PATH: kabr/KABR/annotation/classes.json
181
+ NUM_CLIPS_SKIP: 1
182
+ NUM_VIS_INSTANCES: 1
183
+ OUTPUT_FILE: kabr/KABR/dataset/predict/G0103.mp4
184
+ OUTPUT_FPS: -1
185
+ PREDS_BOXES: ''
186
+ SLOWMO: 1
187
+ STARTING_SECOND: 900
188
+ THREAD_ENABLE: false
189
+ UNCOMMON_CLASS_THRES: 0.3
190
+ VIS_MODE: thres
191
+ WEBCAM: -1
192
+ DETECTION:
193
+ ALIGNED: true
194
+ ENABLE: false
195
+ ROI_XFORM_RESOLUTION: 7
196
+ SPATIAL_SCALE_FACTOR: 16
197
+ DIST_BACKEND: nccl
198
+ LOG_MODEL_INFO: true
199
+ LOG_PERIOD: 10
200
+ MASK:
201
+ DECODER_DEPTH: 0
202
+ DECODER_EMBED_DIM: 512
203
+ DECODER_SEP_POS_EMBED: false
204
+ DEC_KV_KERNEL: []
205
+ DEC_KV_STRIDE: []
206
+ ENABLE: false
207
+ HEAD_TYPE: separate
208
+ MAE_ON: false
209
+ MAE_RND_MASK: false
210
+ NORM_PRED_PIXEL: true
211
+ PER_FRAME_MASKING: false
212
+ PRED_HOG: false
213
+ PRETRAIN_DEPTH:
214
+ - 15
215
+ SCALE_INIT_BY_DEPTH: false
216
+ TIME_STRIDE_LOSS: true
217
+ MIXUP:
218
+ ALPHA: 0.8
219
+ CUTMIX_ALPHA: 1.0
220
+ ENABLE: false
221
+ LABEL_SMOOTH_VALUE: 0.1
222
+ PROB: 1.0
223
+ SWITCH_PROB: 0.5
224
+ MODEL:
225
+ ACT_CHECKPOINT: false
226
+ ARCH: x3d
227
+ DETACH_FINAL_FC: false
228
+ DROPCONNECT_RATE: 0.0
229
+ DROPOUT_RATE: 0.5
230
+ FC_INIT_STD: 0.01
231
+ FP16_ALLREDUCE: false
232
+ FROZEN_BN: false
233
+ HEAD_ACT: sigmoid
234
+ LOSS_FUNC: EQL
235
+ MODEL_NAME: X3D
236
+ MULTI_PATHWAY_ARCH:
237
+ - slowfast
238
+ NUM_CLASSES: 8
239
+ SINGLE_PATHWAY_ARCH:
240
+ - 2d
241
+ - c2d
242
+ - i3d
243
+ - slow
244
+ - x3d
245
+ - mvit
246
+ - maskmvit
247
+ MULTIGRID:
248
+ BN_BASE_SIZE: 8
249
+ DEFAULT_B: 0
250
+ DEFAULT_S: 0
251
+ DEFAULT_T: 0
252
+ EPOCH_FACTOR: 1.5
253
+ EVAL_FREQ: 3
254
+ LONG_CYCLE: false
255
+ LONG_CYCLE_FACTORS:
256
+ - - 0.25
257
+ - 0.7071067811865476
258
+ - - 0.5
259
+ - 0.7071067811865476
260
+ - - 0.5
261
+ - 1
262
+ - - 1
263
+ - 1
264
+ LONG_CYCLE_SAMPLING_RATE: 0
265
+ SHORT_CYCLE: false
266
+ SHORT_CYCLE_FACTORS:
267
+ - 0.5
268
+ - 0.7071067811865476
269
+ MVIT:
270
+ CLS_EMBED_ON: true
271
+ DEPTH: 16
272
+ DIM_MUL: []
273
+ DIM_MUL_IN_ATT: false
274
+ DROPOUT_RATE: 0.0
275
+ DROPPATH_RATE: 0.1
276
+ EMBED_DIM: 96
277
+ HEAD_INIT_SCALE: 1.0
278
+ HEAD_MUL: []
279
+ LAYER_SCALE_INIT_VALUE: 0.0
280
+ MLP_RATIO: 4.0
281
+ MODE: conv
282
+ NORM: layernorm
283
+ NORM_STEM: false
284
+ NUM_HEADS: 1
285
+ PATCH_2D: false
286
+ PATCH_KERNEL:
287
+ - 3
288
+ - 7
289
+ - 7
290
+ PATCH_PADDING:
291
+ - 2
292
+ - 4
293
+ - 4
294
+ PATCH_STRIDE:
295
+ - 2
296
+ - 4
297
+ - 4
298
+ POOL_FIRST: false
299
+ POOL_KVQ_KERNEL: null
300
+ POOL_KV_STRIDE: []
301
+ POOL_KV_STRIDE_ADAPTIVE: null
302
+ POOL_Q_STRIDE: []
303
+ QKV_BIAS: true
304
+ REL_POS_SPATIAL: false
305
+ REL_POS_TEMPORAL: false
306
+ REL_POS_ZERO_INIT: false
307
+ RESIDUAL_POOLING: false
308
+ REV:
309
+ BUFFER_LAYERS: []
310
+ ENABLE: false
311
+ PRE_Q_FUSION: avg
312
+ RESPATH_FUSE: concat
313
+ RES_PATH: conv
314
+ SEPARATE_QKV: false
315
+ SEP_POS_EMBED: false
316
+ USE_ABS_POS: true
317
+ USE_FIXED_SINCOS_POS: false
318
+ USE_MEAN_POOLING: false
319
+ ZERO_DECAY_POS_CLS: true
320
+ NONLOCAL:
321
+ GROUP:
322
+ - - 1
323
+ - - 1
324
+ - - 1
325
+ - - 1
326
+ INSTANTIATION: dot_product
327
+ LOCATION:
328
+ - - []
329
+ - - []
330
+ - - []
331
+ - - []
332
+ POOL:
333
+ - - - 1
334
+ - 2
335
+ - 2
336
+ - - 1
337
+ - 2
338
+ - 2
339
+ - - - 1
340
+ - 2
341
+ - 2
342
+ - - 1
343
+ - 2
344
+ - 2
345
+ - - - 1
346
+ - 2
347
+ - 2
348
+ - - 1
349
+ - 2
350
+ - 2
351
+ - - - 1
352
+ - 2
353
+ - 2
354
+ - - 1
355
+ - 2
356
+ - 2
357
+ NUM_GPUS: 8
358
+ NUM_SHARDS: 1
359
+ OUTPUT_DIR: kabr/KABR/logs/x3d-l-kabr
360
+ RESNET:
361
+ DEPTH: 50
362
+ INPLACE_RELU: true
363
+ NUM_BLOCK_TEMP_KERNEL:
364
+ - - 3
365
+ - - 4
366
+ - - 6
367
+ - - 3
368
+ NUM_GROUPS: 1
369
+ SPATIAL_DILATIONS:
370
+ - - 1
371
+ - - 1
372
+ - - 1
373
+ - - 1
374
+ SPATIAL_STRIDES:
375
+ - - 1
376
+ - - 2
377
+ - - 2
378
+ - - 2
379
+ STRIDE_1X1: false
380
+ TRANS_FUNC: x3d_transform
381
+ WIDTH_PER_GROUP: 64
382
+ ZERO_INIT_FINAL_BN: true
383
+ ZERO_INIT_FINAL_CONV: false
384
+ RNG_SEED: 0
385
+ SHARD_ID: 0
386
+ SLOWFAST:
387
+ ALPHA: 8
388
+ BETA_INV: 8
389
+ FUSION_CONV_CHANNEL_RATIO: 2
390
+ FUSION_KERNEL_SZ: 5
391
+ SOLVER:
392
+ BASE_LR: 0.05
393
+ BASE_LR_SCALE_NUM_SHARDS: true
394
+ BETAS:
395
+ - 0.9
396
+ - 0.999
397
+ CLIP_GRAD_L2NORM: null
398
+ CLIP_GRAD_VAL: null
399
+ COSINE_AFTER_WARMUP: false
400
+ COSINE_END_LR: 0.0
401
+ DAMPENING: 0.0
402
+ GAMMA: 0.1
403
+ LARS_ON: false
404
+ LAYER_DECAY: 1.0
405
+ LRS: []
406
+ LR_POLICY: cosine
407
+ MAX_EPOCH: 120
408
+ MOMENTUM: 0.9
409
+ NESTEROV: true
410
+ OPTIMIZING_METHOD: sgd
411
+ STEPS: []
412
+ STEP_SIZE: 1
413
+ WARMUP_EPOCHS: 35.0
414
+ WARMUP_FACTOR: 0.1
415
+ WARMUP_START_LR: 0.01
416
+ WEIGHT_DECAY: 5.0e-05
417
+ ZERO_WD_1D_PARAM: false
418
+ TASK: ''
419
+ TENSORBOARD:
420
+ CATEGORIES_PATH: ''
421
+ CLASS_NAMES_PATH: kabr/KABR/annotation/classes.json
422
+ CONFUSION_MATRIX:
423
+ ENABLE: true
424
+ FIGSIZE:
425
+ - 8
426
+ - 8
427
+ SUBSET_PATH: kabr/KABR/annotation/classes.txt
428
+ ENABLE: true
429
+ HISTOGRAM:
430
+ ENABLE: true
431
+ FIGSIZE:
432
+ - 8
433
+ - 8
434
+ SUBSET_PATH: kabr/KABR/annotation/classes.txt
435
+ TOPK: 3
436
+ LOG_DIR: ''
437
+ MODEL_VIS:
438
+ ACTIVATIONS: true
439
+ COLORMAP: Pastel2
440
+ ENABLE: true
441
+ GRAD_CAM:
442
+ COLORMAP: viridis
443
+ ENABLE: true
444
+ LAYER_LIST:
445
+ - s5/pathway0_res14
446
+ USE_TRUE_LABEL: false
447
+ INPUT_VIDEO: true
448
+ LAYER_LIST:
449
+ - s5/pathway0_res14
450
+ MODEL_WEIGHTS: true
451
+ TOPK_PREDS: 1
452
+ PREDICTIONS_PATH: ''
453
+ WRONG_PRED_VIS:
454
+ ENABLE: false
455
+ SUBSET_PATH: ''
456
+ TAG: Incorrectly classified videos.
457
+ TEST:
458
+ BATCH_SIZE: 64
459
+ CHECKPOINT_FILE_PATH: ''
460
+ CHECKPOINT_TYPE: pytorch
461
+ DATASET: charades
462
+ ENABLE: false
463
+ NUM_ENSEMBLE_VIEWS: 2
464
+ NUM_SPATIAL_CROPS: 1
465
+ NUM_TEMPORAL_CLIPS: []
466
+ SAVE_RESULTS_PATH: kabr/KABR/logs/x3d-l-kabr/results.txt
467
+ TRAIN:
468
+ AUTO_RESUME: true
469
+ BATCH_SIZE: 64
470
+ CHECKPOINT_CLEAR_NAME_PATTERN: []
471
+ CHECKPOINT_EPOCH_RESET: true
472
+ CHECKPOINT_FILE_PATH: slowfast/projects/x3d/x3d_l.pyth
473
+ CHECKPOINT_INFLATE: false
474
+ CHECKPOINT_IN_INIT: false
475
+ CHECKPOINT_PERIOD: 5
476
+ CHECKPOINT_TYPE: pytorch
477
+ DATASET: charades
478
+ ENABLE: true
479
+ EVAL_PERIOD: 5
480
+ KILL_LOSS_EXPLOSION_FACTOR: 0.0
481
+ MIXED_PRECISION: false
482
+ VIS_MASK:
483
+ ENABLE: false
484
+ X3D:
485
+ BN_LIN5: false
486
+ BOTTLENECK_FACTOR: 2.25
487
+ CHANNELWISE_3x3x3: true
488
+ DEPTH_FACTOR: 5.0
489
+ DIM_C1: 12
490
+ DIM_C5: 2048
491
+ SCALE_RES2: false
492
+ WIDTH_FACTOR: 2.0
configuration_x3d.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PretrainedConfig
2
+ from x3d_model.cfg import load_config
3
+
4
+ class X3DConfig(PretrainedConfig):
5
+ model_type = "x3d"
6
+
7
+ def __init__(self, path: str = None, **kwargs):
8
+ super().__init__(**kwargs)
9
+ self.cfg = load_config(path)
helpers/cfg.py ADDED
@@ -0,0 +1,1286 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
3
+
4
+ """Configs."""
5
+ import math
6
+
7
+ from fvcore.common.config import CfgNode
8
+
9
+ # -----------------------------------------------------------------------------
10
+ # Config definition
11
+ # -----------------------------------------------------------------------------
12
+ _C = CfgNode()
13
+
14
+ # -----------------------------------------------------------------------------
15
+ # Contrastive Model (for MoCo, SimCLR, SwAV, BYOL)
16
+ # -----------------------------------------------------------------------------
17
+
18
+ _C.CONTRASTIVE = CfgNode()
19
+
20
+ # temperature used for contrastive losses
21
+ _C.CONTRASTIVE.T = 0.07
22
+
23
+ # output dimension for the loss
24
+ _C.CONTRASTIVE.DIM = 128
25
+
26
+ # number of training samples (for kNN bank)
27
+ _C.CONTRASTIVE.LENGTH = 239975
28
+
29
+ # the length of MoCo's and MemBanks' queues
30
+ _C.CONTRASTIVE.QUEUE_LEN = 65536
31
+
32
+ # momentum for momentum encoder updates
33
+ _C.CONTRASTIVE.MOMENTUM = 0.5
34
+
35
+ # wether to anneal momentum to value above with cosine schedule
36
+ _C.CONTRASTIVE.MOMENTUM_ANNEALING = False
37
+
38
+ # either memorybank, moco, simclr, byol, swav
39
+ _C.CONTRASTIVE.TYPE = "mem"
40
+
41
+ # wether to interpolate memorybank in time
42
+ _C.CONTRASTIVE.INTERP_MEMORY = False
43
+
44
+ # 1d or 2d (+temporal) memory
45
+ _C.CONTRASTIVE.MEM_TYPE = "1d"
46
+
47
+ # number of classes for online kNN evaluation
48
+ _C.CONTRASTIVE.NUM_CLASSES_DOWNSTREAM = 400
49
+
50
+ # use an MLP projection with these num layers
51
+ _C.CONTRASTIVE.NUM_MLP_LAYERS = 1
52
+
53
+ # dimension of projection and predictor MLPs
54
+ _C.CONTRASTIVE.MLP_DIM = 2048
55
+
56
+ # use BN in projection/prediction MLP
57
+ _C.CONTRASTIVE.BN_MLP = False
58
+
59
+ # use synchronized BN in projection/prediction MLP
60
+ _C.CONTRASTIVE.BN_SYNC_MLP = False
61
+
62
+ # shuffle BN only locally vs. across machines
63
+ _C.CONTRASTIVE.LOCAL_SHUFFLE_BN = True
64
+
65
+ # Wether to fill multiple clips (or just the first) into queue
66
+ _C.CONTRASTIVE.MOCO_MULTI_VIEW_QUEUE = False
67
+
68
+ # if sampling multiple clips per vid they need to be at least min frames apart
69
+ _C.CONTRASTIVE.DELTA_CLIPS_MIN = -math.inf
70
+
71
+ # if sampling multiple clips per vid they can be max frames apart
72
+ _C.CONTRASTIVE.DELTA_CLIPS_MAX = math.inf
73
+
74
+ # if non empty, use predictors with depth specified
75
+ _C.CONTRASTIVE.PREDICTOR_DEPTHS = []
76
+
77
+ # Wether to sequentially process multiple clips (=lower mem usage) or batch them
78
+ _C.CONTRASTIVE.SEQUENTIAL = False
79
+
80
+ # Wether to perform SimCLR loss across machines (or only locally)
81
+ _C.CONTRASTIVE.SIMCLR_DIST_ON = True
82
+
83
+ # Length of queue used in SwAV
84
+ _C.CONTRASTIVE.SWAV_QEUE_LEN = 0
85
+
86
+ # Wether to run online kNN evaluation during training
87
+ _C.CONTRASTIVE.KNN_ON = True
88
+
89
+
90
+ # ---------------------------------------------------------------------------- #
91
+ # Batch norm options
92
+ # ---------------------------------------------------------------------------- #
93
+ _C.BN = CfgNode()
94
+
95
+ # Precise BN stats.
96
+ _C.BN.USE_PRECISE_STATS = False
97
+
98
+ # Number of samples use to compute precise bn.
99
+ _C.BN.NUM_BATCHES_PRECISE = 200
100
+
101
+ # Weight decay value that applies on BN.
102
+ _C.BN.WEIGHT_DECAY = 0.0
103
+
104
+ # Norm type, options include `batchnorm`, `sub_batchnorm`, `sync_batchnorm`
105
+ _C.BN.NORM_TYPE = "batchnorm"
106
+
107
+ # Parameter for SubBatchNorm, where it splits the batch dimension into
108
+ # NUM_SPLITS splits, and run BN on each of them separately independently.
109
+ _C.BN.NUM_SPLITS = 1
110
+
111
+ # Parameter for NaiveSyncBatchNorm, where the stats across `NUM_SYNC_DEVICES`
112
+ # devices will be synchronized. `NUM_SYNC_DEVICES` cannot be larger than number of
113
+ # devices per machine; if global sync is desired, set `GLOBAL_SYNC`.
114
+ # By default ONLY applies to NaiveSyncBatchNorm3d; consider also setting
115
+ # CONTRASTIVE.BN_SYNC_MLP if appropriate.
116
+ _C.BN.NUM_SYNC_DEVICES = 1
117
+
118
+ # Parameter for NaiveSyncBatchNorm. Setting `GLOBAL_SYNC` to True synchronizes
119
+ # stats across all devices, across all machines; in this case, `NUM_SYNC_DEVICES`
120
+ # must be set to None.
121
+ # By default ONLY applies to NaiveSyncBatchNorm3d; consider also setting
122
+ # CONTRASTIVE.BN_SYNC_MLP if appropriate.
123
+ _C.BN.GLOBAL_SYNC = False
124
+
125
+ # ---------------------------------------------------------------------------- #
126
+ # Training options.
127
+ # ---------------------------------------------------------------------------- #
128
+ _C.TRAIN = CfgNode()
129
+
130
+ # If True Train the model, else skip training.
131
+ _C.TRAIN.ENABLE = True
132
+
133
+ # Kill training if loss explodes over this ratio from the previous 5 measurements.
134
+ # Only enforced if > 0.0
135
+ _C.TRAIN.KILL_LOSS_EXPLOSION_FACTOR = 0.0
136
+
137
+ # Dataset.
138
+ _C.TRAIN.DATASET = "kinetics"
139
+
140
+ # Total mini-batch size.
141
+ _C.TRAIN.BATCH_SIZE = 64
142
+
143
+ # Evaluate model on test data every eval period epochs.
144
+ _C.TRAIN.EVAL_PERIOD = 10
145
+
146
+ # Save model checkpoint every checkpoint period epochs.
147
+ _C.TRAIN.CHECKPOINT_PERIOD = 10
148
+
149
+ # Resume training from the latest checkpoint in the output directory.
150
+ _C.TRAIN.AUTO_RESUME = True
151
+
152
+ # Path to the checkpoint to load the initial weight.
153
+ _C.TRAIN.CHECKPOINT_FILE_PATH = ""
154
+
155
+ # Checkpoint types include `caffe2` or `pytorch`.
156
+ _C.TRAIN.CHECKPOINT_TYPE = "pytorch"
157
+
158
+ # If True, perform inflation when loading checkpoint.
159
+ _C.TRAIN.CHECKPOINT_INFLATE = False
160
+
161
+ # If True, reset epochs when loading checkpoint.
162
+ _C.TRAIN.CHECKPOINT_EPOCH_RESET = False
163
+
164
+ # If set, clear all layer names according to the pattern provided.
165
+ _C.TRAIN.CHECKPOINT_CLEAR_NAME_PATTERN = () # ("backbone.",)
166
+
167
+ # If True, use FP16 for activations
168
+ _C.TRAIN.MIXED_PRECISION = False
169
+
170
+ # if True, inflate some params from imagenet model.
171
+ _C.TRAIN.CHECKPOINT_IN_INIT = False
172
+
173
+ # ---------------------------------------------------------------------------- #
174
+ # Augmentation options.
175
+ # ---------------------------------------------------------------------------- #
176
+ _C.AUG = CfgNode()
177
+
178
+ # Whether to enable randaug.
179
+ _C.AUG.ENABLE = False
180
+
181
+ # Number of repeated augmentations to used during training.
182
+ # If this is greater than 1, then the actual batch size is
183
+ # TRAIN.BATCH_SIZE * AUG.NUM_SAMPLE.
184
+ _C.AUG.NUM_SAMPLE = 1
185
+
186
+ # Not used if using randaug.
187
+ _C.AUG.COLOR_JITTER = 0.4
188
+
189
+ # RandAug parameters.
190
+ _C.AUG.AA_TYPE = "rand-m9-mstd0.5-inc1"
191
+
192
+ # Interpolation method.
193
+ _C.AUG.INTERPOLATION = "bicubic"
194
+
195
+ # Probability of random erasing.
196
+ _C.AUG.RE_PROB = 0.25
197
+
198
+ # Random erasing mode.
199
+ _C.AUG.RE_MODE = "pixel"
200
+
201
+ # Random erase count.
202
+ _C.AUG.RE_COUNT = 1
203
+
204
+ # Do not random erase first (clean) augmentation split.
205
+ _C.AUG.RE_SPLIT = False
206
+
207
+ # Whether to generate input mask during image processing.
208
+ _C.AUG.GEN_MASK_LOADER = False
209
+
210
+ # If True, masking mode is "tube". Default is "cube".
211
+ _C.AUG.MASK_TUBE = False
212
+
213
+ # If True, masking mode is "frame". Default is "cube".
214
+ _C.AUG.MASK_FRAMES = False
215
+
216
+ # The size of generated masks.
217
+ _C.AUG.MASK_WINDOW_SIZE = [8, 7, 7]
218
+
219
+ # The ratio of masked tokens out of all tokens. Also applies to MViT supervised training
220
+ _C.AUG.MASK_RATIO = 0.0
221
+
222
+ # The maximum number of a masked block. None means no maximum limit. (Used only in image MaskFeat.)
223
+ _C.AUG.MAX_MASK_PATCHES_PER_BLOCK = None
224
+
225
+ # ---------------------------------------------------------------------------- #
226
+ # Masked pretraining visualization options.
227
+ # ---------------------------------------------------------------------------- #
228
+ _C.VIS_MASK = CfgNode()
229
+
230
+ # Whether to do visualization.
231
+ _C.VIS_MASK.ENABLE = False
232
+
233
+ # ---------------------------------------------------------------------------- #
234
+ # MipUp options.
235
+ # ---------------------------------------------------------------------------- #
236
+ _C.MIXUP = CfgNode()
237
+
238
+ # Whether to use mixup.
239
+ _C.MIXUP.ENABLE = False
240
+
241
+ # Mixup alpha.
242
+ _C.MIXUP.ALPHA = 0.8
243
+
244
+ # Cutmix alpha.
245
+ _C.MIXUP.CUTMIX_ALPHA = 1.0
246
+
247
+ # Probability of performing mixup or cutmix when either/both is enabled.
248
+ _C.MIXUP.PROB = 1.0
249
+
250
+ # Probability of switching to cutmix when both mixup and cutmix enabled.
251
+ _C.MIXUP.SWITCH_PROB = 0.5
252
+
253
+ # Label smoothing.
254
+ _C.MIXUP.LABEL_SMOOTH_VALUE = 0.1
255
+
256
+ # ---------------------------------------------------------------------------- #
257
+ # Testing options
258
+ # ---------------------------------------------------------------------------- #
259
+ _C.TEST = CfgNode()
260
+
261
+ # If True test the model, else skip the testing.
262
+ _C.TEST.ENABLE = True
263
+
264
+ # Dataset for testing.
265
+ _C.TEST.DATASET = "kinetics"
266
+
267
+ # Total mini-batch size
268
+ _C.TEST.BATCH_SIZE = 8
269
+
270
+ # Path to the checkpoint to load the initial weight.
271
+ _C.TEST.CHECKPOINT_FILE_PATH = ""
272
+
273
+ # Number of clips to sample from a video uniformly for aggregating the
274
+ # prediction results.
275
+ _C.TEST.NUM_ENSEMBLE_VIEWS = 10
276
+
277
+ # Number of crops to sample from a frame spatially for aggregating the
278
+ # prediction results.
279
+ _C.TEST.NUM_SPATIAL_CROPS = 3
280
+
281
+ # Checkpoint types include `caffe2` or `pytorch`.
282
+ _C.TEST.CHECKPOINT_TYPE = "pytorch"
283
+ # Path to saving prediction results file.
284
+ _C.TEST.SAVE_RESULTS_PATH = ""
285
+
286
+ _C.TEST.NUM_TEMPORAL_CLIPS = []
287
+ # -----------------------------------------------------------------------------
288
+ # ResNet options
289
+ # -----------------------------------------------------------------------------
290
+ _C.RESNET = CfgNode()
291
+
292
+ # Transformation function.
293
+ _C.RESNET.TRANS_FUNC = "bottleneck_transform"
294
+
295
+ # Number of groups. 1 for ResNet, and larger than 1 for ResNeXt).
296
+ _C.RESNET.NUM_GROUPS = 1
297
+
298
+ # Width of each group (64 -> ResNet; 4 -> ResNeXt).
299
+ _C.RESNET.WIDTH_PER_GROUP = 64
300
+
301
+ # Apply relu in a inplace manner.
302
+ _C.RESNET.INPLACE_RELU = True
303
+
304
+ # Apply stride to 1x1 conv.
305
+ _C.RESNET.STRIDE_1X1 = False
306
+
307
+ # If true, initialize the gamma of the final BN of each block to zero.
308
+ _C.RESNET.ZERO_INIT_FINAL_BN = False
309
+
310
+ # If true, initialize the final conv layer of each block to zero.
311
+ _C.RESNET.ZERO_INIT_FINAL_CONV = False
312
+
313
+ # Number of weight layers.
314
+ _C.RESNET.DEPTH = 50
315
+
316
+ # If the current block has more than NUM_BLOCK_TEMP_KERNEL blocks, use temporal
317
+ # kernel of 1 for the rest of the blocks.
318
+ _C.RESNET.NUM_BLOCK_TEMP_KERNEL = [[3], [4], [6], [3]]
319
+
320
+ # Size of stride on different res stages.
321
+ _C.RESNET.SPATIAL_STRIDES = [[1], [2], [2], [2]]
322
+
323
+ # Size of dilation on different res stages.
324
+ _C.RESNET.SPATIAL_DILATIONS = [[1], [1], [1], [1]]
325
+
326
+ # ---------------------------------------------------------------------------- #
327
+ # X3D options
328
+ # See https://arxiv.org/abs/2004.04730 for details about X3D Networks.
329
+ # ---------------------------------------------------------------------------- #
330
+ _C.X3D = CfgNode()
331
+
332
+ # Width expansion factor.
333
+ _C.X3D.WIDTH_FACTOR = 1.0
334
+
335
+ # Depth expansion factor.
336
+ _C.X3D.DEPTH_FACTOR = 1.0
337
+
338
+ # Bottleneck expansion factor for the 3x3x3 conv.
339
+ _C.X3D.BOTTLENECK_FACTOR = 1.0 #
340
+
341
+ # Dimensions of the last linear layer before classificaiton.
342
+ _C.X3D.DIM_C5 = 2048
343
+
344
+ # Dimensions of the first 3x3 conv layer.
345
+ _C.X3D.DIM_C1 = 12
346
+
347
+ # Whether to scale the width of Res2, default is false.
348
+ _C.X3D.SCALE_RES2 = False
349
+
350
+ # Whether to use a BatchNorm (BN) layer before the classifier, default is false.
351
+ _C.X3D.BN_LIN5 = False
352
+
353
+ # Whether to use channelwise (=depthwise) convolution in the center (3x3x3)
354
+ # convolution operation of the residual blocks.
355
+ _C.X3D.CHANNELWISE_3x3x3 = True
356
+
357
+ # -----------------------------------------------------------------------------
358
+ # Nonlocal options
359
+ # -----------------------------------------------------------------------------
360
+ _C.NONLOCAL = CfgNode()
361
+
362
+ # Index of each stage and block to add nonlocal layers.
363
+ _C.NONLOCAL.LOCATION = [[[]], [[]], [[]], [[]]]
364
+
365
+ # Number of group for nonlocal for each stage.
366
+ _C.NONLOCAL.GROUP = [[1], [1], [1], [1]]
367
+
368
+ # Instatiation to use for non-local layer.
369
+ _C.NONLOCAL.INSTANTIATION = "dot_product"
370
+
371
+
372
+ # Size of pooling layers used in Non-Local.
373
+ _C.NONLOCAL.POOL = [
374
+ # Res2
375
+ [[1, 2, 2], [1, 2, 2]],
376
+ # Res3
377
+ [[1, 2, 2], [1, 2, 2]],
378
+ # Res4
379
+ [[1, 2, 2], [1, 2, 2]],
380
+ # Res5
381
+ [[1, 2, 2], [1, 2, 2]],
382
+ ]
383
+
384
+ # -----------------------------------------------------------------------------
385
+ # Model options
386
+ # -----------------------------------------------------------------------------
387
+ _C.MODEL = CfgNode()
388
+
389
+ # Model architecture.
390
+ _C.MODEL.ARCH = "slowfast"
391
+
392
+ # Model name
393
+ _C.MODEL.MODEL_NAME = "SlowFast"
394
+
395
+ # The number of classes to predict for the model.
396
+ _C.MODEL.NUM_CLASSES = 400
397
+
398
+ # Loss function.
399
+ _C.MODEL.LOSS_FUNC = "cross_entropy"
400
+
401
+ # Model architectures that has one single pathway.
402
+ _C.MODEL.SINGLE_PATHWAY_ARCH = [
403
+ "2d",
404
+ "c2d",
405
+ "i3d",
406
+ "slow",
407
+ "x3d",
408
+ "mvit",
409
+ "maskmvit",
410
+ ]
411
+
412
+ # Model architectures that has multiple pathways.
413
+ _C.MODEL.MULTI_PATHWAY_ARCH = ["slowfast"]
414
+
415
+ # Dropout rate before final projection in the backbone.
416
+ _C.MODEL.DROPOUT_RATE = 0.5
417
+
418
+ # Randomly drop rate for Res-blocks, linearly increase from res2 to res5
419
+ _C.MODEL.DROPCONNECT_RATE = 0.0
420
+
421
+ # The std to initialize the fc layer(s).
422
+ _C.MODEL.FC_INIT_STD = 0.01
423
+
424
+ # Activation layer for the output head.
425
+ _C.MODEL.HEAD_ACT = "softmax"
426
+
427
+ # Activation checkpointing enabled or not to save GPU memory.
428
+ _C.MODEL.ACT_CHECKPOINT = False
429
+
430
+ # If True, detach the final fc layer from the network, by doing so, only the
431
+ # final fc layer will be trained.
432
+ _C.MODEL.DETACH_FINAL_FC = False
433
+
434
+ # If True, frozen batch norm stats during training.
435
+ _C.MODEL.FROZEN_BN = False
436
+
437
+ # If True, AllReduce gradients are compressed to fp16
438
+ _C.MODEL.FP16_ALLREDUCE = False
439
+
440
+
441
+ # -----------------------------------------------------------------------------
442
+ # MViT options
443
+ # -----------------------------------------------------------------------------
444
+ _C.MVIT = CfgNode()
445
+
446
+ # Options include `conv`, `max`.
447
+ _C.MVIT.MODE = "conv"
448
+
449
+ # If True, perform pool before projection in attention.
450
+ _C.MVIT.POOL_FIRST = False
451
+
452
+ # If True, use cls embed in the network, otherwise don't use cls_embed in transformer.
453
+ _C.MVIT.CLS_EMBED_ON = True
454
+
455
+ # Kernel size for patchtification.
456
+ _C.MVIT.PATCH_KERNEL = [3, 7, 7]
457
+
458
+ # Stride size for patchtification.
459
+ _C.MVIT.PATCH_STRIDE = [2, 4, 4]
460
+
461
+ # Padding size for patchtification.
462
+ _C.MVIT.PATCH_PADDING = [2, 4, 4]
463
+
464
+ # If True, use 2d patch, otherwise use 3d patch.
465
+ _C.MVIT.PATCH_2D = False
466
+
467
+ # Base embedding dimension for the transformer.
468
+ _C.MVIT.EMBED_DIM = 96
469
+
470
+ # Base num of heads for the transformer.
471
+ _C.MVIT.NUM_HEADS = 1
472
+
473
+ # Dimension reduction ratio for the MLP layers.
474
+ _C.MVIT.MLP_RATIO = 4.0
475
+
476
+ # If use, use bias term in attention fc layers.
477
+ _C.MVIT.QKV_BIAS = True
478
+
479
+ # Drop path rate for the tranfomer.
480
+ _C.MVIT.DROPPATH_RATE = 0.1
481
+
482
+ # The initial value of layer scale gamma. Set 0.0 to disable layer scale.
483
+ _C.MVIT.LAYER_SCALE_INIT_VALUE = 0.0
484
+
485
+ # Depth of the transformer.
486
+ _C.MVIT.DEPTH = 16
487
+
488
+ # Normalization layer for the transformer. Only layernorm is supported now.
489
+ _C.MVIT.NORM = "layernorm"
490
+
491
+ # Dimension multiplication at layer i. If 2.0 is used, then the next block will increase
492
+ # the dimension by 2 times. Format: [depth_i: mul_dim_ratio]
493
+ _C.MVIT.DIM_MUL = []
494
+
495
+ # Head number multiplication at layer i. If 2.0 is used, then the next block will
496
+ # increase the number of heads by 2 times. Format: [depth_i: head_mul_ratio]
497
+ _C.MVIT.HEAD_MUL = []
498
+
499
+ # Stride size for the Pool KV at layer i.
500
+ # Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,]
501
+ _C.MVIT.POOL_KV_STRIDE = []
502
+
503
+ # Initial stride size for KV at layer 1. The stride size will be further reduced with
504
+ # the raio of MVIT.DIM_MUL. If will overwrite MVIT.POOL_KV_STRIDE if not None.
505
+ _C.MVIT.POOL_KV_STRIDE_ADAPTIVE = None
506
+
507
+ # Stride size for the Pool Q at layer i.
508
+ # Format: [[i, stride_t_i, stride_h_i, stride_w_i], ...,]
509
+ _C.MVIT.POOL_Q_STRIDE = []
510
+
511
+ # If not None, overwrite the KV_KERNEL and Q_KERNEL size with POOL_KVQ_CONV_SIZ.
512
+ # Otherwise the kernel_size is [s + 1 if s > 1 else s for s in stride_size].
513
+ _C.MVIT.POOL_KVQ_KERNEL = None
514
+
515
+ # If True, perform no decay on positional embedding and cls embedding.
516
+ _C.MVIT.ZERO_DECAY_POS_CLS = True
517
+
518
+ # If True, use norm after stem.
519
+ _C.MVIT.NORM_STEM = False
520
+
521
+ # If True, perform separate positional embedding.
522
+ _C.MVIT.SEP_POS_EMBED = False
523
+
524
+ # Dropout rate for the MViT backbone.
525
+ _C.MVIT.DROPOUT_RATE = 0.0
526
+
527
+ # If True, use absolute positional embedding.
528
+ _C.MVIT.USE_ABS_POS = True
529
+
530
+ # If True, use relative positional embedding for spatial dimentions
531
+ _C.MVIT.REL_POS_SPATIAL = False
532
+
533
+ # If True, use relative positional embedding for temporal dimentions
534
+ _C.MVIT.REL_POS_TEMPORAL = False
535
+
536
+ # If True, init rel with zero
537
+ _C.MVIT.REL_POS_ZERO_INIT = False
538
+
539
+ # If True, using Residual Pooling connection
540
+ _C.MVIT.RESIDUAL_POOLING = False
541
+
542
+ # Dim mul in qkv linear layers of attention block instead of MLP
543
+ _C.MVIT.DIM_MUL_IN_ATT = False
544
+
545
+ # If True, using separate linear layers for Q, K, V in attention blocks.
546
+ _C.MVIT.SEPARATE_QKV = False
547
+
548
+ # The initialization scale factor for the head parameters.
549
+ _C.MVIT.HEAD_INIT_SCALE = 1.0
550
+
551
+ # Whether to use the mean pooling of all patch tokens as the output.
552
+ _C.MVIT.USE_MEAN_POOLING = False
553
+
554
+ # If True, use frozen sin cos positional embedding.
555
+ _C.MVIT.USE_FIXED_SINCOS_POS = False
556
+
557
+ # -----------------------------------------------------------------------------
558
+ # Masked pretraining options
559
+ # -----------------------------------------------------------------------------
560
+ _C.MASK = CfgNode()
561
+
562
+ # Whether to enable Masked style pretraining.
563
+ _C.MASK.ENABLE = False
564
+
565
+ # Whether to enable MAE (discard encoder tokens).
566
+ _C.MASK.MAE_ON = False
567
+
568
+ # Whether to enable random masking in mae
569
+ _C.MASK.MAE_RND_MASK = False
570
+
571
+ # Whether to do random masking per-frame in mae
572
+ _C.MASK.PER_FRAME_MASKING = False
573
+
574
+ # only predict loss on temporal strided patches, or predict full time extent
575
+ _C.MASK.TIME_STRIDE_LOSS = True
576
+
577
+ # Whether to normalize the pred pixel loss
578
+ _C.MASK.NORM_PRED_PIXEL = True
579
+
580
+ # Whether to fix initialization with inverse depth of layer for pretraining.
581
+ _C.MASK.SCALE_INIT_BY_DEPTH = False
582
+
583
+ # Base embedding dimension for the decoder transformer.
584
+ _C.MASK.DECODER_EMBED_DIM = 512
585
+
586
+ # Base embedding dimension for the decoder transformer.
587
+ _C.MASK.DECODER_SEP_POS_EMBED = False
588
+
589
+ # Use a KV kernel in decoder?
590
+ _C.MASK.DEC_KV_KERNEL = []
591
+
592
+ # Use a KV stride in decoder?
593
+ _C.MASK.DEC_KV_STRIDE = []
594
+
595
+ # The depths of features which are inputs of the prediction head.
596
+ _C.MASK.PRETRAIN_DEPTH = [15]
597
+
598
+ # The type of Masked pretraining prediction head.
599
+ # Can be "separate", "separate_xformer".
600
+ _C.MASK.HEAD_TYPE = "separate"
601
+
602
+ # The depth of MAE's decoder
603
+ _C.MASK.DECODER_DEPTH = 0
604
+
605
+ # The weight of HOG target loss.
606
+ _C.MASK.PRED_HOG = False
607
+ # Reversible Configs
608
+ _C.MVIT.REV = CfgNode()
609
+
610
+ # Enable Reversible Model
611
+ _C.MVIT.REV.ENABLE = False
612
+
613
+ # Method to fuse the reversible paths
614
+ # see :class: `TwoStreamFusion` for all the options
615
+ _C.MVIT.REV.RESPATH_FUSE = "concat"
616
+
617
+ # Layers to buffer activations at
618
+ # (at least Q-pooling layers needed)
619
+ _C.MVIT.REV.BUFFER_LAYERS = []
620
+
621
+ # 'conv' or 'max' operator for the respath in Qpooling
622
+ _C.MVIT.REV.RES_PATH = "conv"
623
+
624
+ # Method to merge hidden states before Qpoolinglayers
625
+ _C.MVIT.REV.PRE_Q_FUSION = "avg"
626
+
627
+ # -----------------------------------------------------------------------------
628
+ # SlowFast options
629
+ # -----------------------------------------------------------------------------
630
+ _C.SLOWFAST = CfgNode()
631
+
632
+ # Corresponds to the inverse of the channel reduction ratio, $\beta$ between
633
+ # the Slow and Fast pathways.
634
+ _C.SLOWFAST.BETA_INV = 8
635
+
636
+ # Corresponds to the frame rate reduction ratio, $\alpha$ between the Slow and
637
+ # Fast pathways.
638
+ _C.SLOWFAST.ALPHA = 8
639
+
640
+ # Ratio of channel dimensions between the Slow and Fast pathways.
641
+ _C.SLOWFAST.FUSION_CONV_CHANNEL_RATIO = 2
642
+
643
+ # Kernel dimension used for fusing information from Fast pathway to Slow
644
+ # pathway.
645
+ _C.SLOWFAST.FUSION_KERNEL_SZ = 5
646
+
647
+
648
+ # -----------------------------------------------------------------------------
649
+ # Data options
650
+ # -----------------------------------------------------------------------------
651
+ _C.DATA = CfgNode()
652
+
653
+ # The path to the data directory.
654
+ _C.DATA.PATH_TO_DATA_DIR = ""
655
+
656
+ # The separator used between path and label.
657
+ _C.DATA.PATH_LABEL_SEPARATOR = " "
658
+
659
+ # Video path prefix if any.
660
+ _C.DATA.PATH_PREFIX = ""
661
+
662
+ # The number of frames of the input clip.
663
+ _C.DATA.NUM_FRAMES = 8
664
+
665
+ # The video sampling rate of the input clip.
666
+ _C.DATA.SAMPLING_RATE = 8
667
+
668
+ # Eigenvalues for PCA jittering. Note PCA is RGB based.
669
+ _C.DATA.TRAIN_PCA_EIGVAL = [0.225, 0.224, 0.229]
670
+
671
+ # Eigenvectors for PCA jittering.
672
+ _C.DATA.TRAIN_PCA_EIGVEC = [
673
+ [-0.5675, 0.7192, 0.4009],
674
+ [-0.5808, -0.0045, -0.8140],
675
+ [-0.5836, -0.6948, 0.4203],
676
+ ]
677
+
678
+ # If a imdb have been dumpped to a local file with the following format:
679
+ # `{"im_path": im_path, "class": cont_id}`
680
+ # then we can skip the construction of imdb and load it from the local file.
681
+ _C.DATA.PATH_TO_PRELOAD_IMDB = ""
682
+
683
+ # The mean value of the video raw pixels across the R G B channels.
684
+ _C.DATA.MEAN = [0.45, 0.45, 0.45]
685
+ # List of input frame channel dimensions.
686
+
687
+ _C.DATA.INPUT_CHANNEL_NUM = [3, 3]
688
+
689
+ # The std value of the video raw pixels across the R G B channels.
690
+ _C.DATA.STD = [0.225, 0.225, 0.225]
691
+
692
+ # The spatial augmentation jitter scales for training.
693
+ _C.DATA.TRAIN_JITTER_SCALES = [256, 320]
694
+
695
+ # The relative scale range of Inception-style area based random resizing augmentation.
696
+ # If this is provided, DATA.TRAIN_JITTER_SCALES above is ignored.
697
+ _C.DATA.TRAIN_JITTER_SCALES_RELATIVE = []
698
+
699
+ # The relative aspect ratio range of Inception-style area based random resizing
700
+ # augmentation.
701
+ _C.DATA.TRAIN_JITTER_ASPECT_RELATIVE = []
702
+
703
+ # If True, perform stride length uniform temporal sampling.
704
+ _C.DATA.USE_OFFSET_SAMPLING = False
705
+
706
+ # Whether to apply motion shift for augmentation.
707
+ _C.DATA.TRAIN_JITTER_MOTION_SHIFT = False
708
+
709
+ # The spatial crop size for training.
710
+ _C.DATA.TRAIN_CROP_SIZE = 224
711
+
712
+ # The spatial crop size for testing.
713
+ _C.DATA.TEST_CROP_SIZE = 256
714
+
715
+ # Input videos may has different fps, convert it to the target video fps before
716
+ # frame sampling.
717
+ _C.DATA.TARGET_FPS = 30
718
+
719
+ # JITTER TARGET_FPS by +- this number randomly
720
+ _C.DATA.TRAIN_JITTER_FPS = 0.0
721
+
722
+ # Decoding backend, options include `pyav` or `torchvision`
723
+ _C.DATA.DECODING_BACKEND = "torchvision"
724
+
725
+ # Decoding resize to short size (set to native size for best speed)
726
+ _C.DATA.DECODING_SHORT_SIZE = 256
727
+
728
+ # if True, sample uniformly in [1 / max_scale, 1 / min_scale] and take a
729
+ # reciprocal to get the scale. If False, take a uniform sample from
730
+ # [min_scale, max_scale].
731
+ _C.DATA.INV_UNIFORM_SAMPLE = False
732
+
733
+ # If True, perform random horizontal flip on the video frames during training.
734
+ _C.DATA.RANDOM_FLIP = True
735
+
736
+ # If True, calculdate the map as metric.
737
+ _C.DATA.MULTI_LABEL = False
738
+
739
+ # Method to perform the ensemble, options include "sum" and "max".
740
+ _C.DATA.ENSEMBLE_METHOD = "sum"
741
+
742
+ # If True, revert the default input channel (RBG <-> BGR).
743
+ _C.DATA.REVERSE_INPUT_CHANNEL = False
744
+
745
+ # how many samples (=clips) to decode from a single video
746
+ _C.DATA.TRAIN_CROP_NUM_TEMPORAL = 1
747
+
748
+ # how many spatial samples to crop from a single clip
749
+ _C.DATA.TRAIN_CROP_NUM_SPATIAL = 1
750
+
751
+ # color random percentage for grayscale conversion
752
+ _C.DATA.COLOR_RND_GRAYSCALE = 0.0
753
+
754
+ # loader can read .csv file in chunks of this chunk size
755
+ _C.DATA.LOADER_CHUNK_SIZE = 0
756
+
757
+ # if LOADER_CHUNK_SIZE > 0, define overall length of .csv file
758
+ _C.DATA.LOADER_CHUNK_OVERALL_SIZE = 0
759
+
760
+ # for chunked reading, dataloader can skip rows in (large)
761
+ # training csv file
762
+ _C.DATA.SKIP_ROWS = 0
763
+
764
+ # The separator used between path and label.
765
+ _C.DATA.PATH_LABEL_SEPARATOR = " "
766
+
767
+ # augmentation probability to convert raw decoded video to
768
+ # grayscale temporal difference
769
+ _C.DATA.TIME_DIFF_PROB = 0.0
770
+
771
+ # Apply SSL-based SimCLR / MoCo v1/v2 color augmentations,
772
+ # with params below
773
+ _C.DATA.SSL_COLOR_JITTER = False
774
+
775
+ # color jitter percentage for brightness, contrast, saturation
776
+ _C.DATA.SSL_COLOR_BRI_CON_SAT = [0.4, 0.4, 0.4]
777
+
778
+ # color jitter percentage for hue
779
+ _C.DATA.SSL_COLOR_HUE = 0.1
780
+
781
+ # SimCLR / MoCo v2 augmentations on/off
782
+ _C.DATA.SSL_MOCOV2_AUG = False
783
+
784
+ # SimCLR / MoCo v2 blur augmentation minimum gaussian sigma
785
+ _C.DATA.SSL_BLUR_SIGMA_MIN = [0.0, 0.1]
786
+
787
+ # SimCLR / MoCo v2 blur augmentation maximum gaussian sigma
788
+ _C.DATA.SSL_BLUR_SIGMA_MAX = [0.0, 2.0]
789
+
790
+
791
+ # If combine train/val split as training for in21k
792
+ _C.DATA.IN22K_TRAINVAL = False
793
+
794
+ # If not None, use IN1k as val split when training in21k
795
+ _C.DATA.IN22k_VAL_IN1K = ""
796
+
797
+ # Large resolution models may use different crop ratios
798
+ _C.DATA.IN_VAL_CROP_RATIO = 0.875 # 224/256 = 0.875
799
+
800
+ # don't use real video for kinetics.py
801
+ _C.DATA.DUMMY_LOAD = False
802
+
803
+ # ---------------------------------------------------------------------------- #
804
+ # Optimizer options
805
+ # ---------------------------------------------------------------------------- #
806
+ _C.SOLVER = CfgNode()
807
+
808
+ # Base learning rate.
809
+ _C.SOLVER.BASE_LR = 0.1
810
+
811
+ # Learning rate policy (see utils/lr_policy.py for options and examples).
812
+ _C.SOLVER.LR_POLICY = "cosine"
813
+
814
+ # Final learning rates for 'cosine' policy.
815
+ _C.SOLVER.COSINE_END_LR = 0.0
816
+
817
+ # Exponential decay factor.
818
+ _C.SOLVER.GAMMA = 0.1
819
+
820
+ # Step size for 'exp' and 'cos' policies (in epochs).
821
+ _C.SOLVER.STEP_SIZE = 1
822
+
823
+ # Steps for 'steps_' policies (in epochs).
824
+ _C.SOLVER.STEPS = []
825
+
826
+ # Learning rates for 'steps_' policies.
827
+ _C.SOLVER.LRS = []
828
+
829
+ # Maximal number of epochs.
830
+ _C.SOLVER.MAX_EPOCH = 300
831
+
832
+ # Momentum.
833
+ _C.SOLVER.MOMENTUM = 0.9
834
+
835
+ # Momentum dampening.
836
+ _C.SOLVER.DAMPENING = 0.0
837
+
838
+ # Nesterov momentum.
839
+ _C.SOLVER.NESTEROV = True
840
+
841
+ # L2 regularization.
842
+ _C.SOLVER.WEIGHT_DECAY = 1e-4
843
+
844
+ # Start the warm up from SOLVER.BASE_LR * SOLVER.WARMUP_FACTOR.
845
+ _C.SOLVER.WARMUP_FACTOR = 0.1
846
+
847
+ # Gradually warm up the SOLVER.BASE_LR over this number of epochs.
848
+ _C.SOLVER.WARMUP_EPOCHS = 0.0
849
+
850
+ # The start learning rate of the warm up.
851
+ _C.SOLVER.WARMUP_START_LR = 0.01
852
+
853
+ # Optimization method.
854
+ _C.SOLVER.OPTIMIZING_METHOD = "sgd"
855
+
856
+ # Base learning rate is linearly scaled with NUM_SHARDS.
857
+ _C.SOLVER.BASE_LR_SCALE_NUM_SHARDS = False
858
+
859
+ # If True, start from the peak cosine learning rate after warm up.
860
+ _C.SOLVER.COSINE_AFTER_WARMUP = False
861
+
862
+ # If True, perform no weight decay on parameter with one dimension (bias term, etc).
863
+ _C.SOLVER.ZERO_WD_1D_PARAM = False
864
+
865
+ # Clip gradient at this value before optimizer update
866
+ _C.SOLVER.CLIP_GRAD_VAL = None
867
+
868
+ # Clip gradient at this norm before optimizer update
869
+ _C.SOLVER.CLIP_GRAD_L2NORM = None
870
+
871
+ # LARS optimizer
872
+ _C.SOLVER.LARS_ON = False
873
+
874
+ # The layer-wise decay of learning rate. Set to 1. to disable.
875
+ _C.SOLVER.LAYER_DECAY = 1.0
876
+
877
+ # Adam's beta
878
+ _C.SOLVER.BETAS = (0.9, 0.999)
879
+ # ---------------------------------------------------------------------------- #
880
+ # Misc options
881
+ # ---------------------------------------------------------------------------- #
882
+
883
+ # The name of the current task; e.g. "ssl"/"sl" for (self)supervised learning
884
+ _C.TASK = ""
885
+
886
+ # Number of GPUs to use (applies to both training and testing).
887
+ _C.NUM_GPUS = 1
888
+
889
+ # Number of machine to use for the job.
890
+ _C.NUM_SHARDS = 1
891
+
892
+ # The index of the current machine.
893
+ _C.SHARD_ID = 0
894
+
895
+ # Output basedir.
896
+ _C.OUTPUT_DIR = "."
897
+
898
+ # Note that non-determinism may still be present due to non-deterministic
899
+ # operator implementations in GPU operator libraries.
900
+ _C.RNG_SEED = 1
901
+
902
+ # Log period in iters.
903
+ _C.LOG_PERIOD = 10
904
+
905
+ # If True, log the model info.
906
+ _C.LOG_MODEL_INFO = True
907
+
908
+ # Distributed backend.
909
+ _C.DIST_BACKEND = "nccl"
910
+
911
+ # ---------------------------------------------------------------------------- #
912
+ # Benchmark options
913
+ # ---------------------------------------------------------------------------- #
914
+ _C.BENCHMARK = CfgNode()
915
+
916
+ # Number of epochs for data loading benchmark.
917
+ _C.BENCHMARK.NUM_EPOCHS = 5
918
+
919
+ # Log period in iters for data loading benchmark.
920
+ _C.BENCHMARK.LOG_PERIOD = 100
921
+
922
+ # If True, shuffle dataloader for epoch during benchmark.
923
+ _C.BENCHMARK.SHUFFLE = True
924
+
925
+
926
+ # ---------------------------------------------------------------------------- #
927
+ # Common train/test data loader options
928
+ # ---------------------------------------------------------------------------- #
929
+ _C.DATA_LOADER = CfgNode()
930
+
931
+ # Number of data loader workers per training process.
932
+ _C.DATA_LOADER.NUM_WORKERS = 8
933
+
934
+ # Load data to pinned host memory.
935
+ _C.DATA_LOADER.PIN_MEMORY = True
936
+
937
+ # Enable multi thread decoding.
938
+ _C.DATA_LOADER.ENABLE_MULTI_THREAD_DECODE = False
939
+
940
+
941
+ # ---------------------------------------------------------------------------- #
942
+ # Detection options.
943
+ # ---------------------------------------------------------------------------- #
944
+ _C.DETECTION = CfgNode()
945
+
946
+ # Whether enable video detection.
947
+ _C.DETECTION.ENABLE = False
948
+
949
+ # Aligned version of RoI. More details can be found at slowfast/models/head_helper.py
950
+ _C.DETECTION.ALIGNED = True
951
+
952
+ # Spatial scale factor.
953
+ _C.DETECTION.SPATIAL_SCALE_FACTOR = 16
954
+
955
+ # RoI tranformation resolution.
956
+ _C.DETECTION.ROI_XFORM_RESOLUTION = 7
957
+
958
+
959
+ # -----------------------------------------------------------------------------
960
+ # AVA Dataset options
961
+ # -----------------------------------------------------------------------------
962
+ _C.AVA = CfgNode()
963
+
964
+ # Directory path of frames.
965
+ _C.AVA.FRAME_DIR = "/mnt/fair-flash3-east/ava_trainval_frames.img/"
966
+
967
+ # Directory path for files of frame lists.
968
+ _C.AVA.FRAME_LIST_DIR = (
969
+ "/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/"
970
+ )
971
+
972
+ # Directory path for annotation files.
973
+ _C.AVA.ANNOTATION_DIR = (
974
+ "/mnt/vol/gfsai-flash3-east/ai-group/users/haoqifan/ava/frame_list/"
975
+ )
976
+
977
+ # Filenames of training samples list files.
978
+ _C.AVA.TRAIN_LISTS = ["train.csv"]
979
+
980
+ # Filenames of test samples list files.
981
+ _C.AVA.TEST_LISTS = ["val.csv"]
982
+
983
+ # Filenames of box list files for training. Note that we assume files which
984
+ # contains predicted boxes will have a suffix "predicted_boxes" in the
985
+ # filename.
986
+ _C.AVA.TRAIN_GT_BOX_LISTS = ["ava_train_v2.2.csv"]
987
+ _C.AVA.TRAIN_PREDICT_BOX_LISTS = []
988
+
989
+ # Filenames of box list files for test.
990
+ _C.AVA.TEST_PREDICT_BOX_LISTS = ["ava_val_predicted_boxes.csv"]
991
+
992
+ # This option controls the score threshold for the predicted boxes to use.
993
+ _C.AVA.DETECTION_SCORE_THRESH = 0.9
994
+
995
+ # If use BGR as the format of input frames.
996
+ _C.AVA.BGR = False
997
+
998
+ # Training augmentation parameters
999
+ # Whether to use color augmentation method.
1000
+ _C.AVA.TRAIN_USE_COLOR_AUGMENTATION = False
1001
+
1002
+ # Whether to only use PCA jitter augmentation when using color augmentation
1003
+ # method (otherwise combine with color jitter method).
1004
+ _C.AVA.TRAIN_PCA_JITTER_ONLY = True
1005
+
1006
+ # Whether to do horizontal flipping during test.
1007
+ _C.AVA.TEST_FORCE_FLIP = False
1008
+
1009
+ # Whether to use full test set for validation split.
1010
+ _C.AVA.FULL_TEST_ON_VAL = False
1011
+
1012
+ # The name of the file to the ava label map.
1013
+ _C.AVA.LABEL_MAP_FILE = "ava_action_list_v2.2_for_activitynet_2019.pbtxt"
1014
+
1015
+ # The name of the file to the ava exclusion.
1016
+ _C.AVA.EXCLUSION_FILE = "ava_val_excluded_timestamps_v2.2.csv"
1017
+
1018
+ # The name of the file to the ava groundtruth.
1019
+ _C.AVA.GROUNDTRUTH_FILE = "ava_val_v2.2.csv"
1020
+
1021
+ # Backend to process image, includes `pytorch` and `cv2`.
1022
+ _C.AVA.IMG_PROC_BACKEND = "cv2"
1023
+
1024
+ # ---------------------------------------------------------------------------- #
1025
+ # Multigrid training options
1026
+ # See https://arxiv.org/abs/1912.00998 for details about multigrid training.
1027
+ # ---------------------------------------------------------------------------- #
1028
+ _C.MULTIGRID = CfgNode()
1029
+
1030
+ # Multigrid training allows us to train for more epochs with fewer iterations.
1031
+ # This hyperparameter specifies how many times more epochs to train.
1032
+ # The default setting in paper trains for 1.5x more epochs than baseline.
1033
+ _C.MULTIGRID.EPOCH_FACTOR = 1.5
1034
+
1035
+ # Enable short cycles.
1036
+ _C.MULTIGRID.SHORT_CYCLE = False
1037
+ # Short cycle additional spatial dimensions relative to the default crop size.
1038
+ _C.MULTIGRID.SHORT_CYCLE_FACTORS = [0.5, 0.5**0.5]
1039
+
1040
+ _C.MULTIGRID.LONG_CYCLE = False
1041
+ # (Temporal, Spatial) dimensions relative to the default shape.
1042
+ _C.MULTIGRID.LONG_CYCLE_FACTORS = [
1043
+ (0.25, 0.5**0.5),
1044
+ (0.5, 0.5**0.5),
1045
+ (0.5, 1),
1046
+ (1, 1),
1047
+ ]
1048
+
1049
+ # While a standard BN computes stats across all examples in a GPU,
1050
+ # for multigrid training we fix the number of clips to compute BN stats on.
1051
+ # See https://arxiv.org/abs/1912.00998 for details.
1052
+ _C.MULTIGRID.BN_BASE_SIZE = 8
1053
+
1054
+ # Multigrid training epochs are not proportional to actual training time or
1055
+ # computations, so _C.TRAIN.EVAL_PERIOD leads to too frequent or rare
1056
+ # evaluation. We use a multigrid-specific rule to determine when to evaluate:
1057
+ # This hyperparameter defines how many times to evaluate a model per long
1058
+ # cycle shape.
1059
+ _C.MULTIGRID.EVAL_FREQ = 3
1060
+
1061
+ # No need to specify; Set automatically and used as global variables.
1062
+ _C.MULTIGRID.LONG_CYCLE_SAMPLING_RATE = 0
1063
+ _C.MULTIGRID.DEFAULT_B = 0
1064
+ _C.MULTIGRID.DEFAULT_T = 0
1065
+ _C.MULTIGRID.DEFAULT_S = 0
1066
+
1067
+ # -----------------------------------------------------------------------------
1068
+ # Tensorboard Visualization Options
1069
+ # -----------------------------------------------------------------------------
1070
+ _C.TENSORBOARD = CfgNode()
1071
+
1072
+ # Log to summary writer, this will automatically.
1073
+ # log loss, lr and metrics during train/eval.
1074
+ _C.TENSORBOARD.ENABLE = False
1075
+ # Provide path to prediction results for visualization.
1076
+ # This is a pickle file of [prediction_tensor, label_tensor]
1077
+ _C.TENSORBOARD.PREDICTIONS_PATH = ""
1078
+ # Path to directory for tensorboard logs.
1079
+ # Default to to cfg.OUTPUT_DIR/runs-{cfg.TRAIN.DATASET}.
1080
+ _C.TENSORBOARD.LOG_DIR = ""
1081
+ # Path to a json file providing class_name - id mapping
1082
+ # in the format {"class_name1": id1, "class_name2": id2, ...}.
1083
+ # This file must be provided to enable plotting confusion matrix
1084
+ # by a subset or parent categories.
1085
+ _C.TENSORBOARD.CLASS_NAMES_PATH = ""
1086
+
1087
+ # Path to a json file for categories -> classes mapping
1088
+ # in the format {"parent_class": ["child_class1", "child_class2",...], ...}.
1089
+ _C.TENSORBOARD.CATEGORIES_PATH = ""
1090
+
1091
+ # Config for confusion matrices visualization.
1092
+ _C.TENSORBOARD.CONFUSION_MATRIX = CfgNode()
1093
+ # Visualize confusion matrix.
1094
+ _C.TENSORBOARD.CONFUSION_MATRIX.ENABLE = False
1095
+ # Figure size of the confusion matrices plotted.
1096
+ _C.TENSORBOARD.CONFUSION_MATRIX.FIGSIZE = [8, 8]
1097
+ # Path to a subset of categories to visualize.
1098
+ # File contains class names separated by newline characters.
1099
+ _C.TENSORBOARD.CONFUSION_MATRIX.SUBSET_PATH = ""
1100
+
1101
+ # Config for histogram visualization.
1102
+ _C.TENSORBOARD.HISTOGRAM = CfgNode()
1103
+ # Visualize histograms.
1104
+ _C.TENSORBOARD.HISTOGRAM.ENABLE = False
1105
+ # Path to a subset of classes to plot histograms.
1106
+ # Class names must be separated by newline characters.
1107
+ _C.TENSORBOARD.HISTOGRAM.SUBSET_PATH = ""
1108
+ # Visualize top-k most predicted classes on histograms for each
1109
+ # chosen true label.
1110
+ _C.TENSORBOARD.HISTOGRAM.TOPK = 10
1111
+ # Figure size of the histograms plotted.
1112
+ _C.TENSORBOARD.HISTOGRAM.FIGSIZE = [8, 8]
1113
+
1114
+ # Config for layers' weights and activations visualization.
1115
+ # _C.TENSORBOARD.ENABLE must be True.
1116
+ _C.TENSORBOARD.MODEL_VIS = CfgNode()
1117
+
1118
+ # If False, skip model visualization.
1119
+ _C.TENSORBOARD.MODEL_VIS.ENABLE = False
1120
+
1121
+ # If False, skip visualizing model weights.
1122
+ _C.TENSORBOARD.MODEL_VIS.MODEL_WEIGHTS = False
1123
+
1124
+ # If False, skip visualizing model activations.
1125
+ _C.TENSORBOARD.MODEL_VIS.ACTIVATIONS = False
1126
+
1127
+ # If False, skip visualizing input videos.
1128
+ _C.TENSORBOARD.MODEL_VIS.INPUT_VIDEO = False
1129
+
1130
+
1131
+ # List of strings containing data about layer names and their indexing to
1132
+ # visualize weights and activations for. The indexing is meant for
1133
+ # choosing a subset of activations outputed by a layer for visualization.
1134
+ # If indexing is not specified, visualize all activations outputed by the layer.
1135
+ # For each string, layer name and indexing is separated by whitespaces.
1136
+ # e.g.: [layer1 1,2;1,2, layer2, layer3 150,151;3,4]; this means for each array `arr`
1137
+ # along the batch dimension in `layer1`, we take arr[[1, 2], [1, 2]]
1138
+ _C.TENSORBOARD.MODEL_VIS.LAYER_LIST = []
1139
+ # Top-k predictions to plot on videos
1140
+ _C.TENSORBOARD.MODEL_VIS.TOPK_PREDS = 1
1141
+ # Colormap to for text boxes and bounding boxes colors
1142
+ _C.TENSORBOARD.MODEL_VIS.COLORMAP = "Pastel2"
1143
+ # Config for visualization video inputs with Grad-CAM.
1144
+ # _C.TENSORBOARD.ENABLE must be True.
1145
+ _C.TENSORBOARD.MODEL_VIS.GRAD_CAM = CfgNode()
1146
+ # Whether to run visualization using Grad-CAM technique.
1147
+ _C.TENSORBOARD.MODEL_VIS.GRAD_CAM.ENABLE = True
1148
+ # CNN layers to use for Grad-CAM. The number of layers must be equal to
1149
+ # number of pathway(s).
1150
+ _C.TENSORBOARD.MODEL_VIS.GRAD_CAM.LAYER_LIST = []
1151
+ # If True, visualize Grad-CAM using true labels for each instances.
1152
+ # If False, use the highest predicted class.
1153
+ _C.TENSORBOARD.MODEL_VIS.GRAD_CAM.USE_TRUE_LABEL = False
1154
+ # Colormap to for text boxes and bounding boxes colors
1155
+ _C.TENSORBOARD.MODEL_VIS.GRAD_CAM.COLORMAP = "viridis"
1156
+
1157
+ # Config for visualization for wrong prediction visualization.
1158
+ # _C.TENSORBOARD.ENABLE must be True.
1159
+ _C.TENSORBOARD.WRONG_PRED_VIS = CfgNode()
1160
+ _C.TENSORBOARD.WRONG_PRED_VIS.ENABLE = False
1161
+ # Folder tag to origanize model eval videos under.
1162
+ _C.TENSORBOARD.WRONG_PRED_VIS.TAG = "Incorrectly classified videos."
1163
+ # Subset of labels to visualize. Only wrong predictions with true labels
1164
+ # within this subset is visualized.
1165
+ _C.TENSORBOARD.WRONG_PRED_VIS.SUBSET_PATH = ""
1166
+
1167
+
1168
+ # ---------------------------------------------------------------------------- #
1169
+ # Demo options
1170
+ # ---------------------------------------------------------------------------- #
1171
+ _C.DEMO = CfgNode()
1172
+
1173
+ # Run model in DEMO mode.
1174
+ _C.DEMO.ENABLE = False
1175
+
1176
+ # Path to a json file providing class_name - id mapping
1177
+ # in the format {"class_name1": id1, "class_name2": id2, ...}.
1178
+ _C.DEMO.LABEL_FILE_PATH = ""
1179
+
1180
+ # Specify a camera device as input. This will be prioritized
1181
+ # over input video if set.
1182
+ # If -1, use input video instead.
1183
+ _C.DEMO.WEBCAM = -1
1184
+
1185
+ # Path to input video for demo.
1186
+ _C.DEMO.INPUT_VIDEO = ""
1187
+ # Custom width for reading input video data.
1188
+ _C.DEMO.DISPLAY_WIDTH = 0
1189
+ # Custom height for reading input video data.
1190
+ _C.DEMO.DISPLAY_HEIGHT = 0
1191
+ # Path to Detectron2 object detection model configuration,
1192
+ # only used for detection tasks.
1193
+ _C.DEMO.DETECTRON2_CFG = "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"
1194
+ # Path to Detectron2 object detection model pre-trained weights.
1195
+ _C.DEMO.DETECTRON2_WEIGHTS = "detectron2://COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl"
1196
+ # Threshold for choosing predicted bounding boxes by Detectron2.
1197
+ _C.DEMO.DETECTRON2_THRESH = 0.9
1198
+ # Number of overlapping frames between 2 consecutive clips.
1199
+ # Increase this number for more frequent action predictions.
1200
+ # The number of overlapping frames cannot be larger than
1201
+ # half of the sequence length `cfg.DATA.NUM_FRAMES * cfg.DATA.SAMPLING_RATE`
1202
+ _C.DEMO.BUFFER_SIZE = 0
1203
+ # If specified, the visualized outputs will be written this a video file of
1204
+ # this path. Otherwise, the visualized outputs will be displayed in a window.
1205
+ _C.DEMO.OUTPUT_FILE = ""
1206
+ # Frames per second rate for writing to output video file.
1207
+ # If not set (-1), use fps rate from input file.
1208
+ _C.DEMO.OUTPUT_FPS = -1
1209
+ # Input format from demo video reader ("RGB" or "BGR").
1210
+ _C.DEMO.INPUT_FORMAT = "BGR"
1211
+ # Draw visualization frames in [keyframe_idx - CLIP_VIS_SIZE, keyframe_idx + CLIP_VIS_SIZE] inclusively.
1212
+ _C.DEMO.CLIP_VIS_SIZE = 10
1213
+ # Number of processes to run video visualizer.
1214
+ _C.DEMO.NUM_VIS_INSTANCES = 2
1215
+
1216
+ # Path to pre-computed predicted boxes
1217
+ _C.DEMO.PREDS_BOXES = ""
1218
+ # Whether to run in with multi-threaded video reader.
1219
+ _C.DEMO.THREAD_ENABLE = False
1220
+ # Take one clip for every `DEMO.NUM_CLIPS_SKIP` + 1 for prediction and visualization.
1221
+ # This is used for fast demo speed by reducing the prediction/visualiztion frequency.
1222
+ # If -1, take the most recent read clip for visualization. This mode is only supported
1223
+ # if `DEMO.THREAD_ENABLE` is set to True.
1224
+ _C.DEMO.NUM_CLIPS_SKIP = 0
1225
+ # Path to ground-truth boxes and labels (optional)
1226
+ _C.DEMO.GT_BOXES = ""
1227
+ # The starting second of the video w.r.t bounding boxes file.
1228
+ _C.DEMO.STARTING_SECOND = 900
1229
+ # Frames per second of the input video/folder of images.
1230
+ _C.DEMO.FPS = 30
1231
+ # Visualize with top-k predictions or predictions above certain threshold(s).
1232
+ # Option: {"thres", "top-k"}
1233
+ _C.DEMO.VIS_MODE = "thres"
1234
+ # Threshold for common class names.
1235
+ _C.DEMO.COMMON_CLASS_THRES = 0.7
1236
+ # Theshold for uncommon class names. This will not be
1237
+ # used if `_C.DEMO.COMMON_CLASS_NAMES` is empty.
1238
+ _C.DEMO.UNCOMMON_CLASS_THRES = 0.3
1239
+ # This is chosen based on distribution of examples in
1240
+ # each classes in AVA dataset.
1241
+ _C.DEMO.COMMON_CLASS_NAMES = [
1242
+ "watch (a person)",
1243
+ "talk to (e.g., self, a person, a group)",
1244
+ "listen to (a person)",
1245
+ "touch (an object)",
1246
+ "carry/hold (an object)",
1247
+ "walk",
1248
+ "sit",
1249
+ "lie/sleep",
1250
+ "bend/bow (at the waist)",
1251
+ ]
1252
+ # Slow-motion rate for the visualization. The visualized portions of the
1253
+ # video will be played `_C.DEMO.SLOWMO` times slower than usual speed.
1254
+ _C.DEMO.SLOWMO = 1
1255
+
1256
+
1257
+ def assert_and_infer_cfg(cfg):
1258
+ # BN assertions.
1259
+ if cfg.BN.USE_PRECISE_STATS:
1260
+ assert cfg.BN.NUM_BATCHES_PRECISE >= 0
1261
+ # TRAIN assertions.
1262
+ assert cfg.TRAIN.CHECKPOINT_TYPE in ["pytorch", "caffe2"]
1263
+ assert cfg.NUM_GPUS == 0 or cfg.TRAIN.BATCH_SIZE % cfg.NUM_GPUS == 0
1264
+
1265
+ # TEST assertions.
1266
+ assert cfg.TEST.CHECKPOINT_TYPE in ["pytorch", "caffe2"]
1267
+ assert cfg.NUM_GPUS == 0 or cfg.TEST.BATCH_SIZE % cfg.NUM_GPUS == 0
1268
+
1269
+ # RESNET assertions.
1270
+ assert cfg.RESNET.NUM_GROUPS > 0
1271
+ assert cfg.RESNET.WIDTH_PER_GROUP > 0
1272
+ assert cfg.RESNET.WIDTH_PER_GROUP % cfg.RESNET.NUM_GROUPS == 0
1273
+
1274
+ # Execute LR scaling by num_shards.
1275
+ if cfg.SOLVER.BASE_LR_SCALE_NUM_SHARDS:
1276
+ cfg.SOLVER.BASE_LR *= cfg.NUM_SHARDS
1277
+ cfg.SOLVER.WARMUP_START_LR *= cfg.NUM_SHARDS
1278
+ cfg.SOLVER.COSINE_END_LR *= cfg.NUM_SHARDS
1279
+
1280
+ # General assertions.
1281
+ assert cfg.SHARD_ID < cfg.NUM_SHARDS
1282
+ return cfg
1283
+
1284
+
1285
+ def get_cfg():
1286
+ return _C.clone()
helpers/head.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
3
+
4
+ """ResNe(X)t Head helper."""
5
+
6
+ import torch.nn as nn
7
+
8
+
9
+ class X3DHead(nn.Module):
10
+ """
11
+ X3D head.
12
+ This layer performs a fully-connected projection during training, when the
13
+ input size is 1x1x1. It performs a convolutional projection during testing
14
+ when the input size is larger than 1x1x1. If the inputs are from multiple
15
+ different pathways, the inputs will be concatenated after pooling.
16
+ """
17
+
18
+ def __init__(
19
+ self,
20
+ dim_in,
21
+ dim_inner,
22
+ dim_out,
23
+ num_classes,
24
+ pool_size,
25
+ dropout_rate=0.0,
26
+ act_func="softmax",
27
+ inplace_relu=True,
28
+ eps=1e-5,
29
+ bn_mmt=0.1,
30
+ norm_module=nn.BatchNorm3d,
31
+ bn_lin5_on=False,
32
+ ):
33
+ """
34
+ The `__init__` method of any subclass should also contain these
35
+ arguments.
36
+ X3DHead takes a 5-dim feature tensor (BxCxTxHxW) as input.
37
+
38
+ Args:
39
+ dim_in (float): the channel dimension C of the input.
40
+ num_classes (int): the channel dimensions of the output.
41
+ pool_size (float): a single entry list of kernel size for
42
+ spatiotemporal pooling for the TxHxW dimensions.
43
+ dropout_rate (float): dropout rate. If equal to 0.0, perform no
44
+ dropout.
45
+ act_func (string): activation function to use. 'softmax': applies
46
+ softmax on the output. 'sigmoid': applies sigmoid on the output.
47
+ inplace_relu (bool): if True, calculate the relu on the original
48
+ input without allocating new memory.
49
+ eps (float): epsilon for batch norm.
50
+ bn_mmt (float): momentum for batch norm. Noted that BN momentum in
51
+ PyTorch = 1 - BN momentum in Caffe2.
52
+ norm_module (nn.Module): nn.Module for the normalization layer. The
53
+ default is nn.BatchNorm3d.
54
+ bn_lin5_on (bool): if True, perform normalization on the features
55
+ before the classifier.
56
+ """
57
+ super(X3DHead, self).__init__()
58
+ self.pool_size = pool_size
59
+ self.dropout_rate = dropout_rate
60
+ self.num_classes = num_classes
61
+ self.act_func = act_func
62
+ self.eps = eps
63
+ self.bn_mmt = bn_mmt
64
+ self.inplace_relu = inplace_relu
65
+ self.bn_lin5_on = bn_lin5_on
66
+ self._construct_head(dim_in, dim_inner, dim_out, norm_module)
67
+
68
+ def _construct_head(self, dim_in, dim_inner, dim_out, norm_module):
69
+
70
+ self.conv_5 = nn.Conv3d(
71
+ dim_in,
72
+ dim_inner,
73
+ kernel_size=(1, 1, 1),
74
+ stride=(1, 1, 1),
75
+ padding=(0, 0, 0),
76
+ bias=False,
77
+ )
78
+ self.conv_5_bn = norm_module(
79
+ num_features=dim_inner, eps=self.eps, momentum=self.bn_mmt
80
+ )
81
+ self.conv_5_relu = nn.ReLU(self.inplace_relu)
82
+
83
+ if self.pool_size is None:
84
+ self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
85
+ else:
86
+ self.avg_pool = nn.AvgPool3d(self.pool_size, stride=1)
87
+
88
+ self.lin_5 = nn.Conv3d(
89
+ dim_inner,
90
+ dim_out,
91
+ kernel_size=(1, 1, 1),
92
+ stride=(1, 1, 1),
93
+ padding=(0, 0, 0),
94
+ bias=False,
95
+ )
96
+ if self.bn_lin5_on:
97
+ self.lin_5_bn = norm_module(
98
+ num_features=dim_out, eps=self.eps, momentum=self.bn_mmt
99
+ )
100
+ self.lin_5_relu = nn.ReLU(self.inplace_relu)
101
+
102
+ if self.dropout_rate > 0.0:
103
+ self.dropout = nn.Dropout(self.dropout_rate)
104
+ # Perform FC in a fully convolutional manner. The FC layer will be
105
+ # initialized with a different std comparing to convolutional layers.
106
+ self.projection = nn.Linear(dim_out, self.num_classes, bias=True)
107
+
108
+ # Softmax for evaluation and testing.
109
+ if self.act_func == "softmax":
110
+ self.act = nn.Softmax(dim=4)
111
+ elif self.act_func == "sigmoid":
112
+ self.act = nn.Sigmoid()
113
+ else:
114
+ raise NotImplementedError(
115
+ "{} is not supported as an activation" "function.".format(
116
+ self.act_func)
117
+ )
118
+
119
+ def forward(self, inputs):
120
+ # In its current design the X3D head is only useable for a single
121
+ # pathway input.
122
+ assert len(inputs) == 1, "Input tensor does not contain 1 pathway"
123
+ x = self.conv_5(inputs[0])
124
+ x = self.conv_5_bn(x)
125
+ x = self.conv_5_relu(x)
126
+ x = self.avg_pool(x)
127
+
128
+ x = self.lin_5(x)
129
+ if self.bn_lin5_on:
130
+ x = self.lin_5_bn(x)
131
+ x = self.lin_5_relu(x)
132
+
133
+ # (N, C, T, H, W) -> (N, T, H, W, C).
134
+ x = x.permute((0, 2, 3, 4, 1))
135
+ # Perform dropout.
136
+ if hasattr(self, "dropout"):
137
+ x = self.dropout(x)
138
+ x = self.projection(x)
139
+
140
+ # Performs fully convlutional inference.
141
+ if not self.training:
142
+ x = self.act(x)
143
+ x = x.mean([1, 2, 3])
144
+
145
+ x = x.view(x.shape[0], -1)
146
+ return x
helpers/norm.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
3
+
4
+ """BatchNorm (BN) utility functions and custom batch-size BN implementations"""
5
+
6
+ from functools import partial
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+
11
+ from pytorchvideo.layers.batch_norm import NaiveSyncBatchNorm3d
12
+
13
+
14
+ def get_norm(cfg):
15
+ """
16
+ Args:
17
+ cfg (CfgNode): model building configs, details are in the comments of
18
+ the config file.
19
+ Returns:
20
+ nn.Module: the normalization layer.
21
+ """
22
+ if cfg.BN.NORM_TYPE in {"batchnorm", "sync_batchnorm_apex"}:
23
+ return nn.BatchNorm3d
24
+ elif cfg.BN.NORM_TYPE == "sub_batchnorm":
25
+ return partial(SubBatchNorm3d, num_splits=cfg.BN.NUM_SPLITS)
26
+ elif cfg.BN.NORM_TYPE == "sync_batchnorm":
27
+ return partial(
28
+ NaiveSyncBatchNorm3d,
29
+ num_sync_devices=cfg.BN.NUM_SYNC_DEVICES,
30
+ global_sync=cfg.BN.GLOBAL_SYNC,
31
+ )
32
+ else:
33
+ raise NotImplementedError(
34
+ "Norm type {} is not supported".format(cfg.BN.NORM_TYPE)
35
+ )
36
+
37
+
38
+ class SubBatchNorm3d(nn.Module):
39
+ """
40
+ The standard BN layer computes stats across all examples in a GPU. In some
41
+ cases it is desirable to compute stats across only a subset of examples
42
+ (e.g., in multigrid training https://arxiv.org/abs/1912.00998).
43
+ SubBatchNorm3d splits the batch dimension into N splits, and run BN on
44
+ each of them separately (so that the stats are computed on each subset of
45
+ examples (1/N of batch) independently. During evaluation, it aggregates
46
+ the stats from all splits into one BN.
47
+ """
48
+
49
+ def __init__(self, num_splits, **args):
50
+ """
51
+ Args:
52
+ num_splits (int): number of splits.
53
+ args (list): other arguments.
54
+ """
55
+ super(SubBatchNorm3d, self).__init__()
56
+ self.num_splits = num_splits
57
+ num_features = args["num_features"]
58
+ # Keep only one set of weight and bias.
59
+ if args.get("affine", True):
60
+ self.affine = True
61
+ args["affine"] = False
62
+ self.weight = torch.nn.Parameter(torch.ones(num_features))
63
+ self.bias = torch.nn.Parameter(torch.zeros(num_features))
64
+ else:
65
+ self.affine = False
66
+ self.bn = nn.BatchNorm3d(**args)
67
+ args["num_features"] = num_features * num_splits
68
+ self.split_bn = nn.BatchNorm3d(**args)
69
+
70
+ def _get_aggregated_mean_std(self, means, stds, n):
71
+ """
72
+ Calculate the aggregated mean and stds.
73
+ Args:
74
+ means (tensor): mean values.
75
+ stds (tensor): standard deviations.
76
+ n (int): number of sets of means and stds.
77
+ """
78
+ mean = means.view(n, -1).sum(0) / n
79
+ std = (
80
+ stds.view(n, -1).sum(0) / n
81
+ + ((means.view(n, -1) - mean) ** 2).view(n, -1).sum(0) / n
82
+ )
83
+ return mean.detach(), std.detach()
84
+
85
+ def aggregate_stats(self):
86
+ """
87
+ Synchronize running_mean, and running_var. Call this before eval.
88
+ """
89
+ if self.split_bn.track_running_stats:
90
+ (
91
+ self.bn.running_mean.data,
92
+ self.bn.running_var.data,
93
+ ) = self._get_aggregated_mean_std(
94
+ self.split_bn.running_mean,
95
+ self.split_bn.running_var,
96
+ self.num_splits,
97
+ )
98
+
99
+ def forward(self, x):
100
+ if self.training:
101
+ n, c, t, h, w = x.shape
102
+ x = x.view(n // self.num_splits, c * self.num_splits, t, h, w)
103
+ x = self.split_bn(x)
104
+ x = x.view(n, c, t, h, w)
105
+ else:
106
+ x = self.bn(x)
107
+ if self.affine:
108
+ x = x * self.weight.view((-1, 1, 1, 1))
109
+ x = x + self.bias.view((-1, 1, 1, 1))
110
+ return x
helpers/resnet.py ADDED
@@ -0,0 +1,927 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
3
+
4
+ """Video models."""
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from pytorchvideo.layers.swish import Swish
9
+
10
+ def drop_path(x, drop_prob: float = 0.0, training: bool = False):
11
+ """
12
+ Stochastic Depth per sample.
13
+ """
14
+ if drop_prob == 0.0 or not training:
15
+ return x
16
+ keep_prob = 1 - drop_prob
17
+ shape = (x.shape[0],) + (1,) * (
18
+ x.ndim - 1
19
+ ) # work with diff dim tensors, not just 2D ConvNets
20
+ mask = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
21
+ mask.floor_() # binarize
22
+ output = x.div(keep_prob) * mask
23
+ return output
24
+
25
+ class Nonlocal(nn.Module):
26
+ """
27
+ Builds Non-local Neural Networks as a generic family of building
28
+ blocks for capturing long-range dependencies. Non-local Network
29
+ computes the response at a position as a weighted sum of the
30
+ features at all positions. This building block can be plugged into
31
+ many computer vision architectures.
32
+ More details in the paper: https://arxiv.org/pdf/1711.07971.pdf
33
+ """
34
+
35
+ def __init__(
36
+ self,
37
+ dim,
38
+ dim_inner,
39
+ pool_size=None,
40
+ instantiation="softmax",
41
+ zero_init_final_conv=False,
42
+ zero_init_final_norm=True,
43
+ norm_eps=1e-5,
44
+ norm_momentum=0.1,
45
+ norm_module=nn.BatchNorm3d,
46
+ ):
47
+ """
48
+ Args:
49
+ dim (int): number of dimension for the input.
50
+ dim_inner (int): number of dimension inside of the Non-local block.
51
+ pool_size (list): the kernel size of spatial temporal pooling,
52
+ temporal pool kernel size, spatial pool kernel size, spatial
53
+ pool kernel size in order. By default pool_size is None,
54
+ then there would be no pooling used.
55
+ instantiation (string): supports two different instantiation method:
56
+ "dot_product": normalizing correlation matrix with L2.
57
+ "softmax": normalizing correlation matrix with Softmax.
58
+ zero_init_final_conv (bool): If true, zero initializing the final
59
+ convolution of the Non-local block.
60
+ zero_init_final_norm (bool):
61
+ If true, zero initializing the final batch norm of the Non-local
62
+ block.
63
+ norm_module (nn.Module): nn.Module for the normalization layer. The
64
+ default is nn.BatchNorm3d.
65
+ """
66
+ super(Nonlocal, self).__init__()
67
+ self.dim = dim
68
+ self.dim_inner = dim_inner
69
+ self.pool_size = pool_size
70
+ self.instantiation = instantiation
71
+ self.use_pool = (
72
+ False if pool_size is None else any((size > 1 for size in pool_size))
73
+ )
74
+ self.norm_eps = norm_eps
75
+ self.norm_momentum = norm_momentum
76
+ self._construct_nonlocal(
77
+ zero_init_final_conv, zero_init_final_norm, norm_module
78
+ )
79
+
80
+ def _construct_nonlocal(
81
+ self, zero_init_final_conv, zero_init_final_norm, norm_module
82
+ ):
83
+ # Three convolution heads: theta, phi, and g.
84
+ self.conv_theta = nn.Conv3d(
85
+ self.dim, self.dim_inner, kernel_size=1, stride=1, padding=0
86
+ )
87
+ self.conv_phi = nn.Conv3d(
88
+ self.dim, self.dim_inner, kernel_size=1, stride=1, padding=0
89
+ )
90
+ self.conv_g = nn.Conv3d(
91
+ self.dim, self.dim_inner, kernel_size=1, stride=1, padding=0
92
+ )
93
+
94
+ # Final convolution output.
95
+ self.conv_out = nn.Conv3d(
96
+ self.dim_inner, self.dim, kernel_size=1, stride=1, padding=0
97
+ )
98
+ # Zero initializing the final convolution output.
99
+ self.conv_out.zero_init = zero_init_final_conv
100
+
101
+ # TODO: change the name to `norm`
102
+ self.bn = norm_module(
103
+ num_features=self.dim,
104
+ eps=self.norm_eps,
105
+ momentum=self.norm_momentum,
106
+ )
107
+ # Zero initializing the final bn.
108
+ self.bn.transform_final_bn = zero_init_final_norm
109
+
110
+ # Optional to add the spatial-temporal pooling.
111
+ if self.use_pool:
112
+ self.pool = nn.MaxPool3d(
113
+ kernel_size=self.pool_size,
114
+ stride=self.pool_size,
115
+ padding=[0, 0, 0],
116
+ )
117
+
118
+ def forward(self, x):
119
+ x_identity = x
120
+ N, C, T, H, W = x.size()
121
+
122
+ theta = self.conv_theta(x)
123
+
124
+ # Perform temporal-spatial pooling to reduce the computation.
125
+ if self.use_pool:
126
+ x = self.pool(x)
127
+
128
+ phi = self.conv_phi(x)
129
+ g = self.conv_g(x)
130
+
131
+ theta = theta.view(N, self.dim_inner, -1)
132
+ phi = phi.view(N, self.dim_inner, -1)
133
+ g = g.view(N, self.dim_inner, -1)
134
+
135
+ # (N, C, TxHxW) * (N, C, TxHxW) => (N, TxHxW, TxHxW).
136
+ theta_phi = torch.einsum("nct,ncp->ntp", (theta, phi))
137
+ # For original Non-local paper, there are two main ways to normalize
138
+ # the affinity tensor:
139
+ # 1) Softmax normalization (norm on exp).
140
+ # 2) dot_product normalization.
141
+ if self.instantiation == "softmax":
142
+ # Normalizing the affinity tensor theta_phi before softmax.
143
+ theta_phi = theta_phi * (self.dim_inner**-0.5)
144
+ theta_phi = nn.functional.softmax(theta_phi, dim=2)
145
+ elif self.instantiation == "dot_product":
146
+ spatial_temporal_dim = theta_phi.shape[2]
147
+ theta_phi = theta_phi / spatial_temporal_dim
148
+ else:
149
+ raise NotImplementedError("Unknown norm type {}".format(self.instantiation))
150
+
151
+ # (N, TxHxW, TxHxW) * (N, C, TxHxW) => (N, C, TxHxW).
152
+ theta_phi_g = torch.einsum("ntg,ncg->nct", (theta_phi, g))
153
+
154
+ # (N, C, TxHxW) => (N, C, T, H, W).
155
+ theta_phi_g = theta_phi_g.view(N, self.dim_inner, T, H, W)
156
+
157
+ p = self.conv_out(theta_phi_g)
158
+ p = self.bn(p)
159
+ return x_identity + p
160
+
161
+ class SE(nn.Module):
162
+ """Squeeze-and-Excitation (SE) block w/ Swish: AvgPool, FC, Swish, FC, Sigmoid."""
163
+
164
+ def _round_width(self, width, multiplier, min_width=8, divisor=8):
165
+ """
166
+ Round width of filters based on width multiplier
167
+ Args:
168
+ width (int): the channel dimensions of the input.
169
+ multiplier (float): the multiplication factor.
170
+ min_width (int): the minimum width after multiplication.
171
+ divisor (int): the new width should be dividable by divisor.
172
+ """
173
+ if not multiplier:
174
+ return width
175
+
176
+ width *= multiplier
177
+ min_width = min_width or divisor
178
+ width_out = max(min_width, int(width + divisor / 2) // divisor * divisor)
179
+ if width_out < 0.9 * width:
180
+ width_out += divisor
181
+ return int(width_out)
182
+
183
+ def __init__(self, dim_in, ratio, relu_act=True):
184
+ """
185
+ Args:
186
+ dim_in (int): the channel dimensions of the input.
187
+ ratio (float): the channel reduction ratio for squeeze.
188
+ relu_act (bool): whether to use ReLU activation instead
189
+ of Swish (default).
190
+ divisor (int): the new width should be dividable by divisor.
191
+ """
192
+ super(SE, self).__init__()
193
+ self.avg_pool = nn.AdaptiveAvgPool3d((1, 1, 1))
194
+ dim_fc = self._round_width(dim_in, ratio)
195
+ self.fc1 = nn.Conv3d(dim_in, dim_fc, 1, bias=True)
196
+ self.fc1_act = nn.ReLU() if relu_act else Swish()
197
+ self.fc2 = nn.Conv3d(dim_fc, dim_in, 1, bias=True)
198
+
199
+ self.fc2_sig = nn.Sigmoid()
200
+
201
+ def forward(self, x):
202
+ x_in = x
203
+ for module in self.children():
204
+ x = module(x)
205
+ return x_in * x
206
+
207
+
208
+
209
+
210
+ def get_trans_func(name):
211
+ """
212
+ Retrieves the transformation module by name.
213
+ """
214
+ trans_funcs = {
215
+ "bottleneck_transform": BottleneckTransform,
216
+ "basic_transform": BasicTransform,
217
+ "x3d_transform": X3DTransform,
218
+ }
219
+ assert (
220
+ name in trans_funcs.keys()
221
+ ), "Transformation function '{}' not supported".format(name)
222
+ return trans_funcs[name]
223
+
224
+
225
+ class BasicTransform(nn.Module):
226
+ """
227
+ Basic transformation: Tx3x3, 1x3x3, where T is the size of temporal kernel.
228
+ """
229
+
230
+ def __init__(
231
+ self,
232
+ dim_in,
233
+ dim_out,
234
+ temp_kernel_size,
235
+ stride,
236
+ dim_inner=None,
237
+ num_groups=1,
238
+ stride_1x1=None,
239
+ inplace_relu=True,
240
+ eps=1e-5,
241
+ bn_mmt=0.1,
242
+ dilation=1,
243
+ norm_module=nn.BatchNorm3d,
244
+ block_idx=0,
245
+ ):
246
+ """
247
+ Args:
248
+ dim_in (int): the channel dimensions of the input.
249
+ dim_out (int): the channel dimension of the output.
250
+ temp_kernel_size (int): the temporal kernel sizes of the first
251
+ convolution in the basic block.
252
+ stride (int): the stride of the bottleneck.
253
+ dim_inner (None): the inner dimension would not be used in
254
+ BasicTransform.
255
+ num_groups (int): number of groups for the convolution. Number of
256
+ group is always 1 for BasicTransform.
257
+ stride_1x1 (None): stride_1x1 will not be used in BasicTransform.
258
+ inplace_relu (bool): if True, calculate the relu on the original
259
+ input without allocating new memory.
260
+ eps (float): epsilon for batch norm.
261
+ bn_mmt (float): momentum for batch norm. Noted that BN momentum in
262
+ PyTorch = 1 - BN momentum in Caffe2.
263
+ norm_module (nn.Module): nn.Module for the normalization layer. The
264
+ default is nn.BatchNorm3d.
265
+ """
266
+ super(BasicTransform, self).__init__()
267
+ self.temp_kernel_size = temp_kernel_size
268
+ self._inplace_relu = inplace_relu
269
+ self._eps = eps
270
+ self._bn_mmt = bn_mmt
271
+ self._construct(dim_in, dim_out, stride, dilation, norm_module)
272
+
273
+ def _construct(self, dim_in, dim_out, stride, dilation, norm_module):
274
+ # Tx3x3, BN, ReLU.
275
+ self.a = nn.Conv3d(
276
+ dim_in,
277
+ dim_out,
278
+ kernel_size=[self.temp_kernel_size, 3, 3],
279
+ stride=[1, stride, stride],
280
+ padding=[int(self.temp_kernel_size // 2), 1, 1],
281
+ bias=False,
282
+ )
283
+ self.a_bn = norm_module(
284
+ num_features=dim_out, eps=self._eps, momentum=self._bn_mmt
285
+ )
286
+ self.a_relu = nn.ReLU(inplace=self._inplace_relu)
287
+ # 1x3x3, BN.
288
+ self.b = nn.Conv3d(
289
+ dim_out,
290
+ dim_out,
291
+ kernel_size=[1, 3, 3],
292
+ stride=[1, 1, 1],
293
+ padding=[0, dilation, dilation],
294
+ dilation=[1, dilation, dilation],
295
+ bias=False,
296
+ )
297
+
298
+ self.b.final_conv = True
299
+
300
+ self.b_bn = norm_module(
301
+ num_features=dim_out, eps=self._eps, momentum=self._bn_mmt
302
+ )
303
+
304
+ self.b_bn.transform_final_bn = True
305
+
306
+ def forward(self, x):
307
+ x = self.a(x)
308
+ x = self.a_bn(x)
309
+ x = self.a_relu(x)
310
+
311
+ x = self.b(x)
312
+ x = self.b_bn(x)
313
+ return x
314
+
315
+
316
+ class X3DTransform(nn.Module):
317
+ """
318
+ X3D transformation: 1x1x1, Tx3x3 (channelwise, num_groups=dim_in), 1x1x1,
319
+ augmented with (optional) SE (squeeze-excitation) on the 3x3x3 output.
320
+ T is the temporal kernel size (defaulting to 3)
321
+ """
322
+
323
+ def __init__(
324
+ self,
325
+ dim_in,
326
+ dim_out,
327
+ temp_kernel_size,
328
+ stride,
329
+ dim_inner,
330
+ num_groups,
331
+ stride_1x1=False,
332
+ inplace_relu=True,
333
+ eps=1e-5,
334
+ bn_mmt=0.1,
335
+ dilation=1,
336
+ norm_module=nn.BatchNorm3d,
337
+ se_ratio=0.0625,
338
+ swish_inner=True,
339
+ block_idx=0,
340
+ ):
341
+ """
342
+ Args:
343
+ dim_in (int): the channel dimensions of the input.
344
+ dim_out (int): the channel dimension of the output.
345
+ temp_kernel_size (int): the temporal kernel sizes of the middle
346
+ convolution in the bottleneck.
347
+ stride (int): the stride of the bottleneck.
348
+ dim_inner (int): the inner dimension of the block.
349
+ num_groups (int): number of groups for the convolution. num_groups=1
350
+ is for standard ResNet like networks, and num_groups>1 is for
351
+ ResNeXt like networks.
352
+ stride_1x1 (bool): if True, apply stride to 1x1 conv, otherwise
353
+ apply stride to the 3x3 conv.
354
+ inplace_relu (bool): if True, calculate the relu on the original
355
+ input without allocating new memory.
356
+ eps (float): epsilon for batch norm.
357
+ bn_mmt (float): momentum for batch norm. Noted that BN momentum in
358
+ PyTorch = 1 - BN momentum in Caffe2.
359
+ dilation (int): size of dilation.
360
+ norm_module (nn.Module): nn.Module for the normalization layer. The
361
+ default is nn.BatchNorm3d.
362
+ se_ratio (float): if > 0, apply SE to the Tx3x3 conv, with the SE
363
+ channel dimensionality being se_ratio times the Tx3x3 conv dim.
364
+ swish_inner (bool): if True, apply swish to the Tx3x3 conv, otherwise
365
+ apply ReLU to the Tx3x3 conv.
366
+ """
367
+ super(X3DTransform, self).__init__()
368
+ self.temp_kernel_size = temp_kernel_size
369
+ self._inplace_relu = inplace_relu
370
+ self._eps = eps
371
+ self._bn_mmt = bn_mmt
372
+ self._se_ratio = se_ratio
373
+ self._swish_inner = swish_inner
374
+ self._stride_1x1 = stride_1x1
375
+ self._block_idx = block_idx
376
+ self._construct(
377
+ dim_in,
378
+ dim_out,
379
+ stride,
380
+ dim_inner,
381
+ num_groups,
382
+ dilation,
383
+ norm_module,
384
+ )
385
+
386
+ def _construct(
387
+ self,
388
+ dim_in,
389
+ dim_out,
390
+ stride,
391
+ dim_inner,
392
+ num_groups,
393
+ dilation,
394
+ norm_module,
395
+ ):
396
+ (str1x1, str3x3) = (stride, 1) if self._stride_1x1 else (1, stride)
397
+
398
+ # 1x1x1, BN, ReLU.
399
+ self.a = nn.Conv3d(
400
+ dim_in,
401
+ dim_inner,
402
+ kernel_size=[1, 1, 1],
403
+ stride=[1, str1x1, str1x1],
404
+ padding=[0, 0, 0],
405
+ bias=False,
406
+ )
407
+ self.a_bn = norm_module(
408
+ num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt
409
+ )
410
+ self.a_relu = nn.ReLU(inplace=self._inplace_relu)
411
+
412
+ # Tx3x3, BN, ReLU.
413
+ self.b = nn.Conv3d(
414
+ dim_inner,
415
+ dim_inner,
416
+ [self.temp_kernel_size, 3, 3],
417
+ stride=[1, str3x3, str3x3],
418
+ padding=[int(self.temp_kernel_size // 2), dilation, dilation],
419
+ groups=num_groups,
420
+ bias=False,
421
+ dilation=[1, dilation, dilation],
422
+ )
423
+ self.b_bn = norm_module(
424
+ num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt
425
+ )
426
+
427
+ # Apply SE attention or not
428
+ use_se = True if (self._block_idx + 1) % 2 else False
429
+ if self._se_ratio > 0.0 and use_se:
430
+ self.se = SE(dim_inner, self._se_ratio)
431
+
432
+ if self._swish_inner:
433
+ self.b_relu = Swish()
434
+ else:
435
+ self.b_relu = nn.ReLU(inplace=self._inplace_relu)
436
+
437
+ # 1x1x1, BN.
438
+ self.c = nn.Conv3d(
439
+ dim_inner,
440
+ dim_out,
441
+ kernel_size=[1, 1, 1],
442
+ stride=[1, 1, 1],
443
+ padding=[0, 0, 0],
444
+ bias=False,
445
+ )
446
+ self.c_bn = norm_module(
447
+ num_features=dim_out, eps=self._eps, momentum=self._bn_mmt
448
+ )
449
+ self.c_bn.transform_final_bn = True
450
+
451
+ def forward(self, x):
452
+ for block in self.children():
453
+ x = block(x)
454
+ return x
455
+
456
+
457
+ class BottleneckTransform(nn.Module):
458
+ """
459
+ Bottleneck transformation: Tx1x1, 1x3x3, 1x1x1, where T is the size of
460
+ temporal kernel.
461
+ """
462
+
463
+ def __init__(
464
+ self,
465
+ dim_in,
466
+ dim_out,
467
+ temp_kernel_size,
468
+ stride,
469
+ dim_inner,
470
+ num_groups,
471
+ stride_1x1=False,
472
+ inplace_relu=True,
473
+ eps=1e-5,
474
+ bn_mmt=0.1,
475
+ dilation=1,
476
+ norm_module=nn.BatchNorm3d,
477
+ block_idx=0,
478
+ ):
479
+ """
480
+ Args:
481
+ dim_in (int): the channel dimensions of the input.
482
+ dim_out (int): the channel dimension of the output.
483
+ temp_kernel_size (int): the temporal kernel sizes of the first
484
+ convolution in the bottleneck.
485
+ stride (int): the stride of the bottleneck.
486
+ dim_inner (int): the inner dimension of the block.
487
+ num_groups (int): number of groups for the convolution. num_groups=1
488
+ is for standard ResNet like networks, and num_groups>1 is for
489
+ ResNeXt like networks.
490
+ stride_1x1 (bool): if True, apply stride to 1x1 conv, otherwise
491
+ apply stride to the 3x3 conv.
492
+ inplace_relu (bool): if True, calculate the relu on the original
493
+ input without allocating new memory.
494
+ eps (float): epsilon for batch norm.
495
+ bn_mmt (float): momentum for batch norm. Noted that BN momentum in
496
+ PyTorch = 1 - BN momentum in Caffe2.
497
+ dilation (int): size of dilation.
498
+ norm_module (nn.Module): nn.Module for the normalization layer. The
499
+ default is nn.BatchNorm3d.
500
+ """
501
+ super(BottleneckTransform, self).__init__()
502
+ self.temp_kernel_size = temp_kernel_size
503
+ self._inplace_relu = inplace_relu
504
+ self._eps = eps
505
+ self._bn_mmt = bn_mmt
506
+ self._stride_1x1 = stride_1x1
507
+ self._construct(
508
+ dim_in,
509
+ dim_out,
510
+ stride,
511
+ dim_inner,
512
+ num_groups,
513
+ dilation,
514
+ norm_module,
515
+ )
516
+
517
+ def _construct(
518
+ self,
519
+ dim_in,
520
+ dim_out,
521
+ stride,
522
+ dim_inner,
523
+ num_groups,
524
+ dilation,
525
+ norm_module,
526
+ ):
527
+ (str1x1, str3x3) = (stride, 1) if self._stride_1x1 else (1, stride)
528
+
529
+ # Tx1x1, BN, ReLU.
530
+ self.a = nn.Conv3d(
531
+ dim_in,
532
+ dim_inner,
533
+ kernel_size=[self.temp_kernel_size, 1, 1],
534
+ stride=[1, str1x1, str1x1],
535
+ padding=[int(self.temp_kernel_size // 2), 0, 0],
536
+ bias=False,
537
+ )
538
+ self.a_bn = norm_module(
539
+ num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt
540
+ )
541
+ self.a_relu = nn.ReLU(inplace=self._inplace_relu)
542
+
543
+ # 1x3x3, BN, ReLU.
544
+ self.b = nn.Conv3d(
545
+ dim_inner,
546
+ dim_inner,
547
+ [1, 3, 3],
548
+ stride=[1, str3x3, str3x3],
549
+ padding=[0, dilation, dilation],
550
+ groups=num_groups,
551
+ bias=False,
552
+ dilation=[1, dilation, dilation],
553
+ )
554
+ self.b_bn = norm_module(
555
+ num_features=dim_inner, eps=self._eps, momentum=self._bn_mmt
556
+ )
557
+ self.b_relu = nn.ReLU(inplace=self._inplace_relu)
558
+
559
+ # 1x1x1, BN.
560
+ self.c = nn.Conv3d(
561
+ dim_inner,
562
+ dim_out,
563
+ kernel_size=[1, 1, 1],
564
+ stride=[1, 1, 1],
565
+ padding=[0, 0, 0],
566
+ bias=False,
567
+ )
568
+ self.c.final_conv = True
569
+
570
+ self.c_bn = norm_module(
571
+ num_features=dim_out, eps=self._eps, momentum=self._bn_mmt
572
+ )
573
+ self.c_bn.transform_final_bn = True
574
+
575
+ def forward(self, x):
576
+ # Explicitly forward every layer.
577
+ # Branch2a.
578
+ x = self.a(x)
579
+ x = self.a_bn(x)
580
+ x = self.a_relu(x)
581
+
582
+ # Branch2b.
583
+ x = self.b(x)
584
+ x = self.b_bn(x)
585
+ x = self.b_relu(x)
586
+
587
+ # Branch2c
588
+ x = self.c(x)
589
+ x = self.c_bn(x)
590
+ return x
591
+
592
+
593
+ class ResBlock(nn.Module):
594
+ """
595
+ Residual block.
596
+ """
597
+
598
+ def __init__(
599
+ self,
600
+ dim_in,
601
+ dim_out,
602
+ temp_kernel_size,
603
+ stride,
604
+ trans_func,
605
+ dim_inner,
606
+ num_groups=1,
607
+ stride_1x1=False,
608
+ inplace_relu=True,
609
+ eps=1e-5,
610
+ bn_mmt=0.1,
611
+ dilation=1,
612
+ norm_module=nn.BatchNorm3d,
613
+ block_idx=0,
614
+ drop_connect_rate=0.0,
615
+ ):
616
+ """
617
+ ResBlock class constructs redisual blocks. More details can be found in:
618
+ Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
619
+ "Deep residual learning for image recognition."
620
+ https://arxiv.org/abs/1512.03385
621
+ Args:
622
+ dim_in (int): the channel dimensions of the input.
623
+ dim_out (int): the channel dimension of the output.
624
+ temp_kernel_size (int): the temporal kernel sizes of the middle
625
+ convolution in the bottleneck.
626
+ stride (int): the stride of the bottleneck.
627
+ trans_func (string): transform function to be used to construct the
628
+ bottleneck.
629
+ dim_inner (int): the inner dimension of the block.
630
+ num_groups (int): number of groups for the convolution. num_groups=1
631
+ is for standard ResNet like networks, and num_groups>1 is for
632
+ ResNeXt like networks.
633
+ stride_1x1 (bool): if True, apply stride to 1x1 conv, otherwise
634
+ apply stride to the 3x3 conv.
635
+ inplace_relu (bool): calculate the relu on the original input
636
+ without allocating new memory.
637
+ eps (float): epsilon for batch norm.
638
+ bn_mmt (float): momentum for batch norm. Noted that BN momentum in
639
+ PyTorch = 1 - BN momentum in Caffe2.
640
+ dilation (int): size of dilation.
641
+ norm_module (nn.Module): nn.Module for the normalization layer. The
642
+ default is nn.BatchNorm3d.
643
+ drop_connect_rate (float): basic rate at which blocks are dropped,
644
+ linearly increases from input to output blocks.
645
+ """
646
+ super(ResBlock, self).__init__()
647
+ self._inplace_relu = inplace_relu
648
+ self._eps = eps
649
+ self._bn_mmt = bn_mmt
650
+ self._drop_connect_rate = drop_connect_rate
651
+ self._construct(
652
+ dim_in,
653
+ dim_out,
654
+ temp_kernel_size,
655
+ stride,
656
+ trans_func,
657
+ dim_inner,
658
+ num_groups,
659
+ stride_1x1,
660
+ inplace_relu,
661
+ dilation,
662
+ norm_module,
663
+ block_idx,
664
+ )
665
+
666
+ def _construct(
667
+ self,
668
+ dim_in,
669
+ dim_out,
670
+ temp_kernel_size,
671
+ stride,
672
+ trans_func,
673
+ dim_inner,
674
+ num_groups,
675
+ stride_1x1,
676
+ inplace_relu,
677
+ dilation,
678
+ norm_module,
679
+ block_idx,
680
+ ):
681
+ # Use skip connection with projection if dim or res change.
682
+ if (dim_in != dim_out) or (stride != 1):
683
+ self.branch1 = nn.Conv3d(
684
+ dim_in,
685
+ dim_out,
686
+ kernel_size=1,
687
+ stride=[1, stride, stride],
688
+ padding=0,
689
+ bias=False,
690
+ dilation=1,
691
+ )
692
+ self.branch1_bn = norm_module(
693
+ num_features=dim_out, eps=self._eps, momentum=self._bn_mmt
694
+ )
695
+ self.branch2 = trans_func(
696
+ dim_in,
697
+ dim_out,
698
+ temp_kernel_size,
699
+ stride,
700
+ dim_inner,
701
+ num_groups,
702
+ stride_1x1=stride_1x1,
703
+ inplace_relu=inplace_relu,
704
+ dilation=dilation,
705
+ norm_module=norm_module,
706
+ block_idx=block_idx,
707
+ )
708
+ self.relu = nn.ReLU(self._inplace_relu)
709
+
710
+ def forward(self, x):
711
+ f_x = self.branch2(x)
712
+ if self.training and self._drop_connect_rate > 0.0:
713
+ f_x = drop_path(f_x, self._drop_connect_rate)
714
+ if hasattr(self, "branch1"):
715
+ x = self.branch1_bn(self.branch1(x)) + f_x
716
+ else:
717
+ x = x + f_x
718
+ x = self.relu(x)
719
+ return x
720
+
721
+
722
+ class ResStage(nn.Module):
723
+ """
724
+ Stage of 3D ResNet. It expects to have one or more tensors as input for
725
+ single pathway (C2D, I3D, Slow), and multi-pathway (SlowFast) cases.
726
+ More details can be found here:
727
+
728
+ Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and Kaiming He.
729
+ "SlowFast networks for video recognition."
730
+ https://arxiv.org/pdf/1812.03982.pdf
731
+ """
732
+
733
+ def __init__(
734
+ self,
735
+ dim_in,
736
+ dim_out,
737
+ stride,
738
+ temp_kernel_sizes,
739
+ num_blocks,
740
+ dim_inner,
741
+ num_groups,
742
+ num_block_temp_kernel,
743
+ nonlocal_inds,
744
+ nonlocal_group,
745
+ nonlocal_pool,
746
+ dilation,
747
+ instantiation="softmax",
748
+ trans_func_name="bottleneck_transform",
749
+ stride_1x1=False,
750
+ inplace_relu=True,
751
+ norm_module=nn.BatchNorm3d,
752
+ drop_connect_rate=0.0,
753
+ ):
754
+ """
755
+ The `__init__` method of any subclass should also contain these arguments.
756
+ ResStage builds p streams, where p can be greater or equal to one.
757
+ Args:
758
+ dim_in (list): list of p the channel dimensions of the input.
759
+ Different channel dimensions control the input dimension of
760
+ different pathways.
761
+ dim_out (list): list of p the channel dimensions of the output.
762
+ Different channel dimensions control the input dimension of
763
+ different pathways.
764
+ temp_kernel_sizes (list): list of the p temporal kernel sizes of the
765
+ convolution in the bottleneck. Different temp_kernel_sizes
766
+ control different pathway.
767
+ stride (list): list of the p strides of the bottleneck. Different
768
+ stride control different pathway.
769
+ num_blocks (list): list of p numbers of blocks for each of the
770
+ pathway.
771
+ dim_inner (list): list of the p inner channel dimensions of the
772
+ input. Different channel dimensions control the input dimension
773
+ of different pathways.
774
+ num_groups (list): list of number of p groups for the convolution.
775
+ num_groups=1 is for standard ResNet like networks, and
776
+ num_groups>1 is for ResNeXt like networks.
777
+ num_block_temp_kernel (list): extent the temp_kernel_sizes to
778
+ num_block_temp_kernel blocks, then fill temporal kernel size
779
+ of 1 for the rest of the layers.
780
+ nonlocal_inds (list): If the tuple is empty, no nonlocal layer will
781
+ be added. If the tuple is not empty, add nonlocal layers after
782
+ the index-th block.
783
+ dilation (list): size of dilation for each pathway.
784
+ nonlocal_group (list): list of number of p nonlocal groups. Each
785
+ number controls how to fold temporal dimension to batch
786
+ dimension before applying nonlocal transformation.
787
+ https://github.com/facebookresearch/video-nonlocal-net.
788
+ instantiation (string): different instantiation for nonlocal layer.
789
+ Supports two different instantiation method:
790
+ "dot_product": normalizing correlation matrix with L2.
791
+ "softmax": normalizing correlation matrix with Softmax.
792
+ trans_func_name (string): name of the the transformation function apply
793
+ on the network.
794
+ norm_module (nn.Module): nn.Module for the normalization layer. The
795
+ default is nn.BatchNorm3d.
796
+ drop_connect_rate (float): basic rate at which blocks are dropped,
797
+ linearly increases from input to output blocks.
798
+ """
799
+ super(ResStage, self).__init__()
800
+ assert all(
801
+ (
802
+ num_block_temp_kernel[i] <= num_blocks[i]
803
+ for i in range(len(temp_kernel_sizes))
804
+ )
805
+ )
806
+ self.num_blocks = num_blocks
807
+ self.nonlocal_group = nonlocal_group
808
+ self._drop_connect_rate = drop_connect_rate
809
+ self.temp_kernel_sizes = [
810
+ (temp_kernel_sizes[i] * num_blocks[i])[: num_block_temp_kernel[i]]
811
+ + [1] * (num_blocks[i] - num_block_temp_kernel[i])
812
+ for i in range(len(temp_kernel_sizes))
813
+ ]
814
+ assert (
815
+ len(
816
+ {
817
+ len(dim_in),
818
+ len(dim_out),
819
+ len(temp_kernel_sizes),
820
+ len(stride),
821
+ len(num_blocks),
822
+ len(dim_inner),
823
+ len(num_groups),
824
+ len(num_block_temp_kernel),
825
+ len(nonlocal_inds),
826
+ len(nonlocal_group),
827
+ }
828
+ )
829
+ == 1
830
+ )
831
+ self.num_pathways = len(self.num_blocks)
832
+ self._construct(
833
+ dim_in,
834
+ dim_out,
835
+ stride,
836
+ dim_inner,
837
+ num_groups,
838
+ trans_func_name,
839
+ stride_1x1,
840
+ inplace_relu,
841
+ nonlocal_inds,
842
+ nonlocal_pool,
843
+ instantiation,
844
+ dilation,
845
+ norm_module,
846
+ )
847
+
848
+ def _construct(
849
+ self,
850
+ dim_in,
851
+ dim_out,
852
+ stride,
853
+ dim_inner,
854
+ num_groups,
855
+ trans_func_name,
856
+ stride_1x1,
857
+ inplace_relu,
858
+ nonlocal_inds,
859
+ nonlocal_pool,
860
+ instantiation,
861
+ dilation,
862
+ norm_module,
863
+ ):
864
+ for pathway in range(self.num_pathways):
865
+ for i in range(self.num_blocks[pathway]):
866
+ # Retrieve the transformation function.
867
+ trans_func = get_trans_func(trans_func_name)
868
+ # Construct the block.
869
+ res_block = ResBlock(
870
+ dim_in[pathway] if i == 0 else dim_out[pathway],
871
+ dim_out[pathway],
872
+ self.temp_kernel_sizes[pathway][i],
873
+ stride[pathway] if i == 0 else 1,
874
+ trans_func,
875
+ dim_inner[pathway],
876
+ num_groups[pathway],
877
+ stride_1x1=stride_1x1,
878
+ inplace_relu=inplace_relu,
879
+ dilation=dilation[pathway],
880
+ norm_module=norm_module,
881
+ block_idx=i,
882
+ drop_connect_rate=self._drop_connect_rate,
883
+ )
884
+ self.add_module("pathway{}_res{}".format(
885
+ pathway, i), res_block)
886
+ if i in nonlocal_inds[pathway]:
887
+ nln = Nonlocal(
888
+ dim_out[pathway],
889
+ dim_out[pathway] // 2,
890
+ nonlocal_pool[pathway],
891
+ instantiation=instantiation,
892
+ norm_module=norm_module,
893
+ )
894
+ self.add_module(
895
+ "pathway{}_nonlocal{}".format(pathway, i), nln)
896
+
897
+ def forward(self, inputs):
898
+ output = []
899
+ for pathway in range(self.num_pathways):
900
+ x = inputs[pathway]
901
+ for i in range(self.num_blocks[pathway]):
902
+ m = getattr(self, "pathway{}_res{}".format(pathway, i))
903
+ x = m(x)
904
+ if hasattr(self, "pathway{}_nonlocal{}".format(pathway, i)):
905
+ nln = getattr(
906
+ self, "pathway{}_nonlocal{}".format(pathway, i))
907
+ b, c, t, h, w = x.shape
908
+ if self.nonlocal_group[pathway] > 1:
909
+ # Fold temporal dimension into batch dimension.
910
+ x = x.permute(0, 2, 1, 3, 4)
911
+ x = x.reshape(
912
+ b * self.nonlocal_group[pathway],
913
+ t // self.nonlocal_group[pathway],
914
+ c,
915
+ h,
916
+ w,
917
+ )
918
+ x = x.permute(0, 2, 1, 3, 4)
919
+ x = nln(x)
920
+ if self.nonlocal_group[pathway] > 1:
921
+ # Fold back to temporal dimension.
922
+ x = x.permute(0, 2, 1, 3, 4)
923
+ x = x.reshape(b, t, c, h, w)
924
+ x = x.permute(0, 2, 1, 3, 4)
925
+ output.append(x)
926
+
927
+ return output
helpers/stem.py ADDED
@@ -0,0 +1,320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
3
+
4
+ """ResNe(X)t 3D stem helper."""
5
+
6
+ import torch.nn as nn
7
+
8
+
9
+ def get_stem_func(name):
10
+ """
11
+ Retrieves the stem module by name.
12
+ """
13
+ trans_funcs = {"x3d_stem": X3DStem, "basic_stem": ResNetBasicStem}
14
+ assert (
15
+ name in trans_funcs.keys()
16
+ ), "Transformation function '{}' not supported".format(name)
17
+ return trans_funcs[name]
18
+
19
+
20
+ class VideoModelStem(nn.Module):
21
+ """
22
+ Video 3D stem module. Provides stem operations of Conv, BN, ReLU, MaxPool
23
+ on input data tensor for one or multiple pathways.
24
+ """
25
+
26
+ def __init__(
27
+ self,
28
+ dim_in,
29
+ dim_out,
30
+ kernel,
31
+ stride,
32
+ padding,
33
+ inplace_relu=True,
34
+ eps=1e-5,
35
+ bn_mmt=0.1,
36
+ norm_module=nn.BatchNorm3d,
37
+ stem_func_name="basic_stem",
38
+ ):
39
+ """
40
+ The `__init__` method of any subclass should also contain these
41
+ arguments. List size of 1 for single pathway models (C2D, I3D, Slow
42
+ and etc), list size of 2 for two pathway models (SlowFast).
43
+
44
+ Args:
45
+ dim_in (list): the list of channel dimensions of the inputs.
46
+ dim_out (list): the output dimension of the convolution in the stem
47
+ layer.
48
+ kernel (list): the kernels' size of the convolutions in the stem
49
+ layers. Temporal kernel size, height kernel size, width kernel
50
+ size in order.
51
+ stride (list): the stride sizes of the convolutions in the stem
52
+ layer. Temporal kernel stride, height kernel size, width kernel
53
+ size in order.
54
+ padding (list): the paddings' sizes of the convolutions in the stem
55
+ layer. Temporal padding size, height padding size, width padding
56
+ size in order.
57
+ inplace_relu (bool): calculate the relu on the original input
58
+ without allocating new memory.
59
+ eps (float): epsilon for batch norm.
60
+ bn_mmt (float): momentum for batch norm. Noted that BN momentum in
61
+ PyTorch = 1 - BN momentum in Caffe2.
62
+ norm_module (nn.Module): nn.Module for the normalization layer. The
63
+ default is nn.BatchNorm3d.
64
+ stem_func_name (string): name of the the stem function applied on
65
+ input to the network.
66
+ """
67
+ super(VideoModelStem, self).__init__()
68
+
69
+ assert (
70
+ len(
71
+ {
72
+ len(dim_in),
73
+ len(dim_out),
74
+ len(kernel),
75
+ len(stride),
76
+ len(padding),
77
+ }
78
+ )
79
+ == 1
80
+ ), "Input pathway dimensions are not consistent. {} {} {} {} {}".format(
81
+ len(dim_in),
82
+ len(dim_out),
83
+ len(kernel),
84
+ len(stride),
85
+ len(padding),
86
+ )
87
+
88
+ self.num_pathways = len(dim_in)
89
+ self.kernel = kernel
90
+ self.stride = stride
91
+ self.padding = padding
92
+ self.inplace_relu = inplace_relu
93
+ self.eps = eps
94
+ self.bn_mmt = bn_mmt
95
+ # Construct the stem layer.
96
+ self._construct_stem(dim_in, dim_out, norm_module, stem_func_name)
97
+
98
+ def _construct_stem(self, dim_in, dim_out, norm_module, stem_func_name):
99
+ trans_func = get_stem_func(stem_func_name)
100
+
101
+ for pathway in range(len(dim_in)):
102
+ stem = trans_func(
103
+ dim_in[pathway],
104
+ dim_out[pathway],
105
+ self.kernel[pathway],
106
+ self.stride[pathway],
107
+ self.padding[pathway],
108
+ self.inplace_relu,
109
+ self.eps,
110
+ self.bn_mmt,
111
+ norm_module,
112
+ )
113
+ self.add_module("pathway{}_stem".format(pathway), stem)
114
+
115
+ def forward(self, x):
116
+ assert (
117
+ len(x) == self.num_pathways
118
+ ), "Input tensor does not contain {} pathway".format(self.num_pathways)
119
+ # use a new list, don't modify in-place the x list, which is bad for activation checkpointing.
120
+ y = []
121
+ for pathway in range(len(x)):
122
+ m = getattr(self, "pathway{}_stem".format(pathway))
123
+ y.append(m(x[pathway]))
124
+ return y
125
+
126
+
127
+ class ResNetBasicStem(nn.Module):
128
+ """
129
+ ResNe(X)t 3D stem module.
130
+ Performs spatiotemporal Convolution, BN, and Relu following by a
131
+ spatiotemporal pooling.
132
+ """
133
+
134
+ def __init__(
135
+ self,
136
+ dim_in,
137
+ dim_out,
138
+ kernel,
139
+ stride,
140
+ padding,
141
+ inplace_relu=True,
142
+ eps=1e-5,
143
+ bn_mmt=0.1,
144
+ norm_module=nn.BatchNorm3d,
145
+ ):
146
+ """
147
+ The `__init__` method of any subclass should also contain these arguments.
148
+
149
+ Args:
150
+ dim_in (int): the channel dimension of the input. Normally 3 is used
151
+ for rgb input, and 2 or 3 is used for optical flow input.
152
+ dim_out (int): the output dimension of the convolution in the stem
153
+ layer.
154
+ kernel (list): the kernel size of the convolution in the stem layer.
155
+ temporal kernel size, height kernel size, width kernel size in
156
+ order.
157
+ stride (list): the stride size of the convolution in the stem layer.
158
+ temporal kernel stride, height kernel size, width kernel size in
159
+ order.
160
+ padding (int): the padding size of the convolution in the stem
161
+ layer, temporal padding size, height padding size, width
162
+ padding size in order.
163
+ inplace_relu (bool): calculate the relu on the original input
164
+ without allocating new memory.
165
+ eps (float): epsilon for batch norm.
166
+ bn_mmt (float): momentum for batch norm. Noted that BN momentum in
167
+ PyTorch = 1 - BN momentum in Caffe2.
168
+ norm_module (nn.Module): nn.Module for the normalization layer. The
169
+ default is nn.BatchNorm3d.
170
+ """
171
+ super(ResNetBasicStem, self).__init__()
172
+ self.kernel = kernel
173
+ self.stride = stride
174
+ self.padding = padding
175
+ self.inplace_relu = inplace_relu
176
+ self.eps = eps
177
+ self.bn_mmt = bn_mmt
178
+ # Construct the stem layer.
179
+ self._construct_stem(dim_in, dim_out, norm_module)
180
+
181
+ def _construct_stem(self, dim_in, dim_out, norm_module):
182
+ self.conv = nn.Conv3d(
183
+ dim_in,
184
+ dim_out,
185
+ self.kernel,
186
+ stride=self.stride,
187
+ padding=self.padding,
188
+ bias=False,
189
+ )
190
+ self.bn = norm_module(num_features=dim_out, eps=self.eps, momentum=self.bn_mmt)
191
+ self.relu = nn.ReLU(self.inplace_relu)
192
+ self.pool_layer = nn.MaxPool3d(
193
+ kernel_size=[1, 3, 3], stride=[1, 2, 2], padding=[0, 1, 1]
194
+ )
195
+
196
+ def forward(self, x):
197
+ x = self.conv(x)
198
+ x = self.bn(x)
199
+ x = self.relu(x)
200
+ x = self.pool_layer(x)
201
+ return x
202
+
203
+
204
+ class X3DStem(nn.Module):
205
+ """
206
+ X3D's 3D stem module.
207
+ Performs a spatial followed by a depthwise temporal Convolution, BN, and Relu following by a
208
+ spatiotemporal pooling.
209
+ """
210
+
211
+ def __init__(
212
+ self,
213
+ dim_in,
214
+ dim_out,
215
+ kernel,
216
+ stride,
217
+ padding,
218
+ inplace_relu=True,
219
+ eps=1e-5,
220
+ bn_mmt=0.1,
221
+ norm_module=nn.BatchNorm3d,
222
+ ):
223
+ """
224
+ The `__init__` method of any subclass should also contain these arguments.
225
+
226
+ Args:
227
+ dim_in (int): the channel dimension of the input. Normally 3 is used
228
+ for rgb input, and 2 or 3 is used for optical flow input.
229
+ dim_out (int): the output dimension of the convolution in the stem
230
+ layer.
231
+ kernel (list): the kernel size of the convolution in the stem layer.
232
+ temporal kernel size, height kernel size, width kernel size in
233
+ order.
234
+ stride (list): the stride size of the convolution in the stem layer.
235
+ temporal kernel stride, height kernel size, width kernel size in
236
+ order.
237
+ padding (int): the padding size of the convolution in the stem
238
+ layer, temporal padding size, height padding size, width
239
+ padding size in order.
240
+ inplace_relu (bool): calculate the relu on the original input
241
+ without allocating new memory.
242
+ eps (float): epsilon for batch norm.
243
+ bn_mmt (float): momentum for batch norm. Noted that BN momentum in
244
+ PyTorch = 1 - BN momentum in Caffe2.
245
+ norm_module (nn.Module): nn.Module for the normalization layer. The
246
+ default is nn.BatchNorm3d.
247
+ """
248
+ super(X3DStem, self).__init__()
249
+ self.kernel = kernel
250
+ self.stride = stride
251
+ self.padding = padding
252
+ self.inplace_relu = inplace_relu
253
+ self.eps = eps
254
+ self.bn_mmt = bn_mmt
255
+ # Construct the stem layer.
256
+ self._construct_stem(dim_in, dim_out, norm_module)
257
+
258
+ def _construct_stem(self, dim_in, dim_out, norm_module):
259
+ self.conv_xy = nn.Conv3d(
260
+ dim_in,
261
+ dim_out,
262
+ kernel_size=(1, self.kernel[1], self.kernel[2]),
263
+ stride=(1, self.stride[1], self.stride[2]),
264
+ padding=(0, self.padding[1], self.padding[2]),
265
+ bias=False,
266
+ )
267
+ self.conv = nn.Conv3d(
268
+ dim_out,
269
+ dim_out,
270
+ kernel_size=(self.kernel[0], 1, 1),
271
+ stride=(self.stride[0], 1, 1),
272
+ padding=(self.padding[0], 0, 0),
273
+ bias=False,
274
+ groups=dim_out,
275
+ )
276
+
277
+ self.bn = norm_module(num_features=dim_out, eps=self.eps, momentum=self.bn_mmt)
278
+ self.relu = nn.ReLU(self.inplace_relu)
279
+
280
+ def forward(self, x):
281
+ x = self.conv_xy(x)
282
+ x = self.conv(x)
283
+ x = self.bn(x)
284
+ x = self.relu(x)
285
+ return x
286
+
287
+
288
+ class PatchEmbed(nn.Module):
289
+ """
290
+ PatchEmbed.
291
+ """
292
+
293
+ def __init__(
294
+ self,
295
+ dim_in=3,
296
+ dim_out=768,
297
+ kernel=(1, 16, 16),
298
+ stride=(1, 4, 4),
299
+ padding=(1, 7, 7),
300
+ conv_2d=False,
301
+ ):
302
+ super().__init__()
303
+ if conv_2d:
304
+ conv = nn.Conv2d
305
+ else:
306
+ conv = nn.Conv3d
307
+ self.proj = conv(
308
+ dim_in,
309
+ dim_out,
310
+ kernel_size=kernel,
311
+ stride=stride,
312
+ padding=padding,
313
+ )
314
+
315
+ def forward(self, x, keep_spatial=False):
316
+ x = self.proj(x)
317
+ if keep_spatial:
318
+ return x, x.shape
319
+ # B C (T) H W -> B (T)HW C
320
+ return x.flatten(2).transpose(1, 2), x.shape
modeling_x3d.py ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import PreTrainedModel
2
+ from x3d_model.configuration_x3d import X3DConfig
3
+ from x3d_model.x3d import build_model
4
+
5
+
6
+ class X3DModel(PreTrainedModel):
7
+ config_class = X3DConfig
8
+
9
+ def __init__(self, config):
10
+ super().__init__(config)
11
+ self.model = build_model(config.cfg)
12
+
13
+ def forward(self, input_video):
14
+ outputs = self.model(input_video)
15
+ return outputs
x3d.py ADDED
@@ -0,0 +1,350 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
3
+
4
+ import math
5
+ import torch
6
+ from torch import nn
7
+ from torch.distributed.algorithms.ddp_comm_hooks import default as comm_hooks_default
8
+ from fvcore.nn.weight_init import c2_msra_fill, c2_xavier_fill
9
+
10
+ from .helpers.norm import get_norm
11
+ from .helpers.stem import VideoModelStem
12
+ from .helpers.resnet import ResStage
13
+ from .helpers.head import X3DHead
14
+
15
+ # round width
16
+
17
+
18
+ def round_width(width, multiplier, min_width=1, divisor=1):
19
+ if not multiplier:
20
+ return width
21
+ width *= multiplier
22
+ min_width = min_width or divisor
23
+ width_out = max(min_width, int(width + divisor / 2) // divisor * divisor)
24
+ if width_out < 0.9 * width:
25
+ width_out += divisor
26
+ return int(width_out)
27
+
28
+ # init weights
29
+
30
+
31
+ def init_weights(
32
+ model, fc_init_std=0.01, zero_init_final_bn=True, zero_init_final_conv=False
33
+ ):
34
+ """
35
+ Performs ResNet style weight initialization.
36
+ Args:
37
+ fc_init_std (float): the expected standard deviation for fc layer.
38
+ zero_init_final_bn (bool): if True, zero initialize the final bn for
39
+ every bottleneck.
40
+ """
41
+ for m in model.modules():
42
+ if isinstance(m, nn.Conv3d):
43
+ # Note that there is no bias due to BN
44
+ if hasattr(m, "final_conv") and zero_init_final_conv:
45
+ m.weight.data.zero_()
46
+ else:
47
+ """
48
+ Follow the initialization method proposed in:
49
+ {He, Kaiming, et al.
50
+ "Delving deep into rectifiers: Surpassing human-level
51
+ performance on imagenet classification."
52
+ arXiv preprint arXiv:1502.01852 (2015)}
53
+ """
54
+ c2_msra_fill(m)
55
+
56
+ elif isinstance(m, (nn.BatchNorm3d, nn.BatchNorm2d, nn.BatchNorm1d)):
57
+ if (
58
+ hasattr(m, "transform_final_bn")
59
+ and m.transform_final_bn
60
+ and zero_init_final_bn
61
+ ):
62
+ batchnorm_weight = 0.0
63
+ else:
64
+ batchnorm_weight = 1.0
65
+ if m.weight is not None:
66
+ m.weight.data.fill_(batchnorm_weight)
67
+ if m.bias is not None:
68
+ m.bias.data.zero_()
69
+ if isinstance(m, nn.Linear):
70
+ if hasattr(m, "xavier_init") and m.xavier_init:
71
+ c2_xavier_fill(m)
72
+ else:
73
+ m.weight.data.normal_(mean=0.0, std=fc_init_std)
74
+ if m.bias is not None:
75
+ m.bias.data.zero_()
76
+
77
+
78
+ # pool1
79
+
80
+ _POOL1 = {
81
+ "2d": [[1, 1, 1]],
82
+ "c2d": [[2, 1, 1]],
83
+ "slow_c2d": [[1, 1, 1]],
84
+ "i3d": [[2, 1, 1]],
85
+ "slow_i3d": [[1, 1, 1]],
86
+ "slow": [[1, 1, 1]],
87
+ "slowfast": [[1, 1, 1], [1, 1, 1]],
88
+ "x3d": [[1, 1, 1]],
89
+ }
90
+
91
+ # temporal kernel basis
92
+
93
+ _TEMPORAL_KERNEL_BASIS = {
94
+ "2d": [
95
+ [[1]], # conv1 temporal kernel.
96
+ [[1]], # res2 temporal kernel.
97
+ [[1]], # res3 temporal kernel.
98
+ [[1]], # res4 temporal kernel.
99
+ [[1]], # res5 temporal kernel.
100
+ ],
101
+ "c2d": [
102
+ [[1]], # conv1 temporal kernel.
103
+ [[1]], # res2 temporal kernel.
104
+ [[1]], # res3 temporal kernel.
105
+ [[1]], # res4 temporal kernel.
106
+ [[1]], # res5 temporal kernel.
107
+ ],
108
+ "slow_c2d": [
109
+ [[1]], # conv1 temporal kernel.
110
+ [[1]], # res2 temporal kernel.
111
+ [[1]], # res3 temporal kernel.
112
+ [[1]], # res4 temporal kernel.
113
+ [[1]], # res5 temporal kernel.
114
+ ],
115
+ "i3d": [
116
+ [[5]], # conv1 temporal kernel.
117
+ [[3]], # res2 temporal kernel.
118
+ [[3, 1]], # res3 temporal kernel.
119
+ [[3, 1]], # res4 temporal kernel.
120
+ [[1, 3]], # res5 temporal kernel.
121
+ ],
122
+ "slow_i3d": [
123
+ [[5]], # conv1 temporal kernel.
124
+ [[3]], # res2 temporal kernel.
125
+ [[3, 1]], # res3 temporal kernel.
126
+ [[3, 1]], # res4 temporal kernel.
127
+ [[1, 3]], # res5 temporal kernel.
128
+ ],
129
+ "slow": [
130
+ [[1]], # conv1 temporal kernel.
131
+ [[1]], # res2 temporal kernel.
132
+ [[1]], # res3 temporal kernel.
133
+ [[3]], # res4 temporal kernel.
134
+ [[3]], # res5 temporal kernel.
135
+ ],
136
+ "slowfast": [
137
+ [[1], [5]], # conv1 temporal kernel for slow and fast pathway.
138
+ [[1], [3]], # res2 temporal kernel for slow and fast pathway.
139
+ [[1], [3]], # res3 temporal kernel for slow and fast pathway.
140
+ [[3], [3]], # res4 temporal kernel for slow and fast pathway.
141
+ [[3], [3]], # res5 temporal kernel for slow and fast pathway.
142
+ ],
143
+ "x3d": [
144
+ [[5]], # conv1 temporal kernels.
145
+ [[3]], # res2 temporal kernels.
146
+ [[3]], # res3 temporal kernels.
147
+ [[3]], # res4 temporal kernels.
148
+ [[3]], # res5 temporal kernels.
149
+ ],
150
+ }
151
+
152
+ # model stage depth
153
+
154
+ _MODEL_STAGE_DEPTH = {18: (2, 2, 2, 2), 50: (3, 4, 6, 3), 101: (3, 4, 23, 3)}
155
+
156
+ # X3D model
157
+
158
+
159
+ class X3D(nn.Module):
160
+ """
161
+ X3D model builder. It builds a X3D network backbone, which is a ResNet.
162
+
163
+ Christoph Feichtenhofer.
164
+ "X3D: Expanding Architectures for Efficient Video Recognition."
165
+ https://arxiv.org/abs/2004.04730
166
+ """
167
+
168
+ def __init__(self, cfg):
169
+ """
170
+ The `__init__` method of any subclass should also contain these
171
+ arguments.
172
+
173
+ Args:
174
+ cfg (CfgNode): model building configs, details are in the
175
+ comments of the config file.
176
+ """
177
+ super(X3D, self).__init__()
178
+ self.norm_module = get_norm(cfg)
179
+ self.enable_detection = cfg.DETECTION.ENABLE
180
+ self.num_pathways = 1
181
+
182
+ exp_stage = 2.0
183
+ self.dim_c1 = cfg.X3D.DIM_C1
184
+
185
+ self.dim_res2 = (
186
+ round_width(self.dim_c1, exp_stage, divisor=8)
187
+ if cfg.X3D.SCALE_RES2
188
+ else self.dim_c1
189
+ )
190
+ self.dim_res3 = round_width(self.dim_res2, exp_stage, divisor=8)
191
+ self.dim_res4 = round_width(self.dim_res3, exp_stage, divisor=8)
192
+ self.dim_res5 = round_width(self.dim_res4, exp_stage, divisor=8)
193
+
194
+ self.block_basis = [
195
+ # blocks, c, stride
196
+ [1, self.dim_res2, 2],
197
+ [2, self.dim_res3, 2],
198
+ [5, self.dim_res4, 2],
199
+ [3, self.dim_res5, 2],
200
+ ]
201
+ self._construct_network(cfg)
202
+ init_weights(
203
+ self, cfg.MODEL.FC_INIT_STD, cfg.RESNET.ZERO_INIT_FINAL_BN
204
+ )
205
+
206
+ def _round_repeats(self, repeats, multiplier):
207
+ """Round number of layers based on depth multiplier."""
208
+ if not multiplier:
209
+ return repeats
210
+ return int(math.ceil(multiplier * repeats))
211
+
212
+ def _construct_network(self, cfg):
213
+ """
214
+ Builds a single pathway X3D model.
215
+
216
+ Args:
217
+ cfg (CfgNode): model building configs, details are in the
218
+ comments of the config file.
219
+ """
220
+ assert cfg.MODEL.ARCH in _POOL1.keys()
221
+ assert cfg.RESNET.DEPTH in _MODEL_STAGE_DEPTH.keys()
222
+
223
+ (d2, d3, d4, d5) = _MODEL_STAGE_DEPTH[cfg.RESNET.DEPTH]
224
+
225
+ num_groups = cfg.RESNET.NUM_GROUPS
226
+ width_per_group = cfg.RESNET.WIDTH_PER_GROUP
227
+ dim_inner = num_groups * width_per_group
228
+
229
+ w_mul = cfg.X3D.WIDTH_FACTOR
230
+ d_mul = cfg.X3D.DEPTH_FACTOR
231
+ dim_res1 = round_width(self.dim_c1, w_mul)
232
+
233
+ temp_kernel = _TEMPORAL_KERNEL_BASIS[cfg.MODEL.ARCH]
234
+
235
+ self.s1 = VideoModelStem(
236
+ dim_in=cfg.DATA.INPUT_CHANNEL_NUM,
237
+ dim_out=[dim_res1],
238
+ kernel=[temp_kernel[0][0] + [3, 3]],
239
+ stride=[[1, 2, 2]],
240
+ padding=[[temp_kernel[0][0][0] // 2, 1, 1]],
241
+ norm_module=self.norm_module,
242
+ stem_func_name="x3d_stem",
243
+ )
244
+
245
+ # blob_in = s1
246
+ dim_in = dim_res1
247
+ for stage, block in enumerate(self.block_basis):
248
+ dim_out = round_width(block[1], w_mul)
249
+ dim_inner = int(cfg.X3D.BOTTLENECK_FACTOR * dim_out)
250
+
251
+ n_rep = self._round_repeats(block[0], d_mul)
252
+ # start w res2 to follow convention
253
+ prefix = "s{}".format(stage + 2)
254
+
255
+ s = ResStage(
256
+ dim_in=[dim_in],
257
+ dim_out=[dim_out],
258
+ dim_inner=[dim_inner],
259
+ temp_kernel_sizes=temp_kernel[1],
260
+ stride=[block[2]],
261
+ num_blocks=[n_rep],
262
+ num_groups=[dim_inner] if cfg.X3D.CHANNELWISE_3x3x3 else [
263
+ num_groups],
264
+ num_block_temp_kernel=[n_rep],
265
+ nonlocal_inds=cfg.NONLOCAL.LOCATION[0],
266
+ nonlocal_group=cfg.NONLOCAL.GROUP[0],
267
+ nonlocal_pool=cfg.NONLOCAL.POOL[0],
268
+ instantiation=cfg.NONLOCAL.INSTANTIATION,
269
+ trans_func_name=cfg.RESNET.TRANS_FUNC,
270
+ stride_1x1=cfg.RESNET.STRIDE_1X1,
271
+ norm_module=self.norm_module,
272
+ dilation=cfg.RESNET.SPATIAL_DILATIONS[stage],
273
+ drop_connect_rate=cfg.MODEL.DROPCONNECT_RATE
274
+ * (stage + 2)
275
+ / (len(self.block_basis) + 1),
276
+ )
277
+ dim_in = dim_out
278
+ self.add_module(prefix, s)
279
+
280
+ if self.enable_detection:
281
+ NotImplementedError
282
+ else:
283
+ spat_sz = int(math.ceil(cfg.DATA.TRAIN_CROP_SIZE / 32.0))
284
+ self.head = X3DHead(
285
+ dim_in=dim_out,
286
+ dim_inner=dim_inner,
287
+ dim_out=cfg.X3D.DIM_C5,
288
+ num_classes=cfg.MODEL.NUM_CLASSES,
289
+ pool_size=[cfg.DATA.NUM_FRAMES, spat_sz, spat_sz],
290
+ dropout_rate=cfg.MODEL.DROPOUT_RATE,
291
+ act_func=cfg.MODEL.HEAD_ACT,
292
+ bn_lin5_on=cfg.X3D.BN_LIN5,
293
+ )
294
+
295
+ def forward(self, x, bboxes=None):
296
+ for module in self.children():
297
+ x = module(x)
298
+ return x
299
+
300
+ def build_model(cfg, gpu_id=None):
301
+ if torch.cuda.is_available():
302
+ assert (
303
+ cfg.NUM_GPUS <= torch.cuda.device_count()
304
+ ), "Cannot use more GPU devices than available"
305
+ else:
306
+ assert (
307
+ cfg.NUM_GPUS == 0
308
+ ), "Cuda is not available. Please set `NUM_GPUS: 0 for running on CPUs."
309
+
310
+ # Construct the model
311
+ model = X3D(cfg)
312
+
313
+ if cfg.BN.NORM_TYPE == "sync_batchnorm_apex":
314
+ try:
315
+ import apex
316
+ except ImportError:
317
+ raise ImportError("APEX is required for this model, pelase install")
318
+
319
+ process_group = apex.parallel.create_syncbn_process_group(
320
+ group_size=cfg.BN.NUM_SYNC_DEVICES
321
+ )
322
+ model = apex.parallel.convert_syncbn_model(model, process_group=process_group)
323
+
324
+ if cfg.NUM_GPUS:
325
+ if gpu_id is None:
326
+ # Determine the GPU used by the current process
327
+ cur_device = torch.cuda.current_device()
328
+ else:
329
+ cur_device = gpu_id
330
+ # Transfer the model to the current GPU device
331
+ model = model.cuda(device=cur_device)
332
+ # Use multi-process data parallel model in the multi-gpu setting
333
+ if cfg.NUM_GPUS > 1:
334
+ # Make model replica operate on the current device
335
+ model = torch.nn.parallel.DistributedDataParallel(
336
+ module=model,
337
+ device_ids=[cur_device],
338
+ output_device=cur_device,
339
+ find_unused_parameters=(
340
+ True
341
+ if cfg.MODEL.DETACH_FINAL_FC
342
+ or cfg.MODEL.MODEL_NAME == "ContrastiveModel"
343
+ else False
344
+ ),
345
+ )
346
+ if cfg.MODEL.FP16_ALLREDUCE:
347
+ model.register_comm_hook(
348
+ state=None, hook=comm_hooks_default.fp16_compress_hook
349
+ )
350
+ return model