|
norm_cfg = dict(type='BN', requires_grad=False) |
|
model = dict( |
|
type='FasterRCNNVMRN', |
|
backbone=dict( |
|
type='mmdet.ResNet', |
|
depth=101, |
|
num_stages=3, |
|
strides=(1, 2, 2), |
|
dilations=(1, 1, 1), |
|
out_indices=(2, ), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True, |
|
style='caffe', |
|
init_cfg=dict( |
|
type='Pretrained', |
|
checkpoint='open-mmlab://detectron2/resnet101_caffe')), |
|
rpn_head=dict( |
|
type='mmdet.RPNHead', |
|
in_channels=1024, |
|
feat_channels=1024, |
|
anchor_generator=dict( |
|
type='AnchorGenerator', |
|
scales=[8, 16, 32], |
|
ratios=[0.33, 0.5, 1.0, 2.0, 3.0], |
|
strides=[16]), |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0.0, 0.0, 0.0, 0.0], |
|
target_stds=[1.0, 1.0, 1.0, 1.0]), |
|
loss_cls=dict( |
|
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), |
|
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)), |
|
roi_head=dict( |
|
type='mmdet.StandardRoIHead', |
|
shared_head=dict( |
|
type='mmdet.ResLayer', |
|
depth=50, |
|
stage=3, |
|
stride=1, |
|
style='caffe', |
|
norm_cfg=dict(type='BN', requires_grad=False), |
|
norm_eval=True), |
|
bbox_roi_extractor=dict( |
|
type='mmdet.SingleRoIExtractor', |
|
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0), |
|
out_channels=1024, |
|
featmap_strides=[16]), |
|
bbox_head=dict( |
|
type='mmdet.BBoxHead', |
|
with_avg_pool=True, |
|
roi_feat_size=7, |
|
in_channels=2048, |
|
num_classes=31, |
|
bbox_coder=dict( |
|
type='DeltaXYWHBBoxCoder', |
|
target_means=[0.0, 0.0, 0.0, 0.0], |
|
target_stds=[0.1, 0.1, 0.2, 0.2]), |
|
reg_class_agnostic=False, |
|
loss_cls=dict( |
|
type='mmdet.CrossEntropyLoss', |
|
use_sigmoid=False, |
|
loss_weight=1.0), |
|
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0))), |
|
vmrn_head=dict( |
|
type='invigorate.PairedRoIHead', |
|
shared_head=dict( |
|
type='invigorate.PairedResLayer', |
|
depth=50, |
|
stage=3, |
|
stride=1, |
|
style='caffe', |
|
norm_eval=False, |
|
share_weights=False), |
|
paired_roi_extractor=dict( |
|
type='invigorate.VMRNPairedRoIExtractor', |
|
roi_layer=dict(type='RoIPool', output_size=7), |
|
out_channels=1024, |
|
featmap_strides=[16]), |
|
relation_head=dict( |
|
type='invigorate.BBoxPairHead', |
|
with_avg_pool=True, |
|
roi_feat_size=7, |
|
in_channels=2048, |
|
num_relations=2, |
|
loss_cls=dict( |
|
type='mmdet.CrossEntropyLoss', |
|
use_sigmoid=False, |
|
loss_weight=1.0))), |
|
train_cfg=dict( |
|
rpn=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.7, |
|
neg_iou_thr=0.3, |
|
min_pos_iou=0.3, |
|
match_low_quality=True, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=256, |
|
pos_fraction=0.5, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=False), |
|
allowed_border=0, |
|
pos_weight=-1, |
|
debug=False), |
|
rpn_proposal=dict( |
|
nms_pre=12000, |
|
max_per_img=2000, |
|
nms=dict(type='nms', iou_threshold=0.7), |
|
min_bbox_size=0), |
|
rcnn=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.5, |
|
neg_iou_thr=0.5, |
|
min_pos_iou=0.5, |
|
match_low_quality=False, |
|
ignore_iof_thr=-1), |
|
sampler=dict( |
|
type='RandomSampler', |
|
num=256, |
|
pos_fraction=0.25, |
|
neg_pos_ub=-1, |
|
add_gt_as_proposals=True), |
|
pos_weight=-1, |
|
debug=False), |
|
vmrn=dict( |
|
assigner=dict( |
|
type='MaxIoUAssigner', |
|
pos_iou_thr=0.7, |
|
neg_iou_thr=0.5, |
|
min_pos_iou=0.7, |
|
match_low_quality=False, |
|
ignore_iof_thr=-1), |
|
relation_sampler=dict( |
|
type='RandomRelationSampler', |
|
num=32, |
|
pos_fraction=0.5, |
|
cls_ratio_ub=-1, |
|
add_gt_as_proposals=True, |
|
num_relation_cls=2), |
|
pos_weight=-1, |
|
online_data=True, |
|
online_start_iteration=0)), |
|
test_cfg=dict( |
|
rpn=dict( |
|
nms_pre=6000, |
|
max_per_img=300, |
|
nms=dict(type='nms', iou_threshold=0.7), |
|
min_bbox_size=0), |
|
rcnn=dict( |
|
score_thr=0.05, |
|
nms=dict(type='nms', iou_threshold=0.3), |
|
max_per_img=100), |
|
vmrn=dict( |
|
bbox_score_thr=0.5, verbose_relation=False, average_scores=False))) |
|
dataset_type = 'VMRDDataset' |
|
data_root = 'data/vmrd/' |
|
img_norm_cfg = dict( |
|
mean=[123.675, 116.28, 103.53], std=[1.0, 1.0, 1.0], to_rgb=True) |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=['gt_bboxes', 'gt_labels', 'gt_relmats']), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='PhotoMetricDistortion'), |
|
dict(type='Expand', mean=[123.675, 116.28, 103.53]), |
|
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats']), |
|
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats']) |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']) |
|
]) |
|
] |
|
data = dict( |
|
samples_per_gpu=8, |
|
workers_per_gpu=8, |
|
train=dict( |
|
type='RepeatDataset', |
|
times=3, |
|
dataset=dict( |
|
type='VMRDDataset', |
|
ann_file='data/vmrd/ImageSets/Main/trainval.txt', |
|
img_prefix='data/vmrd/', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile', to_float32=True), |
|
dict( |
|
type='LoadAnnotationsCustom', |
|
keys=['gt_bboxes', 'gt_labels', 'gt_relmats']), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='PhotoMetricDistortion'), |
|
dict(type='Expand', mean=[123.675, 116.28, 103.53]), |
|
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict( |
|
type='DefaultFormatBundleCustom', |
|
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats']), |
|
dict( |
|
type='Collect', |
|
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats']) |
|
])), |
|
val=dict( |
|
type='VMRDDataset', |
|
ann_file='data/vmrd/ImageSets/Main/test.txt', |
|
img_prefix='data/vmrd/', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']) |
|
]) |
|
]), |
|
test=dict( |
|
type='VMRDDataset', |
|
ann_file='data/vmrd/ImageSets/Main/test.txt', |
|
img_prefix='data/vmrd/', |
|
pipeline=[ |
|
dict(type='LoadImageFromFile'), |
|
dict( |
|
type='MultiScaleFlipAug', |
|
img_scale=(1000, 600), |
|
flip=False, |
|
transforms=[ |
|
dict(type='Resize', keep_ratio=True), |
|
dict( |
|
type='Normalize', |
|
mean=[123.675, 116.28, 103.53], |
|
std=[1.0, 1.0, 1.0], |
|
to_rgb=True), |
|
dict(type='Pad', size_divisor=32), |
|
dict(type='ImageToTensor', keys=['img']), |
|
dict(type='Collect', keys=['img']) |
|
]) |
|
])) |
|
evaluation = dict(interval=1, metric=['mAP', 'ImgAcc']) |
|
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001) |
|
optimizer_config = dict(grad_clip=dict(max_norm=100, norm_type=2)) |
|
lr_config = dict( |
|
policy='step', |
|
warmup='linear', |
|
warmup_iters=500, |
|
warmup_ratio=0.001, |
|
step=[8]) |
|
runner = dict(type='EpochBasedRunner', max_epochs=20) |
|
checkpoint_config = dict(interval=1, max_keep_ckpts=3) |
|
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')]) |
|
custom_hooks = [dict(type='NumClassCheckHook')] |
|
dist_params = dict(backend='nccl') |
|
log_level = 'INFO' |
|
load_from = None |
|
resume_from = None |
|
workflow = [('train', 1)] |
|
opencv_num_threads = 0 |
|
mp_start_method = 'fork' |
|
auto_scale_lr = dict(enable=False, base_batch_size=16) |
|
mmdet = None |
|
mmdet_root = '/data/home/hanbo/projects/alpha_vision/mmdetection/mmdet' |
|
work_dir = './work_dirs/faster_rcnn_vmrn_r101_caffe_c4_1x_vmrd4683' |
|
gpu_ids = range(0, 2) |
|
|