vmrn / faster_rcnn_vmrn_r101_caffe_c4_1x_vmrd4683.py
zhb10086's picture
Upload 2 files
d1e29e2 verified
norm_cfg = dict(type='BN', requires_grad=False)
model = dict(
type='FasterRCNNVMRN',
backbone=dict(
type='mmdet.ResNet',
depth=101,
num_stages=3,
strides=(1, 2, 2),
dilations=(1, 1, 1),
out_indices=(2, ),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='caffe',
init_cfg=dict(
type='Pretrained',
checkpoint='open-mmlab://detectron2/resnet101_caffe')),
rpn_head=dict(
type='mmdet.RPNHead',
in_channels=1024,
feat_channels=1024,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8, 16, 32],
ratios=[0.33, 0.5, 1.0, 2.0, 3.0],
strides=[16]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
roi_head=dict(
type='mmdet.StandardRoIHead',
shared_head=dict(
type='mmdet.ResLayer',
depth=50,
stage=3,
stride=1,
style='caffe',
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True),
bbox_roi_extractor=dict(
type='mmdet.SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=1024,
featmap_strides=[16]),
bbox_head=dict(
type='mmdet.BBoxHead',
with_avg_pool=True,
roi_feat_size=7,
in_channels=2048,
num_classes=31,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0.0, 0.0, 0.0, 0.0],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=False,
loss_cls=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0),
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0))),
vmrn_head=dict(
type='invigorate.PairedRoIHead',
shared_head=dict(
type='invigorate.PairedResLayer',
depth=50,
stage=3,
stride=1,
style='caffe',
norm_eval=False,
share_weights=False),
paired_roi_extractor=dict(
type='invigorate.VMRNPairedRoIExtractor',
roi_layer=dict(type='RoIPool', output_size=7),
out_channels=1024,
featmap_strides=[16]),
relation_head=dict(
type='invigorate.BBoxPairHead',
with_avg_pool=True,
roi_feat_size=7,
in_channels=2048,
num_relations=2,
loss_cls=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=False,
loss_weight=1.0))),
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=0,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=12000,
max_per_img=2000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False),
vmrn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.5,
min_pos_iou=0.7,
match_low_quality=False,
ignore_iof_thr=-1),
relation_sampler=dict(
type='RandomRelationSampler',
num=32,
pos_fraction=0.5,
cls_ratio_ub=-1,
add_gt_as_proposals=True,
num_relation_cls=2),
pos_weight=-1,
online_data=True,
online_start_iteration=0)),
test_cfg=dict(
rpn=dict(
nms_pre=6000,
max_per_img=300,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.05,
nms=dict(type='nms', iou_threshold=0.3),
max_per_img=100),
vmrn=dict(
bbox_score_thr=0.5, verbose_relation=False, average_scores=False)))
dataset_type = 'VMRDDataset'
data_root = 'data/vmrd/'
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[1.0, 1.0, 1.0], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(
type='LoadAnnotationsCustom',
keys=['gt_bboxes', 'gt_labels', 'gt_relmats']),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Expand', mean=[123.675, 116.28, 103.53]),
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[1.0, 1.0, 1.0],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundleCustom',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats']),
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats'])
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1000, 600),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[1.0, 1.0, 1.0],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]
data = dict(
samples_per_gpu=8,
workers_per_gpu=8,
train=dict(
type='RepeatDataset',
times=3,
dataset=dict(
type='VMRDDataset',
ann_file='data/vmrd/ImageSets/Main/trainval.txt',
img_prefix='data/vmrd/',
pipeline=[
dict(type='LoadImageFromFile', to_float32=True),
dict(
type='LoadAnnotationsCustom',
keys=['gt_bboxes', 'gt_labels', 'gt_relmats']),
dict(type='RandomFlip', flip_ratio=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='Expand', mean=[123.675, 116.28, 103.53]),
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[1.0, 1.0, 1.0],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(
type='DefaultFormatBundleCustom',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats']),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats'])
])),
val=dict(
type='VMRDDataset',
ann_file='data/vmrd/ImageSets/Main/test.txt',
img_prefix='data/vmrd/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1000, 600),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[1.0, 1.0, 1.0],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]),
test=dict(
type='VMRDDataset',
ann_file='data/vmrd/ImageSets/Main/test.txt',
img_prefix='data/vmrd/',
pipeline=[
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1000, 600),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(
type='Normalize',
mean=[123.675, 116.28, 103.53],
std=[1.0, 1.0, 1.0],
to_rgb=True),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img'])
])
]))
evaluation = dict(interval=1, metric=['mAP', 'ImgAcc'])
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=dict(max_norm=100, norm_type=2))
lr_config = dict(
policy='step',
warmup='linear',
warmup_iters=500,
warmup_ratio=0.001,
step=[8])
runner = dict(type='EpochBasedRunner', max_epochs=20)
checkpoint_config = dict(interval=1, max_keep_ckpts=3)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
custom_hooks = [dict(type='NumClassCheckHook')]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
opencv_num_threads = 0
mp_start_method = 'fork'
auto_scale_lr = dict(enable=False, base_batch_size=16)
mmdet = None
mmdet_root = '/data/home/hanbo/projects/alpha_vision/mmdetection/mmdet'
work_dir = './work_dirs/faster_rcnn_vmrn_r101_caffe_c4_1x_vmrd4683'
gpu_ids = range(0, 2)