Upload 2 files
Browse files
20240901_104528.log.jsonl
ADDED
The diff for this file is too large to render.
See raw diff
|
|
faster_rcnn_vmrn_r101_caffe_c4_1x_vmrd4683.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
norm_cfg = dict(type='BN', requires_grad=False)
|
2 |
+
model = dict(
|
3 |
+
type='FasterRCNNVMRN',
|
4 |
+
backbone=dict(
|
5 |
+
type='mmdet.ResNet',
|
6 |
+
depth=101,
|
7 |
+
num_stages=3,
|
8 |
+
strides=(1, 2, 2),
|
9 |
+
dilations=(1, 1, 1),
|
10 |
+
out_indices=(2, ),
|
11 |
+
frozen_stages=1,
|
12 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
13 |
+
norm_eval=True,
|
14 |
+
style='caffe',
|
15 |
+
init_cfg=dict(
|
16 |
+
type='Pretrained',
|
17 |
+
checkpoint='open-mmlab://detectron2/resnet101_caffe')),
|
18 |
+
rpn_head=dict(
|
19 |
+
type='mmdet.RPNHead',
|
20 |
+
in_channels=1024,
|
21 |
+
feat_channels=1024,
|
22 |
+
anchor_generator=dict(
|
23 |
+
type='AnchorGenerator',
|
24 |
+
scales=[8, 16, 32],
|
25 |
+
ratios=[0.33, 0.5, 1.0, 2.0, 3.0],
|
26 |
+
strides=[16]),
|
27 |
+
bbox_coder=dict(
|
28 |
+
type='DeltaXYWHBBoxCoder',
|
29 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
30 |
+
target_stds=[1.0, 1.0, 1.0, 1.0]),
|
31 |
+
loss_cls=dict(
|
32 |
+
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
|
33 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0)),
|
34 |
+
roi_head=dict(
|
35 |
+
type='mmdet.StandardRoIHead',
|
36 |
+
shared_head=dict(
|
37 |
+
type='mmdet.ResLayer',
|
38 |
+
depth=50,
|
39 |
+
stage=3,
|
40 |
+
stride=1,
|
41 |
+
style='caffe',
|
42 |
+
norm_cfg=dict(type='BN', requires_grad=False),
|
43 |
+
norm_eval=True),
|
44 |
+
bbox_roi_extractor=dict(
|
45 |
+
type='mmdet.SingleRoIExtractor',
|
46 |
+
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
|
47 |
+
out_channels=1024,
|
48 |
+
featmap_strides=[16]),
|
49 |
+
bbox_head=dict(
|
50 |
+
type='mmdet.BBoxHead',
|
51 |
+
with_avg_pool=True,
|
52 |
+
roi_feat_size=7,
|
53 |
+
in_channels=2048,
|
54 |
+
num_classes=31,
|
55 |
+
bbox_coder=dict(
|
56 |
+
type='DeltaXYWHBBoxCoder',
|
57 |
+
target_means=[0.0, 0.0, 0.0, 0.0],
|
58 |
+
target_stds=[0.1, 0.1, 0.2, 0.2]),
|
59 |
+
reg_class_agnostic=False,
|
60 |
+
loss_cls=dict(
|
61 |
+
type='mmdet.CrossEntropyLoss',
|
62 |
+
use_sigmoid=False,
|
63 |
+
loss_weight=1.0),
|
64 |
+
loss_bbox=dict(type='mmdet.L1Loss', loss_weight=1.0))),
|
65 |
+
vmrn_head=dict(
|
66 |
+
type='invigorate.PairedRoIHead',
|
67 |
+
shared_head=dict(
|
68 |
+
type='invigorate.PairedResLayer',
|
69 |
+
depth=50,
|
70 |
+
stage=3,
|
71 |
+
stride=1,
|
72 |
+
style='caffe',
|
73 |
+
norm_eval=False,
|
74 |
+
share_weights=False),
|
75 |
+
paired_roi_extractor=dict(
|
76 |
+
type='invigorate.VMRNPairedRoIExtractor',
|
77 |
+
roi_layer=dict(type='RoIPool', output_size=7),
|
78 |
+
out_channels=1024,
|
79 |
+
featmap_strides=[16]),
|
80 |
+
relation_head=dict(
|
81 |
+
type='invigorate.BBoxPairHead',
|
82 |
+
with_avg_pool=True,
|
83 |
+
roi_feat_size=7,
|
84 |
+
in_channels=2048,
|
85 |
+
num_relations=2,
|
86 |
+
loss_cls=dict(
|
87 |
+
type='mmdet.CrossEntropyLoss',
|
88 |
+
use_sigmoid=False,
|
89 |
+
loss_weight=1.0))),
|
90 |
+
train_cfg=dict(
|
91 |
+
rpn=dict(
|
92 |
+
assigner=dict(
|
93 |
+
type='MaxIoUAssigner',
|
94 |
+
pos_iou_thr=0.7,
|
95 |
+
neg_iou_thr=0.3,
|
96 |
+
min_pos_iou=0.3,
|
97 |
+
match_low_quality=True,
|
98 |
+
ignore_iof_thr=-1),
|
99 |
+
sampler=dict(
|
100 |
+
type='RandomSampler',
|
101 |
+
num=256,
|
102 |
+
pos_fraction=0.5,
|
103 |
+
neg_pos_ub=-1,
|
104 |
+
add_gt_as_proposals=False),
|
105 |
+
allowed_border=0,
|
106 |
+
pos_weight=-1,
|
107 |
+
debug=False),
|
108 |
+
rpn_proposal=dict(
|
109 |
+
nms_pre=12000,
|
110 |
+
max_per_img=2000,
|
111 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
112 |
+
min_bbox_size=0),
|
113 |
+
rcnn=dict(
|
114 |
+
assigner=dict(
|
115 |
+
type='MaxIoUAssigner',
|
116 |
+
pos_iou_thr=0.5,
|
117 |
+
neg_iou_thr=0.5,
|
118 |
+
min_pos_iou=0.5,
|
119 |
+
match_low_quality=False,
|
120 |
+
ignore_iof_thr=-1),
|
121 |
+
sampler=dict(
|
122 |
+
type='RandomSampler',
|
123 |
+
num=256,
|
124 |
+
pos_fraction=0.25,
|
125 |
+
neg_pos_ub=-1,
|
126 |
+
add_gt_as_proposals=True),
|
127 |
+
pos_weight=-1,
|
128 |
+
debug=False),
|
129 |
+
vmrn=dict(
|
130 |
+
assigner=dict(
|
131 |
+
type='MaxIoUAssigner',
|
132 |
+
pos_iou_thr=0.7,
|
133 |
+
neg_iou_thr=0.5,
|
134 |
+
min_pos_iou=0.7,
|
135 |
+
match_low_quality=False,
|
136 |
+
ignore_iof_thr=-1),
|
137 |
+
relation_sampler=dict(
|
138 |
+
type='RandomRelationSampler',
|
139 |
+
num=32,
|
140 |
+
pos_fraction=0.5,
|
141 |
+
cls_ratio_ub=-1,
|
142 |
+
add_gt_as_proposals=True,
|
143 |
+
num_relation_cls=2),
|
144 |
+
pos_weight=-1,
|
145 |
+
online_data=True,
|
146 |
+
online_start_iteration=0)),
|
147 |
+
test_cfg=dict(
|
148 |
+
rpn=dict(
|
149 |
+
nms_pre=6000,
|
150 |
+
max_per_img=300,
|
151 |
+
nms=dict(type='nms', iou_threshold=0.7),
|
152 |
+
min_bbox_size=0),
|
153 |
+
rcnn=dict(
|
154 |
+
score_thr=0.05,
|
155 |
+
nms=dict(type='nms', iou_threshold=0.3),
|
156 |
+
max_per_img=100),
|
157 |
+
vmrn=dict(
|
158 |
+
bbox_score_thr=0.5, verbose_relation=False, average_scores=False)))
|
159 |
+
dataset_type = 'VMRDDataset'
|
160 |
+
data_root = 'data/vmrd/'
|
161 |
+
img_norm_cfg = dict(
|
162 |
+
mean=[123.675, 116.28, 103.53], std=[1.0, 1.0, 1.0], to_rgb=True)
|
163 |
+
train_pipeline = [
|
164 |
+
dict(type='LoadImageFromFile', to_float32=True),
|
165 |
+
dict(
|
166 |
+
type='LoadAnnotationsCustom',
|
167 |
+
keys=['gt_bboxes', 'gt_labels', 'gt_relmats']),
|
168 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
169 |
+
dict(type='PhotoMetricDistortion'),
|
170 |
+
dict(type='Expand', mean=[123.675, 116.28, 103.53]),
|
171 |
+
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True),
|
172 |
+
dict(
|
173 |
+
type='Normalize',
|
174 |
+
mean=[123.675, 116.28, 103.53],
|
175 |
+
std=[1.0, 1.0, 1.0],
|
176 |
+
to_rgb=True),
|
177 |
+
dict(type='Pad', size_divisor=32),
|
178 |
+
dict(
|
179 |
+
type='DefaultFormatBundleCustom',
|
180 |
+
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats']),
|
181 |
+
dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats'])
|
182 |
+
]
|
183 |
+
test_pipeline = [
|
184 |
+
dict(type='LoadImageFromFile'),
|
185 |
+
dict(
|
186 |
+
type='MultiScaleFlipAug',
|
187 |
+
img_scale=(1000, 600),
|
188 |
+
flip=False,
|
189 |
+
transforms=[
|
190 |
+
dict(type='Resize', keep_ratio=True),
|
191 |
+
dict(
|
192 |
+
type='Normalize',
|
193 |
+
mean=[123.675, 116.28, 103.53],
|
194 |
+
std=[1.0, 1.0, 1.0],
|
195 |
+
to_rgb=True),
|
196 |
+
dict(type='Pad', size_divisor=32),
|
197 |
+
dict(type='ImageToTensor', keys=['img']),
|
198 |
+
dict(type='Collect', keys=['img'])
|
199 |
+
])
|
200 |
+
]
|
201 |
+
data = dict(
|
202 |
+
samples_per_gpu=8,
|
203 |
+
workers_per_gpu=8,
|
204 |
+
train=dict(
|
205 |
+
type='RepeatDataset',
|
206 |
+
times=3,
|
207 |
+
dataset=dict(
|
208 |
+
type='VMRDDataset',
|
209 |
+
ann_file='data/vmrd/ImageSets/Main/trainval.txt',
|
210 |
+
img_prefix='data/vmrd/',
|
211 |
+
pipeline=[
|
212 |
+
dict(type='LoadImageFromFile', to_float32=True),
|
213 |
+
dict(
|
214 |
+
type='LoadAnnotationsCustom',
|
215 |
+
keys=['gt_bboxes', 'gt_labels', 'gt_relmats']),
|
216 |
+
dict(type='RandomFlip', flip_ratio=0.5),
|
217 |
+
dict(type='PhotoMetricDistortion'),
|
218 |
+
dict(type='Expand', mean=[123.675, 116.28, 103.53]),
|
219 |
+
dict(type='Resize', img_scale=(1000, 600), keep_ratio=True),
|
220 |
+
dict(
|
221 |
+
type='Normalize',
|
222 |
+
mean=[123.675, 116.28, 103.53],
|
223 |
+
std=[1.0, 1.0, 1.0],
|
224 |
+
to_rgb=True),
|
225 |
+
dict(type='Pad', size_divisor=32),
|
226 |
+
dict(
|
227 |
+
type='DefaultFormatBundleCustom',
|
228 |
+
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats']),
|
229 |
+
dict(
|
230 |
+
type='Collect',
|
231 |
+
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_relmats'])
|
232 |
+
])),
|
233 |
+
val=dict(
|
234 |
+
type='VMRDDataset',
|
235 |
+
ann_file='data/vmrd/ImageSets/Main/test.txt',
|
236 |
+
img_prefix='data/vmrd/',
|
237 |
+
pipeline=[
|
238 |
+
dict(type='LoadImageFromFile'),
|
239 |
+
dict(
|
240 |
+
type='MultiScaleFlipAug',
|
241 |
+
img_scale=(1000, 600),
|
242 |
+
flip=False,
|
243 |
+
transforms=[
|
244 |
+
dict(type='Resize', keep_ratio=True),
|
245 |
+
dict(
|
246 |
+
type='Normalize',
|
247 |
+
mean=[123.675, 116.28, 103.53],
|
248 |
+
std=[1.0, 1.0, 1.0],
|
249 |
+
to_rgb=True),
|
250 |
+
dict(type='Pad', size_divisor=32),
|
251 |
+
dict(type='ImageToTensor', keys=['img']),
|
252 |
+
dict(type='Collect', keys=['img'])
|
253 |
+
])
|
254 |
+
]),
|
255 |
+
test=dict(
|
256 |
+
type='VMRDDataset',
|
257 |
+
ann_file='data/vmrd/ImageSets/Main/test.txt',
|
258 |
+
img_prefix='data/vmrd/',
|
259 |
+
pipeline=[
|
260 |
+
dict(type='LoadImageFromFile'),
|
261 |
+
dict(
|
262 |
+
type='MultiScaleFlipAug',
|
263 |
+
img_scale=(1000, 600),
|
264 |
+
flip=False,
|
265 |
+
transforms=[
|
266 |
+
dict(type='Resize', keep_ratio=True),
|
267 |
+
dict(
|
268 |
+
type='Normalize',
|
269 |
+
mean=[123.675, 116.28, 103.53],
|
270 |
+
std=[1.0, 1.0, 1.0],
|
271 |
+
to_rgb=True),
|
272 |
+
dict(type='Pad', size_divisor=32),
|
273 |
+
dict(type='ImageToTensor', keys=['img']),
|
274 |
+
dict(type='Collect', keys=['img'])
|
275 |
+
])
|
276 |
+
]))
|
277 |
+
evaluation = dict(interval=1, metric=['mAP', 'ImgAcc'])
|
278 |
+
optimizer = dict(type='SGD', lr=0.005, momentum=0.9, weight_decay=0.0001)
|
279 |
+
optimizer_config = dict(grad_clip=dict(max_norm=100, norm_type=2))
|
280 |
+
lr_config = dict(
|
281 |
+
policy='step',
|
282 |
+
warmup='linear',
|
283 |
+
warmup_iters=500,
|
284 |
+
warmup_ratio=0.001,
|
285 |
+
step=[8])
|
286 |
+
runner = dict(type='EpochBasedRunner', max_epochs=20)
|
287 |
+
checkpoint_config = dict(interval=1, max_keep_ckpts=3)
|
288 |
+
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
|
289 |
+
custom_hooks = [dict(type='NumClassCheckHook')]
|
290 |
+
dist_params = dict(backend='nccl')
|
291 |
+
log_level = 'INFO'
|
292 |
+
load_from = None
|
293 |
+
resume_from = None
|
294 |
+
workflow = [('train', 1)]
|
295 |
+
opencv_num_threads = 0
|
296 |
+
mp_start_method = 'fork'
|
297 |
+
auto_scale_lr = dict(enable=False, base_batch_size=16)
|
298 |
+
mmdet = None
|
299 |
+
mmdet_root = '/data/home/hanbo/projects/alpha_vision/mmdetection/mmdet'
|
300 |
+
work_dir = './work_dirs/faster_rcnn_vmrn_r101_caffe_c4_1x_vmrd4683'
|
301 |
+
gpu_ids = range(0, 2)
|