SpanMarker with allenai/specter2_base on my-data

This is a SpanMarker model that can be used for Named Entity Recognition. This SpanMarker model uses allenai/specter2_base as the underlying encoder.

Model Details

Model Description

  • Model Type: SpanMarker
  • Encoder: allenai/specter2_base
  • Maximum Sequence Length: 256 tokens
  • Maximum Entity Length: 8 words
  • Language: en
  • License: cc-by-sa-4.0

Model Sources

Model Labels

Label Examples
Data "Depth time - series", "defect", "an overall mitochondrial"
Material "cross - shore measurement locations", "the subject 's fibroblasts", "COXI , COXII and COXIII subunits"
Method "an approximation", "EFSA", "in vitro"
Process "intake", "a significant reduction of synthesis", "translation"

Evaluation

Metrics

Label Precision Recall F1
all 0.7108 0.6715 0.6906
Data 0.6591 0.6138 0.6356
Material 0.795 0.7910 0.7930
Method 0.5 0.45 0.4737
Process 0.6898 0.6293 0.6582

Uses

Direct Use for Inference

from span_marker import SpanMarkerModel

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span-marker-allenai/specter2_base-me")
# Run inference
entities = model.predict("We established a P fertilizer need map based on integrating results from the two systems .")

Downstream Use

You can finetune this model on your own dataset.

Click to expand
from span_marker import SpanMarkerModel, Trainer

# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("span-marker-allenai/specter2_base-me")

# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003

# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
    model=model,
    train_dataset=dataset["train"],
    eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("span-marker-allenai/specter2_base-me-finetuned")

Training Details

Training Set Metrics

Training set Min Median Max
Sentence length 3 25.6049 106
Entities per sentence 0 5.2439 22

Training Hyperparameters

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Framework Versions

  • Python: 3.10.12
  • SpanMarker: 1.5.0
  • Transformers: 4.36.2
  • PyTorch: 2.0.1+cu118
  • Datasets: 2.16.1
  • Tokenizers: 0.15.0

Citation

BibTeX

@software{Aarsen_SpanMarker,
    author = {Aarsen, Tom},
    license = {Apache-2.0},
    title = {{SpanMarker for Named Entity Recognition}},
    url = {https://github.com/tomaarsen/SpanMarkerNER}
}
Downloads last month
15
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for zhang19991111/specter2-spanmarker-STEM-NER

Finetuned
(16)
this model

Evaluation results