|
import os
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
from transformers import (
|
|
BartForConditionalGeneration,
|
|
AutoModelForCausalLM,
|
|
BertModel,
|
|
Wav2Vec2ForCTC,
|
|
CLIPModel,
|
|
AutoTokenizer
|
|
)
|
|
import numpy as np
|
|
import random
|
|
import soundfile as sf
|
|
import resampy
|
|
import copy
|
|
|
|
class MultiModalModel(nn.Module):
|
|
def __init__(self):
|
|
super(MultiModalModel, self).__init__()
|
|
|
|
self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
|
|
self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
|
|
self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
|
|
self.speech_encoder = Wav2Vec2ForCTC.from_pretrained('facebook/wav2vec2-base-960h')
|
|
self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
|
|
|
|
|
|
self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
|
|
self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
|
self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
|
self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
|
|
self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
|
|
|
|
|
|
self.neural_network = nn.Sequential(
|
|
nn.Linear(768, 1024),
|
|
nn.ReLU(),
|
|
nn.Linear(1024, 2048),
|
|
nn.ReLU(),
|
|
nn.Linear(2048, 1024),
|
|
nn.ReLU(),
|
|
nn.Linear(1024, 512),
|
|
nn.ReLU(),
|
|
nn.Linear(512, 256)
|
|
)
|
|
|
|
def forward(self, task, inputs):
|
|
if task == 'text_generation':
|
|
attention_mask = inputs.attention_mask
|
|
outputs = self.text_generator.generate(
|
|
inputs.input_ids,
|
|
max_new_tokens=50,
|
|
pad_token_id=self.text_tokenizer.eos_token_id,
|
|
attention_mask=attention_mask,
|
|
top_p=0.95,
|
|
top_k=50,
|
|
temperature=1.2,
|
|
do_sample=True
|
|
)
|
|
return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
elif task == 'code_generation':
|
|
attention_mask = inputs.attention_mask
|
|
outputs = self.code_generator.generate(
|
|
inputs.input_ids,
|
|
max_new_tokens=50,
|
|
pad_token_id=self.code_tokenizer.eos_token_id,
|
|
attention_mask=attention_mask,
|
|
top_p=0.95,
|
|
top_k=50,
|
|
temperature=1.2,
|
|
do_sample=True
|
|
)
|
|
return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
elif task == 'text_understanding':
|
|
outputs = self.nlp_encoder(**inputs)
|
|
return self.neural_network(outputs.last_hidden_state)
|
|
elif task == 'speech_recognition':
|
|
inputs = self.speech_processor(audio=inputs, sampling_rate=16000, return_tensors="pt", padding=True)
|
|
outputs = self.speech_encoder(**inputs).logits
|
|
predicted_ids = torch.argmax(outputs, dim=-1)
|
|
transcription = self.speech_processor.batch_decode(predicted_ids)[0]
|
|
return transcription
|
|
elif task == 'vision_understanding':
|
|
outputs = self.vision_encoder.get_image_features(**inputs)
|
|
return outputs
|
|
|
|
class EvolutionaryMultiModalNetwork(nn.Module):
|
|
def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
|
|
super(EvolutionaryMultiModalNetwork, self).__init__()
|
|
self.device = device
|
|
self.multi_modal_model = MultiModalModel().to(self.device)
|
|
self.mutation_params = {
|
|
'mutation_rate': 0.2,
|
|
'mutation_scale': 0.05
|
|
}
|
|
|
|
def mutate_model(self, model):
|
|
for param in model.parameters():
|
|
if param.requires_grad:
|
|
noise = torch.normal(
|
|
mean=torch.zeros_like(param.data),
|
|
std=self.mutation_params['mutation_scale']
|
|
).to(self.device)
|
|
if random.random() < self.mutation_params['mutation_rate']:
|
|
param.data.add_(noise)
|
|
return model
|
|
|
|
def evaluate_model(self, model, task, test_input):
|
|
try:
|
|
with torch.no_grad():
|
|
output = model(task, test_input)
|
|
complexity = sum(p.numel() for p in model.parameters())
|
|
performance = len(output)
|
|
return complexity, performance
|
|
except Exception as e:
|
|
print(f"模型评估错误: {e}")
|
|
return 0, 0
|
|
|
|
def evolutionary_training(self, epochs=5):
|
|
print("🧬 开始进化训练...")
|
|
|
|
for epoch in range(epochs):
|
|
print(f"\n🌟 第 {epoch+1} 代:")
|
|
|
|
|
|
self.multi_modal_model = self.mutate_model(self.multi_modal_model)
|
|
|
|
|
|
test_input_text = self.multi_modal_model.text_tokenizer("Hello, how are you?", return_tensors='pt').to(self.device)
|
|
test_input_code = self.multi_modal_model.code_tokenizer("def add(a, b): return a + b", return_tensors='pt').to(self.device)
|
|
|
|
|
|
audio_path = "C:/Users/baby7/Desktop/推理/sample-3s.wav"
|
|
audio_input, sample_rate = sf.read(audio_path)
|
|
if audio_input.ndim > 1:
|
|
audio_input = np.mean(audio_input, axis=1)
|
|
if sample_rate != 16000:
|
|
audio_input = resampy.resample(audio_input, sample_rate, 16000)
|
|
test_input_audio = torch.tensor(audio_input).to(self.device).unsqueeze(0)
|
|
|
|
complexity_text, performance_text = self.evaluate_model(self.multi_modal_model, 'text_generation', test_input_text)
|
|
complexity_code, performance_code = self.evaluate_model(self.multi_modal_model, 'code_generation', test_input_code)
|
|
complexity_audio, performance_audio = self.evaluate_model(self.multi_modal_model, 'speech_recognition', test_input_audio)
|
|
|
|
print(f"多模态模型 (文本生成) - 复杂度: {complexity_text}, 性能: {performance_text:.4f}")
|
|
print(f"多模态模型 (代码生成) - 复杂度: {complexity_code}, 性能: {performance_code:.4f}")
|
|
print(f"多模态模型 (语音识别) - 复杂度: {complexity_audio}, 性能: {performance_audio:.4f}")
|
|
|
|
def print_model_info(self):
|
|
print(f"\n多模态模型结构:")
|
|
print(self.multi_modal_model)
|
|
print("\n参数统计:")
|
|
total_params = sum(p.numel() for p in self.multi_modal_model.parameters())
|
|
trainable_params = sum(p.numel() for p in self.multi_modal_model.parameters() if p.requires_grad)
|
|
print(f"总参数: {total_params}")
|
|
print(f"可训练参数: {trainable_params}")
|
|
|
|
def main():
|
|
|
|
torch.manual_seed(42)
|
|
np.random.seed(42)
|
|
random.seed(42)
|
|
|
|
|
|
evolutionary_network = EvolutionaryMultiModalNetwork()
|
|
|
|
|
|
evolutionary_network.print_model_info()
|
|
|
|
|
|
evolutionary_network.evolutionary_training(epochs=5)
|
|
|
|
if __name__ == "__main__":
|
|
main() |