File size: 7,716 Bytes
6471d73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import (
    BartForConditionalGeneration, 
    AutoModelForCausalLM, 
    BertModel, 
    Wav2Vec2ForCTC,
    CLIPModel,
    AutoTokenizer
)
import numpy as np
import random
import soundfile as sf
import resampy
import copy

class MultiModalModel(nn.Module):
    def __init__(self):
        super(MultiModalModel, self).__init__()
        # 初始化子模型
        self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
        self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
        self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
        self.speech_encoder = Wav2Vec2ForCTC.from_pretrained('facebook/wav2vec2-base-960h')
        self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')

        # 初始化分词器和处理器
        self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
        self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
        self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
        self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
        self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')

        # 创建5层神经网络
        self.neural_network = nn.Sequential(
            nn.Linear(768, 1024),
            nn.ReLU(),
            nn.Linear(1024, 2048),
            nn.ReLU(),
            nn.Linear(2048, 1024),
            nn.ReLU(),
            nn.Linear(1024, 512),
            nn.ReLU(),
            nn.Linear(512, 256)
        )
    
    def forward(self, task, inputs):
        if task == 'text_generation':
            attention_mask = inputs.attention_mask
            outputs = self.text_generator.generate(
                inputs.input_ids, 
                max_new_tokens=50, 
                pad_token_id=self.text_tokenizer.eos_token_id, 
                attention_mask=attention_mask,
                top_p=0.95,
                top_k=50,
                temperature=1.2,
                do_sample=True
            )
            return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
        elif task == 'code_generation':
            attention_mask = inputs.attention_mask
            outputs = self.code_generator.generate(
                inputs.input_ids, 
                max_new_tokens=50, 
                pad_token_id=self.code_tokenizer.eos_token_id, 
                attention_mask=attention_mask,
                top_p=0.95,
                top_k=50,
                temperature=1.2,
                do_sample=True
            )
            return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
        elif task == 'text_understanding':
            outputs = self.nlp_encoder(**inputs)
            return self.neural_network(outputs.last_hidden_state)
        elif task == 'speech_recognition':
            inputs = self.speech_processor(audio=inputs, sampling_rate=16000, return_tensors="pt", padding=True)
            outputs = self.speech_encoder(**inputs).logits
            predicted_ids = torch.argmax(outputs, dim=-1)
            transcription = self.speech_processor.batch_decode(predicted_ids)[0]
            return transcription
        elif task == 'vision_understanding':
            outputs = self.vision_encoder.get_image_features(**inputs)
            return outputs

class EvolutionaryMultiModalNetwork(nn.Module):
    def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
        super(EvolutionaryMultiModalNetwork, self).__init__()
        self.device = device
        self.multi_modal_model = MultiModalModel().to(self.device)
        self.mutation_params = {
            'mutation_rate': 0.2,
            'mutation_scale': 0.05
        }
    
    def mutate_model(self, model):
        for param in model.parameters():
            if param.requires_grad:
                noise = torch.normal(
                    mean=torch.zeros_like(param.data),
                    std=self.mutation_params['mutation_scale']
                ).to(self.device)
                if random.random() < self.mutation_params['mutation_rate']:
                    param.data.add_(noise)
        return model
    
    def evaluate_model(self, model, task, test_input):
        try:
            with torch.no_grad():
                output = model(task, test_input)
                complexity = sum(p.numel() for p in model.parameters())
                performance = len(output)  # 示例性能评估指标
                return complexity, performance
        except Exception as e:
            print(f"模型评估错误: {e}")
            return 0, 0
    
    def evolutionary_training(self, epochs=5):
        print("🧬 开始进化训练...")
        
        for epoch in range(epochs):
            print(f"\n🌟 第 {epoch+1} 代:")
            
            # 模型变异
            self.multi_modal_model = self.mutate_model(self.multi_modal_model)
            
            # 模型评估
            test_input_text = self.multi_modal_model.text_tokenizer("Hello, how are you?", return_tensors='pt').to(self.device)
            test_input_code = self.multi_modal_model.code_tokenizer("def add(a, b): return a + b", return_tensors='pt').to(self.device)
            
            # 加载音频文件并处理
            audio_path = "C:/Users/baby7/Desktop/推理/sample-3s.wav"
            audio_input, sample_rate = sf.read(audio_path)
            if audio_input.ndim > 1:
                audio_input = np.mean(audio_input, axis=1)  # 转换为单声道
            if sample_rate != 16000:
                audio_input = resampy.resample(audio_input, sample_rate, 16000)  # 重采样
            test_input_audio = torch.tensor(audio_input).to(self.device).unsqueeze(0)  # 添加 batch 维度
            
            complexity_text, performance_text = self.evaluate_model(self.multi_modal_model, 'text_generation', test_input_text)
            complexity_code, performance_code = self.evaluate_model(self.multi_modal_model, 'code_generation', test_input_code)
            complexity_audio, performance_audio = self.evaluate_model(self.multi_modal_model, 'speech_recognition', test_input_audio)
            
            print(f"多模态模型 (文本生成) - 复杂度: {complexity_text}, 性能: {performance_text:.4f}")
            print(f"多模态模型 (代码生成) - 复杂度: {complexity_code}, 性能: {performance_code:.4f}")
            print(f"多模态模型 (语音识别) - 复杂度: {complexity_audio}, 性能: {performance_audio:.4f}")

    def print_model_info(self):
        print(f"\n多模态模型结构:")
        print(self.multi_modal_model)
        print("\n参数统计:")
        total_params = sum(p.numel() for p in self.multi_modal_model.parameters())
        trainable_params = sum(p.numel() for p in self.multi_modal_model.parameters() if p.requires_grad)
        print(f"总参数: {total_params}")
        print(f"可训练参数: {trainable_params}")

def main():
    # 设置随机种子
    torch.manual_seed(42)
    np.random.seed(42)
    random.seed(42)

    # 创建进化多模态网络实例
    evolutionary_network = EvolutionaryMultiModalNetwork()

    # 打印模型信息
    evolutionary_network.print_model_info()

    # 进行进化训练
    evolutionary_network.evolutionary_training(epochs=5)

if __name__ == "__main__":
    main()