File size: 7,716 Bytes
6471d73 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import os
import torch
import torch.nn as nn
import torch.optim as optim
from transformers import (
BartForConditionalGeneration,
AutoModelForCausalLM,
BertModel,
Wav2Vec2ForCTC,
CLIPModel,
AutoTokenizer
)
import numpy as np
import random
import soundfile as sf
import resampy
import copy
class MultiModalModel(nn.Module):
def __init__(self):
super(MultiModalModel, self).__init__()
# 初始化子模型
self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base')
self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2')
self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased')
self.speech_encoder = Wav2Vec2ForCTC.from_pretrained('facebook/wav2vec2-base-960h')
self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32')
# 初始化分词器和处理器
self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base')
self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2')
self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h')
self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32')
# 创建5层神经网络
self.neural_network = nn.Sequential(
nn.Linear(768, 1024),
nn.ReLU(),
nn.Linear(1024, 2048),
nn.ReLU(),
nn.Linear(2048, 1024),
nn.ReLU(),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Linear(512, 256)
)
def forward(self, task, inputs):
if task == 'text_generation':
attention_mask = inputs.attention_mask
outputs = self.text_generator.generate(
inputs.input_ids,
max_new_tokens=50,
pad_token_id=self.text_tokenizer.eos_token_id,
attention_mask=attention_mask,
top_p=0.95,
top_k=50,
temperature=1.2,
do_sample=True
)
return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True)
elif task == 'code_generation':
attention_mask = inputs.attention_mask
outputs = self.code_generator.generate(
inputs.input_ids,
max_new_tokens=50,
pad_token_id=self.code_tokenizer.eos_token_id,
attention_mask=attention_mask,
top_p=0.95,
top_k=50,
temperature=1.2,
do_sample=True
)
return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True)
elif task == 'text_understanding':
outputs = self.nlp_encoder(**inputs)
return self.neural_network(outputs.last_hidden_state)
elif task == 'speech_recognition':
inputs = self.speech_processor(audio=inputs, sampling_rate=16000, return_tensors="pt", padding=True)
outputs = self.speech_encoder(**inputs).logits
predicted_ids = torch.argmax(outputs, dim=-1)
transcription = self.speech_processor.batch_decode(predicted_ids)[0]
return transcription
elif task == 'vision_understanding':
outputs = self.vision_encoder.get_image_features(**inputs)
return outputs
class EvolutionaryMultiModalNetwork(nn.Module):
def __init__(self, device='cuda' if torch.cuda.is_available() else 'cpu'):
super(EvolutionaryMultiModalNetwork, self).__init__()
self.device = device
self.multi_modal_model = MultiModalModel().to(self.device)
self.mutation_params = {
'mutation_rate': 0.2,
'mutation_scale': 0.05
}
def mutate_model(self, model):
for param in model.parameters():
if param.requires_grad:
noise = torch.normal(
mean=torch.zeros_like(param.data),
std=self.mutation_params['mutation_scale']
).to(self.device)
if random.random() < self.mutation_params['mutation_rate']:
param.data.add_(noise)
return model
def evaluate_model(self, model, task, test_input):
try:
with torch.no_grad():
output = model(task, test_input)
complexity = sum(p.numel() for p in model.parameters())
performance = len(output) # 示例性能评估指标
return complexity, performance
except Exception as e:
print(f"模型评估错误: {e}")
return 0, 0
def evolutionary_training(self, epochs=5):
print("🧬 开始进化训练...")
for epoch in range(epochs):
print(f"\n🌟 第 {epoch+1} 代:")
# 模型变异
self.multi_modal_model = self.mutate_model(self.multi_modal_model)
# 模型评估
test_input_text = self.multi_modal_model.text_tokenizer("Hello, how are you?", return_tensors='pt').to(self.device)
test_input_code = self.multi_modal_model.code_tokenizer("def add(a, b): return a + b", return_tensors='pt').to(self.device)
# 加载音频文件并处理
audio_path = "C:/Users/baby7/Desktop/推理/sample-3s.wav"
audio_input, sample_rate = sf.read(audio_path)
if audio_input.ndim > 1:
audio_input = np.mean(audio_input, axis=1) # 转换为单声道
if sample_rate != 16000:
audio_input = resampy.resample(audio_input, sample_rate, 16000) # 重采样
test_input_audio = torch.tensor(audio_input).to(self.device).unsqueeze(0) # 添加 batch 维度
complexity_text, performance_text = self.evaluate_model(self.multi_modal_model, 'text_generation', test_input_text)
complexity_code, performance_code = self.evaluate_model(self.multi_modal_model, 'code_generation', test_input_code)
complexity_audio, performance_audio = self.evaluate_model(self.multi_modal_model, 'speech_recognition', test_input_audio)
print(f"多模态模型 (文本生成) - 复杂度: {complexity_text}, 性能: {performance_text:.4f}")
print(f"多模态模型 (代码生成) - 复杂度: {complexity_code}, 性能: {performance_code:.4f}")
print(f"多模态模型 (语音识别) - 复杂度: {complexity_audio}, 性能: {performance_audio:.4f}")
def print_model_info(self):
print(f"\n多模态模型结构:")
print(self.multi_modal_model)
print("\n参数统计:")
total_params = sum(p.numel() for p in self.multi_modal_model.parameters())
trainable_params = sum(p.numel() for p in self.multi_modal_model.parameters() if p.requires_grad)
print(f"总参数: {total_params}")
print(f"可训练参数: {trainable_params}")
def main():
# 设置随机种子
torch.manual_seed(42)
np.random.seed(42)
random.seed(42)
# 创建进化多模态网络实例
evolutionary_network = EvolutionaryMultiModalNetwork()
# 打印模型信息
evolutionary_network.print_model_info()
# 进行进化训练
evolutionary_network.evolutionary_training(epochs=5)
if __name__ == "__main__":
main() |