video_llama_finetune

This model is a fine-tuned version of Qwen/Qwen2-7B-Instruct on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • num_epochs: 1.0

Training results

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.0+cu118
  • Datasets 3.0.0
  • Tokenizers 0.19.1

Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • _load_in_8bit: False
  • _load_in_4bit: True
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: ['mm_projector']
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16
  • bnb_4bit_quant_storage: bfloat16
  • load_in_4bit: True
  • load_in_8bit: False

Framework versions

  • PEFT 0.6.0
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for zera09/video_llama_finetune

Base model

Qwen/Qwen2-7B
Adapter
(90)
this model