|
--- |
|
base_model: facebook/bart-large |
|
library_name: peft |
|
license: apache-2.0 |
|
metrics: |
|
- rouge |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bart-large-summarization-medical-46 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-large-summarization-medical-46 |
|
|
|
This model is a fine-tuned version of [facebook/bart-large](https://huggingface.co/facebook/bart-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.8378 |
|
- Rouge1: 0.4404 |
|
- Rouge2: 0.2412 |
|
- Rougel: 0.3768 |
|
- Rougelsum: 0.3769 |
|
- Gen Len: 18.977 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 1 |
|
- seed: 46 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.2273 | 1.0 | 1250 | 1.9018 | 0.4342 | 0.2347 | 0.3676 | 0.3677 | 19.319 | |
|
| 2.1445 | 2.0 | 2500 | 1.8668 | 0.4394 | 0.2388 | 0.3744 | 0.3743 | 18.977 | |
|
| 2.0968 | 3.0 | 3750 | 1.8556 | 0.4406 | 0.2411 | 0.3767 | 0.3769 | 18.689 | |
|
| 2.0883 | 4.0 | 5000 | 1.8502 | 0.4398 | 0.2391 | 0.3758 | 0.376 | 18.757 | |
|
| 2.0638 | 5.0 | 6250 | 1.8393 | 0.4416 | 0.2406 | 0.3779 | 0.3777 | 18.88 | |
|
| 2.0453 | 6.0 | 7500 | 1.8378 | 0.4404 | 0.2412 | 0.3768 | 0.3769 | 18.977 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |