8bpw exllamav2 quantisation of TinyLlama/TinyLlama-1.1B-intermediate-step-1195k-token-2.5T
Calibration dataset used is vicgalle/alpaca-gpt4
Original model card
https://github.com/jzhang38/TinyLlama
The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ๐๐. The training has started on 2023-09-01.
We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
This Collection
This collection contains all checkpoints after the 1T fix. Branch name indicates the step and number of tokens seen.
Eval
Model | Pretrain Tokens | HellaSwag | Obqa | WinoGrande | ARC_c | ARC_e | boolq | piqa | avg |
---|---|---|---|---|---|---|---|---|---|
Pythia-1.0B | 300B | 47.16 | 31.40 | 53.43 | 27.05 | 48.99 | 60.83 | 69.21 | 48.30 |
TinyLlama-1.1B-intermediate-step-50K-104b | 103B | 43.50 | 29.80 | 53.28 | 24.32 | 44.91 | 59.66 | 67.30 | 46.11 |
TinyLlama-1.1B-intermediate-step-240k-503b | 503B | 49.56 | 31.40 | 55.80 | 26.54 | 48.32 | 56.91 | 69.42 | 48.28 |
TinyLlama-1.1B-intermediate-step-480k-1007B | 1007B | 52.54 | 33.40 | 55.96 | 27.82 | 52.36 | 59.54 | 69.91 | 50.22 |
TinyLlama-1.1B-intermediate-step-715k-1.5T | 1.5T | 53.68 | 35.20 | 58.33 | 29.18 | 51.89 | 59.08 | 71.65 | 51.29 |
TinyLlama-1.1B-intermediate-step-955k-2T | 2T | 54.63 | 33.40 | 56.83 | 28.07 | 54.67 | 63.21 | 70.67 | 51.64 |
TinyLlama-1.1B-intermediate-step-1195k-token-2.5T | 2.5T | 58.96 | 34.40 | 58.72 | 31.91 | 56.78 | 63.21 | 73.07 | 53.86 |
- Downloads last month
- 11