MLR
This model is a fine-tuned version of microsoft/resnet-152 on an unknown dataset. It achieves the following results on the evaluation set:
- eval_loss: nan
- eval_accuracy: 0.005
- eval_runtime: 93.8851
- eval_samples_per_second: 106.513
- eval_steps_per_second: 0.213
- step: 0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.01
- train_batch_size: 512
- eval_batch_size: 512
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
Framework versions
- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 125
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for yvs1997/MLR
Base model
microsoft/resnet-152