|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This model is for debugging. It is randomly initialized using the config from [microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct) but with smaller size. |
|
|
|
Codes: |
|
```python |
|
import os |
|
|
|
import torch |
|
import transformers |
|
from transformers import (AutoConfig, AutoModelForCausalLM, AutoTokenizer, |
|
GenerationConfig, pipeline, set_seed) |
|
|
|
model_id = "microsoft/Phi-3.5-MoE-instruct" |
|
repo_id = "yujiepan/phi-3.5-moe-tiny-random" |
|
save_path = f"/tmp/{repo_id}" |
|
|
|
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True) |
|
config.hidden_size = 16 |
|
config.intermediate_size = 32 |
|
config.num_attention_heads = 4 |
|
config.num_hidden_layers = 2 |
|
config.num_key_value_heads = 4 |
|
config.rope_scaling['long_factor'] = [1.0299, 1.0499] |
|
config.rope_scaling['short_factor'] = [1.05, 1.05] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
tokenizer.save_pretrained(save_path) |
|
|
|
model = AutoModelForCausalLM.from_config( |
|
config, torch_dtype=torch.bfloat16, |
|
# attn_implementation="sdpa", |
|
trust_remote_code=True, |
|
) |
|
model.generation_config = GenerationConfig.from_pretrained( |
|
model_id, trust_remote_code=True |
|
) |
|
|
|
set_seed(42) |
|
with torch.no_grad(): |
|
for _, p in sorted(model.named_parameters()): |
|
torch.nn.init.uniform_(p, -0.3, 0.3) |
|
|
|
model.save_pretrained(save_path) |
|
|
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device="cuda", |
|
trust_remote_code=True, max_new_tokens=20) |
|
print(pipe('Hello')) |
|
``` |
|
|