llama-3-86-lora-pretrain_v2

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B-Instruct on the sm_artile dataset. It achieves the following results on the evaluation set:

  • Loss: 2.2353

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • total_eval_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.8142 0.1877 100 2.8566
2.7235 0.3755 200 2.6776
2.5809 0.5632 300 2.5664
2.3971 0.7510 400 2.4458
2.4147 0.9387 500 2.3812
2.3987 1.1265 600 2.3436
2.3 1.3142 700 2.3193
2.3219 1.5020 800 2.2951
2.377 1.6897 900 2.2763
2.2977 1.8775 1000 2.2623
2.269 2.0652 1100 2.2525
2.2305 2.2530 1200 2.2442
2.3866 2.4407 1300 2.2396
2.3217 2.6285 1400 2.2369
2.2007 2.8162 1500 2.2355

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.0
  • Pytorch 2.2.1
  • Datasets 2.18.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ytcheng/llama-3-86-lora-pretrain_v2

Adapter
(646)
this model