metadata
library_name: transformers
license: mit
base_model: FacebookAI/roberta-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-base-continual-kennedy2020constructing-S0T1
results: []
roberta-base-continual-kennedy2020constructing-S0T1
This model is a fine-tuned version of FacebookAI/roberta-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.5398
- Accuracy: 0.5667
- Roc Auc: 0.7793
- Micro Precision: 0.5667
- Macro Precision: 0.5834
- Weighted Precision: 0.5834
- Micro Recall: 0.5667
- Macro Recall: 0.5667
- Weighted Recall: 0.5667
- Micro F1: 0.5667
- Macro F1: 0.5568
- Weighted F1: 0.5568
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Roc Auc | Micro Precision | Macro Precision | Weighted Precision | Micro Recall | Macro Recall | Weighted Recall | Micro F1 | Macro F1 | Weighted F1 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 57 | 1.3397 | 0.3333 | 0.6652 | 0.3333 | 0.1111 | 0.1111 | 0.3333 | 0.3333 | 0.3333 | 0.3333 | 0.1667 | 0.1667 |
No log | 2.0 | 114 | 1.0461 | 0.48 | 0.7563 | 0.48 | 0.3508 | 0.3508 | 0.48 | 0.48 | 0.48 | 0.48 | 0.3810 | 0.3810 |
No log | 3.0 | 171 | 1.0020 | 0.5533 | 0.7707 | 0.5533 | 0.4876 | 0.4876 | 0.5533 | 0.5533 | 0.5533 | 0.5533 | 0.4667 | 0.4667 |
No log | 4.0 | 228 | 1.1591 | 0.5133 | 0.7707 | 0.5133 | 0.5582 | 0.5582 | 0.5133 | 0.5133 | 0.5133 | 0.5133 | 0.4790 | 0.4790 |
No log | 5.0 | 285 | 1.2874 | 0.5467 | 0.7651 | 0.5467 | 0.5471 | 0.5471 | 0.5467 | 0.5467 | 0.5467 | 0.5467 | 0.5278 | 0.5278 |
No log | 6.0 | 342 | 1.1093 | 0.6067 | 0.7936 | 0.6067 | 0.5863 | 0.5863 | 0.6067 | 0.6067 | 0.6067 | 0.6067 | 0.5874 | 0.5874 |
No log | 7.0 | 399 | 1.2420 | 0.6 | 0.7948 | 0.6 | 0.5925 | 0.5925 | 0.6 | 0.6 | 0.6 | 0.6 | 0.5860 | 0.5860 |
No log | 8.0 | 456 | 1.5520 | 0.5467 | 0.7737 | 0.5467 | 0.5457 | 0.5457 | 0.5467 | 0.5467 | 0.5467 | 0.5467 | 0.5282 | 0.5282 |
0.4501 | 9.0 | 513 | 1.5398 | 0.5667 | 0.7793 | 0.5667 | 0.5834 | 0.5834 | 0.5667 | 0.5667 | 0.5667 | 0.5667 | 0.5568 | 0.5568 |
Framework versions
- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0