|
--- |
|
base_model: klue/roberta-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- klue |
|
metrics: |
|
- accuracy |
|
- f1 |
|
model-index: |
|
- name: nli_roberta-large_lr1e-05_wd1e-03_ep3_ckpt |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: klue |
|
type: klue |
|
config: nli |
|
split: validation |
|
args: nli |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9026666666666666 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9025716877431428 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# nli_roberta-large_lr1e-05_wd1e-03_ep3_ckpt |
|
|
|
This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the klue dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3425 |
|
- Accuracy: 0.9027 |
|
- F1: 0.9026 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 64 |
|
- eval_batch_size: 64 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| |
|
| 0.5725 | 1.0 | 391 | 0.3381 | 0.8813 | 0.8811 | |
|
| 0.2182 | 2.0 | 782 | 0.3055 | 0.898 | 0.8979 | |
|
| 0.112 | 3.0 | 1173 | 0.3425 | 0.9027 | 0.9026 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.13.0 |
|
- Tokenizers 0.13.3 |
|
|