Scale-wise Distillation 3.5 Large
Scale-wise Distillation (SwD) is a novel framework for accelerating diffusion models (DMs)
by progressively increasing spatial resolution during the generation process.
SwD achieves significant speedups (2.5ร to 10ร) compared to full-resolution models
while maintaining or even improving image quality.
Project page: https://yandex-research.github.io/swd
GitHub: https://github.com/yandex-research/swd
Demo: https://huggingface.co/spaces/dbaranchuk/Scale-wise-Distillation
Usage
Upgrade to the latest version of the ๐งจ diffusers library
pip install -U diffusers
and then you can run
(Probably, you will need to specify the visible device: %env CUDA_VISIBLE_DEVICES=0, for correct loading of LoRAs.)
import torch
from diffusers import StableDiffusion3Pipeline
from peft import PeftModel
pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-large",
torch_dtype=torch.float16,
custom_pipeline='quickjkee/swd_pipeline')
pipe = pipe.to("cuda")
lora_path = 'yresearch/swd-large-6-steps'
pipe.transformer = PeftModel.from_pretrained(
pipe.transformer,
lora_path,
)
generator = torch.Generator().manual_seed(10)
prompt = 'A cat holding a sign that reads Sample Faster'
sigmas = [1.0000, 0.9454, 0.8959, 0.7904, 0.7371, 0.6022, 0.0000]
scales = [32, 48, 64, 80, 96, 128]
images = pipe(
prompt,
sigmas=torch.tensor(sigmas).to('cuda'),
timesteps=torch.tensor(sigmas[:-1]).to('cuda') * 1000,
scales=scales,
guidance_scale=0.0,
height=int(scales[0] * 8),
width=int(scales[0] * 8),
generator=generator,
).images
Citation
@article{starodubcev2025swd,
title={Scale-wise Distillation of Diffusion Models},
author={Nikita Starodubcev and Denis Kuznedelev and Artem Babenko and Dmitry Baranchuk},
journal={arXiv preprint arXiv:2503.16397},
year={2025}
}
- Downloads last month
- 1,008
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support