metadata
license: mit
library_name: pytorch
tags:
- Medical Vsion-Language Pre-Training
- BenchX
MedKLIP Checkpoint Model Card
A retrained MedKLIP model for benchmarking medical vision-language pre-training methods within the BenchX framework.
Model Details
- Model Type: MedKLIP
- Architecture: ResNet-50 image encoder and custom BERT text encoder
- Original Papers: MedKLIP: Medical Knowledge Enhanced Language-Image Pre-Training in Radiology
- Benchmark Paper: BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays
- Benchmark Framework: https://github.com/yangzhou12/BenchX
Intended Use
- Primary Use Cases:
- Benchmarking performance for Medical Image Classification
- Benchmarking performance for Medical Image Segmentation
- Benchmarking performance for Medical Report Generation
Pre-Training Data
- Dataset:
- Data source(s): MIMIC-CXR
- Types of medical images: Frontal chest X-rays
- Text data type: Associated radiology reports
Prerequisites
Please follow the instruction to install BenchX.
Training & Evaluation
1. Classification
To fine-tune MedKLIP for classification, run this command:
python bin/train.py config/classification/<dataset_name>/medklip.yml
2. Segmentation
To fine-tune MedKLIP for segmentation, run this command:
python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/medklip.yml
3. Report Generation
To fine-tune MedKLIP for report generation, run this command:
python bin/train.py config/report_generation/<dataset_name>/medklip.yml
4. Evaluation
To evaluate fine-tuned MedKLIP models, run:
# For classification and report generation
python bin/test.py config/<task_name>/<dataset_name>/medklip.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>
# For segmentation
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/medklip.yml <path_to_checkpoint>
Citations
@inproceedings{wu2023medklip,
title={{MedKLIP}: Medical Knowledge Enhanced Language-Image Pre-Training},
author={Wu, Chaoyi and Zhang, Xiaoman and Zhang, Ya and Wang, Yanfeng and Xie, Weidi},
journal={Proceedings of ICCV},
pages = "21372--21383",
year={2023}
}
@inproceedings{zhou2024benchx,
title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
booktitle={Proceedings of NeurIPS},
year={2024}
}