MedKLIP / README.md
youngzhou12's picture
Update README.md
f3ac979 verified
metadata
license: mit
library_name: pytorch
tags:
  - Medical Vsion-Language Pre-Training
  - BenchX

MedKLIP Checkpoint Model Card

A retrained MedKLIP model for benchmarking medical vision-language pre-training methods within the BenchX framework.

Model Details

Intended Use

  • Primary Use Cases:
    • Benchmarking performance for Medical Image Classification
    • Benchmarking performance for Medical Image Segmentation
    • Benchmarking performance for Medical Report Generation

Pre-Training Data

  • Dataset:
    • Data source(s): MIMIC-CXR
    • Types of medical images: Frontal chest X-rays
    • Text data type: Associated radiology reports

Prerequisites

Please follow the instruction to install BenchX.

Training & Evaluation

1. Classification

To fine-tune MedKLIP for classification, run this command:

python bin/train.py config/classification/<dataset_name>/medklip.yml

2. Segmentation

To fine-tune MedKLIP for segmentation, run this command:

python mmsegmentation/tools/train.py config/benchmark/<dataset_name>/medklip.yml

3. Report Generation

To fine-tune MedKLIP for report generation, run this command:

python bin/train.py config/report_generation/<dataset_name>/medklip.yml

4. Evaluation

To evaluate fine-tuned MedKLIP models, run:

# For classification and report generation
python bin/test.py config/<task_name>/<dataset_name>/medklip.yml validator.splits=[test] ckpt_dir=<path_to_checkpoint>

# For segmentation
python mmsegmentation/tools/my_test.py mmsegmentation/config/<dataset_name>/medklip.yml <path_to_checkpoint>

Citations

@inproceedings{wu2023medklip,
  title={{MedKLIP}: Medical Knowledge Enhanced Language-Image Pre-Training},
  author={Wu, Chaoyi and Zhang, Xiaoman and Zhang, Ya and Wang, Yanfeng and Xie, Weidi},
  journal={Proceedings of ICCV},
  pages = "21372--21383",
  year={2023}
}
@inproceedings{zhou2024benchx,
  title={BenchX: A Unified Benchmark Framework for Medical Vision-Language Pretraining on Chest X-Rays},
  author={Yang Zhou, Tan Li Hui Faith, Yanyu Xu, Sicong Leng, Xinxing Xu, Yong Liu, Rick Siow Mong Goh},
  booktitle={Proceedings of NeurIPS},
  year={2024}
}