Model Details

Model Description

This model identifies multiple topics related to the text in natural language. It is finetuned on youngermax/text-tagging for 3.5 epoch over ~1.3 hours on a free Kaggle P100.

  • Developed by: Lincoln Maxwell
  • Model type: Generative Pretrained Transformer
  • Language(s) (NLP): English
  • Finetuned from model: DistilGPT2

Uses

Direct Use


input_ids = tokenizer.encode(prompt + '<|topic|>', return_tensors='pt').to('cuda')

# Generate text
output = model.generate(
  input_ids,
  max_length=1024,
  num_return_sequences=1,
  eos_token_id=tokenizer.eos_token_id,
  pad_token_id=tokenizer.eos_token_id,
  top_k=100,
  top_p=0.5,
  temperature=1
)

# Decode the output
text = tokenizer.decode(output[0], skip_special_tokens=False, early_stopping=True)
text = text[len(prompt):text.find('<|endoftext|>')]

topics = list(set(list(map(lambda x: x.strip(), text.split('<|topic|>')))[1:]))
Downloads last month
2
Safetensors
Model size
81.9M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Dataset used to train youngermax/text-tagger-v1