yoshitomo-matsubara's picture
Update README.md
7778e59 verified
metadata
language: en
tags:
  - bert
  - mnli
  - ax
  - glue
  - kd
  - torchdistill
license: apache-2.0
datasets:
  - mnli
  - ax
metrics:
  - accuracy

bert-base-uncased fine-tuned on MNLI dataset, using fine-tuned bert-large-uncased as a teacher model, torchdistill and Google Colab for knowledge distillation.
The training configuration (including hyperparameters) is available here.
I submitted prediction files to the GLUE leaderboard, and the overall GLUE score was 78.9.

Yoshitomo Matsubara: "torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP" at EMNLP 2023 Workshop for Natural Language Processing Open Source Software (NLP-OSS)

[Paper] [OpenReview] [Preprint]

@inproceedings{matsubara2023torchdistill,
  title={{torchdistill Meets Hugging Face Libraries for Reproducible, Coding-Free Deep Learning Studies: A Case Study on NLP}},
  author={Matsubara, Yoshitomo},
  booktitle={Proceedings of the 3rd Workshop for Natural Language Processing Open Source Software (NLP-OSS 2023)},
  publisher={Empirical Methods in Natural Language Processing},
  pages={153--164},
  year={2023}
}