Finetuned from facebook/wav2vec2-large-960h-lv60-self.

Installation

  1. PyTorch installation: https://pytorch.org/
  2. Install transformers: https://huggingface.co/docs/transformers/installation

e.g., installation by conda

>> conda create -n wav2vec2 python=3.8
>> conda install pytorch cudatoolkit=11.3 -c pytorch
>> conda install -c conda-forge transformers

Usage

# Load the model and processor
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC
import numpy as np
import torch

model = Wav2Vec2ForCTC.from_pretrained(r'yongjian/wav2vec2-large-a') # Note: PyTorch Model
processor = Wav2Vec2Processor.from_pretrained(r'yongjian/wav2vec2-large-a')

# Load input
np_wav = np.random.normal(size=(16000)).clip(-1, 1) # change it to your sample

# Inference
sample_rate = processor.feature_extractor.sampling_rate
with torch.no_grad():
    model_inputs = processor(np_wav, sampling_rate=sample_rate, return_tensors="pt", padding=True)
    logits = model(model_inputs.input_values, attention_mask=model_inputs.attention_mask).logits # use .cuda() for GPU acceleration
    pred_ids = torch.argmax(logits, dim=-1).cpu()
    pred_text = processor.batch_decode(pred_ids)
print('Transcription:', pred_text)

Code

GitHub Repo: https://github.com/CassiniHuy/wav2vec2_finetune

Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train yongjian/wav2vec2-large-a

Spaces using yongjian/wav2vec2-large-a 3