yolo12138's picture
yolo12138/segformer-b2-human-parse-24
42f387c
|
raw
history blame
9.08 kB
metadata
license: mit
base_model: mattmdjaga/segformer_b2_clothes
tags:
  - generated_from_trainer
datasets:
  - human_parsing_29_mix
model-index:
  - name: segformer-b2-human-parse-24
    results: []

segformer-b2-human-parse-24

This model is a fine-tuned version of mattmdjaga/segformer_b2_clothes on the human_parsing_29_mix dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0818
  • Mean Iou: 0.6023
  • Mean Accuracy: 0.6321
  • Overall Accuracy: 0.9780
  • Accuracy Background: 0.9969
  • Accuracy Hat: nan
  • Accuracy Hair: 0.9646
  • Accuracy Glove: 0.0
  • Accuracy Glasses: 0.0
  • Accuracy Upper Only Torso Region: 0.9747
  • Accuracy Dresses Only Torso Region: 0.4939
  • Accuracy Coat Only Torso Region: 0.0039
  • Accuracy Socks: 0.0
  • Accuracy Left Pants: 0.9604
  • Accuracy Right Patns: 0.9646
  • Accuracy Skin Around Neck Region: 0.9585
  • Accuracy Scarf: nan
  • Accuracy Skirts: 0.8904
  • Accuracy Face: 0.9796
  • Accuracy Left Arm: 0.9703
  • Accuracy Right Arm: 0.9700
  • Accuracy Left Leg: 0.9267
  • Accuracy Right Leg: 0.9297
  • Accuracy Left Shoe: 0.0
  • Accuracy Right Shoe: 0.0
  • Accuracy Left Sleeve For Upper: 0.9462
  • Accuracy Right Sleeve For Upper: 0.9517
  • Accuracy Bag: 0.0234
  • Iou Background: 0.9941
  • Iou Hat: nan
  • Iou Hair: 0.9268
  • Iou Glove: 0.0
  • Iou Glasses: 0.0
  • Iou Upper Only Torso Region: 0.9351
  • Iou Dresses Only Torso Region: 0.4059
  • Iou Coat Only Torso Region: 0.0035
  • Iou Socks: 0.0
  • Iou Left Pants: 0.9232
  • Iou Right Patns: 0.9217
  • Iou Skin Around Neck Region: 0.9227
  • Iou Scarf: nan
  • Iou Skirts: 0.7887
  • Iou Face: 0.9582
  • Iou Left Arm: 0.9436
  • Iou Right Arm: 0.9426
  • Iou Left Leg: 0.8836
  • Iou Right Leg: 0.8767
  • Iou Left Shoe: 0.0
  • Iou Right Shoe: 0.0
  • Iou Left Sleeve For Upper: 0.9005
  • Iou Right Sleeve For Upper: 0.9012
  • Iou Bag: 0.0232

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 16
  • eval_batch_size: 12
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Accuracy Background Accuracy Hat Accuracy Hair Accuracy Glove Accuracy Glasses Accuracy Upper Only Torso Region Accuracy Dresses Only Torso Region Accuracy Coat Only Torso Region Accuracy Socks Accuracy Left Pants Accuracy Right Patns Accuracy Skin Around Neck Region Accuracy Scarf Accuracy Skirts Accuracy Face Accuracy Left Arm Accuracy Right Arm Accuracy Left Leg Accuracy Right Leg Accuracy Left Shoe Accuracy Right Shoe Accuracy Left Sleeve For Upper Accuracy Right Sleeve For Upper Accuracy Bag Iou Background Iou Hat Iou Hair Iou Glove Iou Glasses Iou Upper Only Torso Region Iou Dresses Only Torso Region Iou Coat Only Torso Region Iou Socks Iou Left Pants Iou Right Patns Iou Skin Around Neck Region Iou Scarf Iou Skirts Iou Face Iou Left Arm Iou Right Arm Iou Left Leg Iou Right Leg Iou Left Shoe Iou Right Shoe Iou Left Sleeve For Upper Iou Right Sleeve For Upper Iou Bag
0.0652 1.62 1000 0.0802 0.5857 0.6166 0.9737 0.9963 nan 0.9490 0.0 0.0 0.9801 0.4034 0.0 0.0 0.9487 0.9574 0.9272 nan 0.8783 0.9782 0.9628 0.9534 0.8874 0.9012 0.0 0.0 0.9227 0.9197 0.0 0.9926 nan 0.9117 0.0 0.0 0.9217 0.3541 0.0 0.0 0.9084 0.9073 0.8963 nan 0.7766 0.9455 0.9210 0.9191 0.8405 0.8496 0.0 0.0 0.8673 0.8728 0.0
0.061 3.23 2000 0.0843 0.5977 0.6335 0.9747 0.9967 nan 0.9580 0.0 0.0 0.9657 0.5733 0.1504 0.0 0.9591 0.9600 0.9497 nan 0.8169 0.9789 0.9667 0.9645 0.8906 0.9165 0.0 0.0 0.9444 0.9445 0.0003 0.9935 nan 0.9199 0.0 0.0 0.9273 0.4058 0.1206 0.0 0.9131 0.9082 0.9128 nan 0.7330 0.9527 0.9355 0.9343 0.8534 0.8651 0.0 0.0 0.8860 0.8879 0.0003
0.0653 4.85 3000 0.0823 0.6000 0.6295 0.9775 0.9967 nan 0.9621 0.0 0.0 0.9780 0.4991 0.0044 0.0 0.9587 0.9649 0.9562 nan 0.8842 0.9769 0.9692 0.9651 0.9198 0.9273 0.0 0.0 0.9422 0.9415 0.0037 0.9939 nan 0.9247 0.0 0.0 0.9341 0.4136 0.0042 0.0 0.9202 0.9193 0.9193 nan 0.7899 0.9563 0.9403 0.9388 0.8745 0.8741 0.0 0.0 0.8963 0.8970 0.0037
0.0402 6.46 4000 0.0818 0.6023 0.6321 0.9780 0.9969 nan 0.9646 0.0 0.0 0.9747 0.4939 0.0039 0.0 0.9604 0.9646 0.9585 nan 0.8904 0.9796 0.9703 0.9700 0.9267 0.9297 0.0 0.0 0.9462 0.9517 0.0234 0.9941 nan 0.9268 0.0 0.0 0.9351 0.4059 0.0035 0.0 0.9232 0.9217 0.9227 nan 0.7887 0.9582 0.9436 0.9426 0.8836 0.8767 0.0 0.0 0.9005 0.9012 0.0232

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1
  • Datasets 2.15.0
  • Tokenizers 0.15.0