yokoe/llm-jp-3-13b-dpo
How to use
!pip install -U ipywidgets
!pip install transformers==4.46.3
!pip install -U bitsandbytes
!pip install -U accelerate
!pip install -U datasets
!pip install -U peft==0.13.2
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from peft import PeftModel
import torch
from tqdm import tqdm
import json
BASE_MODEL_ID = 'llm-jp/llm-jp-3-13b'
ADAPTER_ID = 'yokoe/llm-jp-3-13b-fintuned_wo_unsloth'
DPO_ADAPTER_ID = 'yokoe/llm-jp-3-13b-dpo'
# QLoRA config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Load model
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL_ID,
quantization_config=bnb_config,
device_map="auto",
)
# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(BASE_MODEL_ID, trust_remote_code=True)
# 元のモデルにLoRAのアダプタを統合。
model = PeftModel.from_pretrained(model, ADAPTER_ID)
# LoRAのモデルにDPOのアダプタを統合。
model = PeftModel.from_pretrained(model, DPO_ADAPTER_ID)
# データセットの読み込み。
# omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。
datasets = []
with open("./elyza-tasks-100-TV_0.jsonl", "r") as f:
item = ""
for line in f:
line = line.strip()
item += line
if item.endswith("}"):
datasets.append(json.loads(item))
item = ""
# llmjp
results = []
for data in tqdm(datasets):
input = data["input"]
prompt = f"""### 指示
{input}
### 回答
"""
tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
attention_mask = torch.ones_like(tokenized_input)
with torch.no_grad():
outputs = model.generate(
tokenized_input,
attention_mask=attention_mask,
max_new_tokens=100,
do_sample=False,
repetition_penalty=1.2,
pad_token_id=tokenizer.eos_token_id
)[0]
output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
results.append({"task_id": data["task_id"], "input": input, "output": output})
with open(f"./elyza-tasks-100-TV_0_outputs.jsonl", 'w', encoding='utf-8') as f:
for result in results:
json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters
f.write('\n')```
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
HF Inference deployability: The model has no pipeline_tag.