yodi/gpt-2-finetuned-papers

This model is a fine-tuned version of distilgpt2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 1.9448
  • Validation Loss: 1.8459
  • Epoch: 10

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'module': 'keras.optimizers.schedules', 'class_name': 'ExponentialDecay', 'config': {'initial_learning_rate': 0.0005, 'decay_steps': 500, 'decay_rate': 0.95, 'staircase': False, 'name': None}, 'registered_name': None}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Validation Loss Epoch
2.4234 2.1273 0
2.1829 1.9976 1
2.0794 1.9288 2
2.0208 1.8907 3
1.9872 1.8705 4
1.9680 1.8579 5
1.9572 1.8519 6
1.9511 1.8491 7
1.9478 1.8471 8
1.9458 1.8464 9
1.9448 1.8459 10

Framework versions

  • Transformers 4.30.2
  • TensorFlow 2.13.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
62
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.