You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.


基于baichuan-inc/Baichuan-13B-Chat 做的GPTQ的量化,可直接加载,占用GPU约12G左右,用起来效果不错

调用代码:


import torch from transformers import AutoModelForCausalLM, AutoTokenizer from transformers.generation.utils import GenerationConfig

model_dir = 'yinfupai/Baichuan-13B-Chat-GPTQ'

tokenizer = AutoTokenizer.from_pretrained(model_dir,trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_dir,device_map="auto",torch_dtype=torch.float16,trust_remote_code=True)

model.generation_config = GenerationConfig.from_pretrained(model_dir) model.eval()

messages = []

#按baichuan要求的格式 messages.append({"role": "user", "content": "列举一下先天八卦的卦象"})

response = model.chat(tokenizer, messages)

print(response)


请注意模型的商用授权,请遵照baichuan-inc/Baichuan-13B-Chat的页面中的声明

Downloads last month
3
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.