metadata
license: other
base_model: nvidia/mit-b0
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: segformer-b0-miic-tl
results: []
segformer-b0-miic-tl
This model is a fine-tuned version of nvidia/mit-b0 on the yijisuk/ic-chip-sample dataset. It achieves the following results on the evaluation set:
- Loss: 0.4495
- Mean Iou: 0.4202
- Mean Accuracy: 0.8404
- Overall Accuracy: 0.8404
- Accuracy Unlabeled: nan
- Accuracy Circuit: 0.8404
- Iou Unlabeled: 0.0
- Iou Circuit: 0.8404
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Circuit | Iou Unlabeled | Iou Circuit |
---|---|---|---|---|---|---|---|---|---|---|
0.465 | 1.0 | 20 | 0.6113 | 0.3296 | 0.6593 | 0.6593 | nan | 0.6593 | 0.0 | 0.6593 |
0.4071 | 2.0 | 40 | 0.4866 | 0.3345 | 0.6689 | 0.6689 | nan | 0.6689 | 0.0 | 0.6689 |
0.4429 | 3.0 | 60 | 0.3963 | 0.3623 | 0.7245 | 0.7245 | nan | 0.7245 | 0.0 | 0.7245 |
0.2408 | 4.0 | 80 | 0.3606 | 0.4257 | 0.8515 | 0.8515 | nan | 0.8515 | 0.0 | 0.8515 |
0.2002 | 5.0 | 100 | 0.3594 | 0.4345 | 0.8690 | 0.8690 | nan | 0.8690 | 0.0 | 0.8690 |
0.1885 | 6.0 | 120 | 0.3702 | 0.4291 | 0.8583 | 0.8583 | nan | 0.8583 | 0.0 | 0.8583 |
0.4626 | 7.0 | 140 | 0.3858 | 0.4128 | 0.8256 | 0.8256 | nan | 0.8256 | 0.0 | 0.8256 |
0.0865 | 8.0 | 160 | 0.3578 | 0.4456 | 0.8912 | 0.8912 | nan | 0.8912 | 0.0 | 0.8912 |
0.0752 | 9.0 | 180 | 0.3595 | 0.4387 | 0.8774 | 0.8774 | nan | 0.8774 | 0.0 | 0.8774 |
0.2567 | 10.0 | 200 | 0.4103 | 0.3981 | 0.7961 | 0.7961 | nan | 0.7961 | 0.0 | 0.7961 |
0.1419 | 11.0 | 220 | 0.4053 | 0.4229 | 0.8458 | 0.8458 | nan | 0.8458 | 0.0 | 0.8458 |
0.0623 | 12.0 | 240 | 0.3798 | 0.4415 | 0.8830 | 0.8830 | nan | 0.8830 | 0.0 | 0.8830 |
0.3336 | 13.0 | 260 | 0.3855 | 0.4374 | 0.8748 | 0.8748 | nan | 0.8748 | 0.0 | 0.8748 |
0.1283 | 14.0 | 280 | 0.3931 | 0.4368 | 0.8736 | 0.8736 | nan | 0.8736 | 0.0 | 0.8736 |
0.5155 | 15.0 | 300 | 0.4108 | 0.4268 | 0.8535 | 0.8535 | nan | 0.8535 | 0.0 | 0.8535 |
1.2662 | 16.0 | 320 | 0.4062 | 0.4328 | 0.8656 | 0.8656 | nan | 0.8656 | 0.0 | 0.8656 |
0.2631 | 17.0 | 340 | 0.3825 | 0.4464 | 0.8929 | 0.8929 | nan | 0.8929 | 0.0 | 0.8929 |
0.1751 | 18.0 | 360 | 0.3981 | 0.4335 | 0.8669 | 0.8669 | nan | 0.8669 | 0.0 | 0.8669 |
0.243 | 19.0 | 380 | 0.3963 | 0.4436 | 0.8872 | 0.8872 | nan | 0.8872 | 0.0 | 0.8872 |
0.1779 | 20.0 | 400 | 0.4413 | 0.4060 | 0.8119 | 0.8119 | nan | 0.8119 | 0.0 | 0.8119 |
0.0682 | 21.0 | 420 | 0.4106 | 0.4363 | 0.8725 | 0.8725 | nan | 0.8725 | 0.0 | 0.8725 |
0.2943 | 22.0 | 440 | 0.4052 | 0.4386 | 0.8771 | 0.8771 | nan | 0.8771 | 0.0 | 0.8771 |
0.118 | 23.0 | 460 | 0.4260 | 0.4197 | 0.8394 | 0.8394 | nan | 0.8394 | 0.0 | 0.8394 |
0.0865 | 24.0 | 480 | 0.4023 | 0.4270 | 0.8540 | 0.8540 | nan | 0.8540 | 0.0 | 0.8540 |
0.1693 | 25.0 | 500 | 0.4276 | 0.4199 | 0.8399 | 0.8399 | nan | 0.8399 | 0.0 | 0.8399 |
0.1778 | 26.0 | 520 | 0.4044 | 0.4409 | 0.8818 | 0.8818 | nan | 0.8818 | 0.0 | 0.8818 |
0.3617 | 27.0 | 540 | 0.4405 | 0.4121 | 0.8242 | 0.8242 | nan | 0.8242 | 0.0 | 0.8242 |
0.1688 | 28.0 | 560 | 0.4333 | 0.4234 | 0.8467 | 0.8467 | nan | 0.8467 | 0.0 | 0.8467 |
0.282 | 29.0 | 580 | 0.4060 | 0.4365 | 0.8730 | 0.8730 | nan | 0.8730 | 0.0 | 0.8730 |
0.0992 | 30.0 | 600 | 0.4297 | 0.4196 | 0.8393 | 0.8393 | nan | 0.8393 | 0.0 | 0.8393 |
1.379 | 31.0 | 620 | 0.4389 | 0.4193 | 0.8386 | 0.8386 | nan | 0.8386 | 0.0 | 0.8386 |
0.1355 | 32.0 | 640 | 0.4438 | 0.4205 | 0.8410 | 0.8410 | nan | 0.8410 | 0.0 | 0.8410 |
0.1067 | 33.0 | 660 | 0.4271 | 0.4299 | 0.8598 | 0.8598 | nan | 0.8598 | 0.0 | 0.8598 |
1.0659 | 34.0 | 680 | 0.4490 | 0.4063 | 0.8125 | 0.8125 | nan | 0.8125 | 0.0 | 0.8125 |
0.1481 | 35.0 | 700 | 0.4317 | 0.4279 | 0.8557 | 0.8557 | nan | 0.8557 | 0.0 | 0.8557 |
1.385 | 36.0 | 720 | 0.4215 | 0.4322 | 0.8644 | 0.8644 | nan | 0.8644 | 0.0 | 0.8644 |
0.3081 | 37.0 | 740 | 0.4564 | 0.4089 | 0.8178 | 0.8178 | nan | 0.8178 | 0.0 | 0.8178 |
0.1989 | 38.0 | 760 | 0.4345 | 0.4241 | 0.8482 | 0.8482 | nan | 0.8482 | 0.0 | 0.8482 |
0.1752 | 39.0 | 780 | 0.4230 | 0.4302 | 0.8605 | 0.8605 | nan | 0.8605 | 0.0 | 0.8605 |
0.1489 | 40.0 | 800 | 0.4253 | 0.4231 | 0.8462 | 0.8462 | nan | 0.8462 | 0.0 | 0.8462 |
0.1769 | 41.0 | 820 | 0.4184 | 0.4275 | 0.8549 | 0.8549 | nan | 0.8549 | 0.0 | 0.8549 |
0.1927 | 42.0 | 840 | 0.4162 | 0.4314 | 0.8629 | 0.8629 | nan | 0.8629 | 0.0 | 0.8629 |
0.2442 | 43.0 | 860 | 0.4321 | 0.4234 | 0.8468 | 0.8468 | nan | 0.8468 | 0.0 | 0.8468 |
0.2513 | 44.0 | 880 | 0.4280 | 0.4258 | 0.8515 | 0.8515 | nan | 0.8515 | 0.0 | 0.8515 |
0.7221 | 45.0 | 900 | 0.4449 | 0.4190 | 0.8380 | 0.8380 | nan | 0.8380 | 0.0 | 0.8380 |
0.0675 | 46.0 | 920 | 0.4369 | 0.4210 | 0.8419 | 0.8419 | nan | 0.8419 | 0.0 | 0.8419 |
0.1256 | 47.0 | 940 | 0.4159 | 0.4313 | 0.8625 | 0.8625 | nan | 0.8625 | 0.0 | 0.8625 |
0.1251 | 48.0 | 960 | 0.4312 | 0.4249 | 0.8498 | 0.8498 | nan | 0.8498 | 0.0 | 0.8498 |
0.2183 | 49.0 | 980 | 0.4340 | 0.4262 | 0.8524 | 0.8524 | nan | 0.8524 | 0.0 | 0.8524 |
0.2148 | 50.0 | 1000 | 0.4495 | 0.4202 | 0.8404 | 0.8404 | nan | 0.8404 | 0.0 | 0.8404 |
Framework versions
- Transformers 4.36.2
- Pytorch 1.11.0+cu115
- Datasets 2.15.0
- Tokenizers 0.15.0