metadata
language:
- ko
- ja
base_model: facebook/mbart-large-50-many-to-many-mmt
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: mbart-mmt_mid3_ko-ja
results: []
mbart-mmt_mid3_ko-ja
This model is a fine-tuned version of facebook/mbart-large-50-many-to-many-mmt on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8652
- Bleu: 10.1883
- Gen Len: 17.2057
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 35
Training results
Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
---|---|---|---|---|---|
1.6216 | 0.23 | 1500 | 1.5229 | 2.686 | 17.599 |
1.3587 | 0.46 | 3000 | 1.3061 | 4.0749 | 17.3772 |
1.2279 | 0.68 | 4500 | 1.1881 | 5.2878 | 17.3642 |
1.1408 | 0.91 | 6000 | 1.0994 | 5.4783 | 17.4093 |
0.9977 | 1.14 | 7500 | 1.0313 | 7.6015 | 17.36 |
0.9582 | 1.37 | 9000 | 0.9918 | 8.2303 | 17.3526 |
0.9525 | 1.59 | 10500 | 0.9811 | 8.2837 | 17.2597 |
0.9415 | 1.82 | 12000 | 0.9589 | 8.1592 | 17.2241 |
0.856 | 2.05 | 13500 | 0.9462 | 7.8401 | 17.4066 |
0.8273 | 2.28 | 15000 | 0.9336 | 8.6082 | 17.1918 |
0.8066 | 2.5 | 16500 | 0.9220 | 9.7751 | 17.5198 |
0.784 | 2.73 | 18000 | 0.8949 | 10.292 | 17.4097 |
0.8016 | 2.96 | 19500 | 0.8958 | 9.0262 | 17.4097 |
0.6872 | 3.19 | 21000 | 0.9043 | 9.7549 | 17.2672 |
0.7107 | 3.42 | 22500 | 0.8994 | 10.3016 | 17.0973 |
0.6726 | 3.64 | 24000 | 0.8747 | 10.5183 | 17.2871 |
0.6699 | 3.87 | 25500 | 0.8652 | 10.1883 | 17.2057 |
0.612 | 4.1 | 27000 | 0.8949 | 9.5697 | 17.2443 |
0.621 | 4.33 | 28500 | 0.8904 | 10.8592 | 17.329 |
0.6219 | 4.55 | 30000 | 0.8772 | 10.925 | 17.482 |
0.6164 | 4.78 | 31500 | 0.8694 | 11.8749 | 17.1624 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1