yesidcanoc commited on
Commit
c389f87
1 Parent(s): 5fc5f75

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -1
README.md CHANGED
@@ -1,5 +1,22 @@
 
 
 
1
  # Image captioning model
2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ## How To use this model.
4
 
5
  Adapt the code below to your needs.
@@ -87,4 +104,7 @@ captions = generate_captions.generate_caption('../data/test_data/images')
87
  print(captions)
88
 
89
 
90
- ```
 
 
 
 
1
+ ---
2
+ pipeline_tag: image-to-text
3
+ ---
4
  # Image captioning model
5
 
6
+ End-to-end Transformer based image captioning model, where both the encoder and decoder use standard pre-trained transformer architectures.
7
+
8
+ ## Encoder
9
+ The encoder uses the pre-trained Swin transformer (Liu et al., 2021) that is a general-purpose backbone for computer vision. It outperforms ViT, DeiT and ResNe(X)t models at tasks such as image classification, object detection and semantic segmentation. The fact that this model is not pre-trained to be a 'narrow expert'--- a model pre-trained to perform a specific task e.g., image classification --- makes it a good candidate for fine-tuning on a downstream task.
10
+
11
+ ## Decoder
12
+
13
+ Distilgpt2
14
+
15
+ ## Dataset
16
+
17
+ The model is fine-tuned and evaluated on the COCO 2017 dataset.
18
+
19
+
20
  ## How To use this model.
21
 
22
  Adapt the code below to your needs.
 
104
  print(captions)
105
 
106
 
107
+ ```
108
+
109
+ ## References
110
+ - Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin Transformer: Hierarchical Vision Transformer using Shifted Windows. ArXiv. /abs/2103.14030