yesidcanoc
commited on
Commit
•
5fc5f75
1
Parent(s):
123d7a4
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Image captioning model
|
2 |
+
|
3 |
+
## How To use this model.
|
4 |
+
|
5 |
+
Adapt the code below to your needs.
|
6 |
+
```
|
7 |
+
import os
|
8 |
+
from PIL import Image
|
9 |
+
import torchvision.transforms as transforms
|
10 |
+
from transformers import GPT2TokenizerFast, VisionEncoderDecoderModel
|
11 |
+
|
12 |
+
class DataProcessing:
|
13 |
+
def __init__(self):
|
14 |
+
# GPT-2 tokenizer
|
15 |
+
self.tokenizer = GPT2TokenizerFast.from_pretrained('distilgpt2')
|
16 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
17 |
+
# Define the transforms to be applied to the images
|
18 |
+
self.transform = transforms.Compose([
|
19 |
+
transforms.Resize((224, 224)),
|
20 |
+
transforms.ToTensor(),
|
21 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
22 |
+
])
|
23 |
+
|
24 |
+
class GenerateCaptions(DataProcessing):
|
25 |
+
NUM_BEAMS = 3
|
26 |
+
MAX_LENGTH = 15
|
27 |
+
EARLY_STOPPING = True
|
28 |
+
DO_SAMPLE = True
|
29 |
+
TOP_K = 10
|
30 |
+
NUM_RETURN_SEQUENCES = 2 # number of captions to generate
|
31 |
+
|
32 |
+
def __init__(self, captioning_model):
|
33 |
+
self.captioning_model = captioning_model
|
34 |
+
super().__init__()
|
35 |
+
|
36 |
+
def read_img_predict(self, path):
|
37 |
+
try:
|
38 |
+
with Image.open(path) as img:
|
39 |
+
if img.mode != "RGB":
|
40 |
+
img = img.convert('RGB')
|
41 |
+
img_transformed = self.transform(img).unsqueeze(0)
|
42 |
+
# tensor dimensions max_lenght X num_return_sequences, where ij == some_token_id
|
43 |
+
model_output = self.captioning_model.generate(
|
44 |
+
img_transformed,
|
45 |
+
num_beams=self.NUM_BEAMS,
|
46 |
+
max_length=self.MAX_LENGTH,
|
47 |
+
early_stopping=self.EARLY_STOPPING,
|
48 |
+
do_sample=self.DO_SAMPLE,
|
49 |
+
top_k=self.TOP_K,
|
50 |
+
num_return_sequences=self.NUM_RETURN_SEQUENCES,
|
51 |
+
)
|
52 |
+
# g is a tensor like this one: tensor([50256, 13, 198, 198, 198, 198, 198, 198, 198, 50256,
|
53 |
+
# 50256, 50256, 50256, 50256, 50256])
|
54 |
+
captions = [self.tokenizer.decode(g, skip_special_tokens=True).strip() for g in model_output]
|
55 |
+
|
56 |
+
return captions
|
57 |
+
except FileNotFoundError:
|
58 |
+
raise FileNotFoundError(f"File not found: {path}")
|
59 |
+
|
60 |
+
def generate_caption(self, path):
|
61 |
+
"""
|
62 |
+
Generate captions for a single image or a directory of images
|
63 |
+
:param path: path to image or directory of images
|
64 |
+
:return: captions
|
65 |
+
"""
|
66 |
+
if os.path.isdir(path):
|
67 |
+
self.decoded_predictions = []
|
68 |
+
for root, dirs, files in os.walk(path):
|
69 |
+
for file in files:
|
70 |
+
self.decoded_predictions.append(self.read_img_predict(os.path.join(root, file)))
|
71 |
+
return self.decoded_predictions
|
72 |
+
elif os.path.isfile(path):
|
73 |
+
return self.read_img_predict(path)
|
74 |
+
else:
|
75 |
+
raise ValueError(f"Invalid path: {path}")
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
|
81 |
+
image_captioning_model = VisionEncoderDecoderModel.from_pretrained("yesidcanoc/image-captioning-swin-tiny-distilgpt2")
|
82 |
+
|
83 |
+
generate_captions = GenerateCaptions(image_captioning_model)
|
84 |
+
|
85 |
+
captions = generate_captions.generate_caption('../data/test_data/images')
|
86 |
+
|
87 |
+
print(captions)
|
88 |
+
|
89 |
+
|
90 |
+
```
|