yesidcanoc commited on
Commit
123d7a4
1 Parent(s): 50b8e33

Upload 7 files

Browse files

Image captioning model fine-tuned using SWIN and distilfpt2.

Files changed (7) hide show
  1. config.json +2199 -0
  2. optimizer.pt +3 -0
  3. pytorch_model.bin +3 -0
  4. rng_state.pth +3 -0
  5. scheduler.pt +3 -0
  6. trainer_state.json +3570 -0
  7. training_args.bin +3 -0
config.json ADDED
@@ -0,0 +1,2199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_commit_hash": null,
3
+ "_name_or_path": "C:\\Users\\yesid\\Documents\\repos\\image-captioning\\models\\checkpoints\\epoch_LR_5e-6_1",
4
+ "architectures": [
5
+ "VisionEncoderDecoderModel"
6
+ ],
7
+ "decoder": {
8
+ "_name_or_path": "distilgpt2",
9
+ "_num_labels": 1,
10
+ "activation_function": "gelu_new",
11
+ "add_cross_attention": true,
12
+ "architectures": [
13
+ "GPT2LMHeadModel"
14
+ ],
15
+ "attn_pdrop": 0.1,
16
+ "bad_words_ids": null,
17
+ "begin_suppress_tokens": null,
18
+ "bos_token_id": 50256,
19
+ "chunk_size_feed_forward": 0,
20
+ "cross_attention_hidden_size": null,
21
+ "decoder_start_token_id": null,
22
+ "diversity_penalty": 0.0,
23
+ "do_sample": false,
24
+ "early_stopping": false,
25
+ "embd_pdrop": 0.1,
26
+ "encoder_no_repeat_ngram_size": 0,
27
+ "eos_token_id": 50256,
28
+ "exponential_decay_length_penalty": null,
29
+ "finetuning_task": null,
30
+ "forced_bos_token_id": null,
31
+ "forced_eos_token_id": null,
32
+ "id2label": {
33
+ "0": "LABEL_0"
34
+ },
35
+ "initializer_range": 0.02,
36
+ "is_decoder": true,
37
+ "is_encoder_decoder": false,
38
+ "label2id": {
39
+ "LABEL_0": 0
40
+ },
41
+ "layer_norm_epsilon": 1e-05,
42
+ "length_penalty": 1.0,
43
+ "max_length": 20,
44
+ "min_length": 0,
45
+ "model_type": "gpt2",
46
+ "n_ctx": 1024,
47
+ "n_embd": 768,
48
+ "n_head": 12,
49
+ "n_inner": null,
50
+ "n_layer": 6,
51
+ "n_positions": 1024,
52
+ "no_repeat_ngram_size": 0,
53
+ "num_beam_groups": 1,
54
+ "num_beams": 1,
55
+ "num_return_sequences": 1,
56
+ "output_attentions": false,
57
+ "output_hidden_states": false,
58
+ "output_scores": false,
59
+ "pad_token_id": null,
60
+ "prefix": null,
61
+ "problem_type": null,
62
+ "pruned_heads": {},
63
+ "remove_invalid_values": false,
64
+ "reorder_and_upcast_attn": false,
65
+ "repetition_penalty": 1.0,
66
+ "resid_pdrop": 0.1,
67
+ "return_dict": true,
68
+ "return_dict_in_generate": false,
69
+ "scale_attn_by_inverse_layer_idx": false,
70
+ "scale_attn_weights": true,
71
+ "sep_token_id": null,
72
+ "summary_activation": null,
73
+ "summary_first_dropout": 0.1,
74
+ "summary_proj_to_labels": true,
75
+ "summary_type": "cls_index",
76
+ "summary_use_proj": true,
77
+ "suppress_tokens": null,
78
+ "task_specific_params": {
79
+ "text-generation": {
80
+ "do_sample": true,
81
+ "max_length": 50
82
+ }
83
+ },
84
+ "temperature": 1.0,
85
+ "tf_legacy_loss": false,
86
+ "tie_encoder_decoder": false,
87
+ "tie_word_embeddings": true,
88
+ "tokenizer_class": null,
89
+ "top_k": 50,
90
+ "top_p": 1.0,
91
+ "torch_dtype": null,
92
+ "torchscript": false,
93
+ "transformers_version": "4.24.0",
94
+ "typical_p": 1.0,
95
+ "use_bfloat16": false,
96
+ "use_cache": true,
97
+ "vocab_size": 50257
98
+ },
99
+ "decoder_start_token": "<|endoftext|>",
100
+ "decoder_start_token_id": 50256,
101
+ "encoder": {
102
+ "_name_or_path": "microsoft/swin-tiny-patch4-window7-224",
103
+ "add_cross_attention": false,
104
+ "architectures": [
105
+ "SwinForImageClassification"
106
+ ],
107
+ "attention_probs_dropout_prob": 0.0,
108
+ "bad_words_ids": null,
109
+ "begin_suppress_tokens": null,
110
+ "bos_token_id": null,
111
+ "chunk_size_feed_forward": 0,
112
+ "cross_attention_hidden_size": null,
113
+ "decoder_start_token_id": null,
114
+ "depths": [
115
+ 2,
116
+ 2,
117
+ 6,
118
+ 2
119
+ ],
120
+ "diversity_penalty": 0.0,
121
+ "do_sample": false,
122
+ "drop_path_rate": 0.1,
123
+ "early_stopping": false,
124
+ "embed_dim": 96,
125
+ "encoder_no_repeat_ngram_size": 0,
126
+ "encoder_stride": 32,
127
+ "eos_token_id": null,
128
+ "exponential_decay_length_penalty": null,
129
+ "finetuning_task": null,
130
+ "forced_bos_token_id": null,
131
+ "forced_eos_token_id": null,
132
+ "hidden_act": "gelu",
133
+ "hidden_dropout_prob": 0.0,
134
+ "hidden_size": 768,
135
+ "id2label": {
136
+ "0": "tench, Tinca tinca",
137
+ "1": "goldfish, Carassius auratus",
138
+ "2": "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias",
139
+ "3": "tiger shark, Galeocerdo cuvieri",
140
+ "4": "hammerhead, hammerhead shark",
141
+ "5": "electric ray, crampfish, numbfish, torpedo",
142
+ "6": "stingray",
143
+ "7": "cock",
144
+ "8": "hen",
145
+ "9": "ostrich, Struthio camelus",
146
+ "10": "brambling, Fringilla montifringilla",
147
+ "11": "goldfinch, Carduelis carduelis",
148
+ "12": "house finch, linnet, Carpodacus mexicanus",
149
+ "13": "junco, snowbird",
150
+ "14": "indigo bunting, indigo finch, indigo bird, Passerina cyanea",
151
+ "15": "robin, American robin, Turdus migratorius",
152
+ "16": "bulbul",
153
+ "17": "jay",
154
+ "18": "magpie",
155
+ "19": "chickadee",
156
+ "20": "water ouzel, dipper",
157
+ "21": "kite",
158
+ "22": "bald eagle, American eagle, Haliaeetus leucocephalus",
159
+ "23": "vulture",
160
+ "24": "great grey owl, great gray owl, Strix nebulosa",
161
+ "25": "European fire salamander, Salamandra salamandra",
162
+ "26": "common newt, Triturus vulgaris",
163
+ "27": "eft",
164
+ "28": "spotted salamander, Ambystoma maculatum",
165
+ "29": "axolotl, mud puppy, Ambystoma mexicanum",
166
+ "30": "bullfrog, Rana catesbeiana",
167
+ "31": "tree frog, tree-frog",
168
+ "32": "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui",
169
+ "33": "loggerhead, loggerhead turtle, Caretta caretta",
170
+ "34": "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea",
171
+ "35": "mud turtle",
172
+ "36": "terrapin",
173
+ "37": "box turtle, box tortoise",
174
+ "38": "banded gecko",
175
+ "39": "common iguana, iguana, Iguana iguana",
176
+ "40": "American chameleon, anole, Anolis carolinensis",
177
+ "41": "whiptail, whiptail lizard",
178
+ "42": "agama",
179
+ "43": "frilled lizard, Chlamydosaurus kingi",
180
+ "44": "alligator lizard",
181
+ "45": "Gila monster, Heloderma suspectum",
182
+ "46": "green lizard, Lacerta viridis",
183
+ "47": "African chameleon, Chamaeleo chamaeleon",
184
+ "48": "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis",
185
+ "49": "African crocodile, Nile crocodile, Crocodylus niloticus",
186
+ "50": "American alligator, Alligator mississipiensis",
187
+ "51": "triceratops",
188
+ "52": "thunder snake, worm snake, Carphophis amoenus",
189
+ "53": "ringneck snake, ring-necked snake, ring snake",
190
+ "54": "hognose snake, puff adder, sand viper",
191
+ "55": "green snake, grass snake",
192
+ "56": "king snake, kingsnake",
193
+ "57": "garter snake, grass snake",
194
+ "58": "water snake",
195
+ "59": "vine snake",
196
+ "60": "night snake, Hypsiglena torquata",
197
+ "61": "boa constrictor, Constrictor constrictor",
198
+ "62": "rock python, rock snake, Python sebae",
199
+ "63": "Indian cobra, Naja naja",
200
+ "64": "green mamba",
201
+ "65": "sea snake",
202
+ "66": "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus",
203
+ "67": "diamondback, diamondback rattlesnake, Crotalus adamanteus",
204
+ "68": "sidewinder, horned rattlesnake, Crotalus cerastes",
205
+ "69": "trilobite",
206
+ "70": "harvestman, daddy longlegs, Phalangium opilio",
207
+ "71": "scorpion",
208
+ "72": "black and gold garden spider, Argiope aurantia",
209
+ "73": "barn spider, Araneus cavaticus",
210
+ "74": "garden spider, Aranea diademata",
211
+ "75": "black widow, Latrodectus mactans",
212
+ "76": "tarantula",
213
+ "77": "wolf spider, hunting spider",
214
+ "78": "tick",
215
+ "79": "centipede",
216
+ "80": "black grouse",
217
+ "81": "ptarmigan",
218
+ "82": "ruffed grouse, partridge, Bonasa umbellus",
219
+ "83": "prairie chicken, prairie grouse, prairie fowl",
220
+ "84": "peacock",
221
+ "85": "quail",
222
+ "86": "partridge",
223
+ "87": "African grey, African gray, Psittacus erithacus",
224
+ "88": "macaw",
225
+ "89": "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita",
226
+ "90": "lorikeet",
227
+ "91": "coucal",
228
+ "92": "bee eater",
229
+ "93": "hornbill",
230
+ "94": "hummingbird",
231
+ "95": "jacamar",
232
+ "96": "toucan",
233
+ "97": "drake",
234
+ "98": "red-breasted merganser, Mergus serrator",
235
+ "99": "goose",
236
+ "100": "black swan, Cygnus atratus",
237
+ "101": "tusker",
238
+ "102": "echidna, spiny anteater, anteater",
239
+ "103": "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus",
240
+ "104": "wallaby, brush kangaroo",
241
+ "105": "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus",
242
+ "106": "wombat",
243
+ "107": "jellyfish",
244
+ "108": "sea anemone, anemone",
245
+ "109": "brain coral",
246
+ "110": "flatworm, platyhelminth",
247
+ "111": "nematode, nematode worm, roundworm",
248
+ "112": "conch",
249
+ "113": "snail",
250
+ "114": "slug",
251
+ "115": "sea slug, nudibranch",
252
+ "116": "chiton, coat-of-mail shell, sea cradle, polyplacophore",
253
+ "117": "chambered nautilus, pearly nautilus, nautilus",
254
+ "118": "Dungeness crab, Cancer magister",
255
+ "119": "rock crab, Cancer irroratus",
256
+ "120": "fiddler crab",
257
+ "121": "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica",
258
+ "122": "American lobster, Northern lobster, Maine lobster, Homarus americanus",
259
+ "123": "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish",
260
+ "124": "crayfish, crawfish, crawdad, crawdaddy",
261
+ "125": "hermit crab",
262
+ "126": "isopod",
263
+ "127": "white stork, Ciconia ciconia",
264
+ "128": "black stork, Ciconia nigra",
265
+ "129": "spoonbill",
266
+ "130": "flamingo",
267
+ "131": "little blue heron, Egretta caerulea",
268
+ "132": "American egret, great white heron, Egretta albus",
269
+ "133": "bittern",
270
+ "134": "crane",
271
+ "135": "limpkin, Aramus pictus",
272
+ "136": "European gallinule, Porphyrio porphyrio",
273
+ "137": "American coot, marsh hen, mud hen, water hen, Fulica americana",
274
+ "138": "bustard",
275
+ "139": "ruddy turnstone, Arenaria interpres",
276
+ "140": "red-backed sandpiper, dunlin, Erolia alpina",
277
+ "141": "redshank, Tringa totanus",
278
+ "142": "dowitcher",
279
+ "143": "oystercatcher, oyster catcher",
280
+ "144": "pelican",
281
+ "145": "king penguin, Aptenodytes patagonica",
282
+ "146": "albatross, mollymawk",
283
+ "147": "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus",
284
+ "148": "killer whale, killer, orca, grampus, sea wolf, Orcinus orca",
285
+ "149": "dugong, Dugong dugon",
286
+ "150": "sea lion",
287
+ "151": "Chihuahua",
288
+ "152": "Japanese spaniel",
289
+ "153": "Maltese dog, Maltese terrier, Maltese",
290
+ "154": "Pekinese, Pekingese, Peke",
291
+ "155": "Shih-Tzu",
292
+ "156": "Blenheim spaniel",
293
+ "157": "papillon",
294
+ "158": "toy terrier",
295
+ "159": "Rhodesian ridgeback",
296
+ "160": "Afghan hound, Afghan",
297
+ "161": "basset, basset hound",
298
+ "162": "beagle",
299
+ "163": "bloodhound, sleuthhound",
300
+ "164": "bluetick",
301
+ "165": "black-and-tan coonhound",
302
+ "166": "Walker hound, Walker foxhound",
303
+ "167": "English foxhound",
304
+ "168": "redbone",
305
+ "169": "borzoi, Russian wolfhound",
306
+ "170": "Irish wolfhound",
307
+ "171": "Italian greyhound",
308
+ "172": "whippet",
309
+ "173": "Ibizan hound, Ibizan Podenco",
310
+ "174": "Norwegian elkhound, elkhound",
311
+ "175": "otterhound, otter hound",
312
+ "176": "Saluki, gazelle hound",
313
+ "177": "Scottish deerhound, deerhound",
314
+ "178": "Weimaraner",
315
+ "179": "Staffordshire bullterrier, Staffordshire bull terrier",
316
+ "180": "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier",
317
+ "181": "Bedlington terrier",
318
+ "182": "Border terrier",
319
+ "183": "Kerry blue terrier",
320
+ "184": "Irish terrier",
321
+ "185": "Norfolk terrier",
322
+ "186": "Norwich terrier",
323
+ "187": "Yorkshire terrier",
324
+ "188": "wire-haired fox terrier",
325
+ "189": "Lakeland terrier",
326
+ "190": "Sealyham terrier, Sealyham",
327
+ "191": "Airedale, Airedale terrier",
328
+ "192": "cairn, cairn terrier",
329
+ "193": "Australian terrier",
330
+ "194": "Dandie Dinmont, Dandie Dinmont terrier",
331
+ "195": "Boston bull, Boston terrier",
332
+ "196": "miniature schnauzer",
333
+ "197": "giant schnauzer",
334
+ "198": "standard schnauzer",
335
+ "199": "Scotch terrier, Scottish terrier, Scottie",
336
+ "200": "Tibetan terrier, chrysanthemum dog",
337
+ "201": "silky terrier, Sydney silky",
338
+ "202": "soft-coated wheaten terrier",
339
+ "203": "West Highland white terrier",
340
+ "204": "Lhasa, Lhasa apso",
341
+ "205": "flat-coated retriever",
342
+ "206": "curly-coated retriever",
343
+ "207": "golden retriever",
344
+ "208": "Labrador retriever",
345
+ "209": "Chesapeake Bay retriever",
346
+ "210": "German short-haired pointer",
347
+ "211": "vizsla, Hungarian pointer",
348
+ "212": "English setter",
349
+ "213": "Irish setter, red setter",
350
+ "214": "Gordon setter",
351
+ "215": "Brittany spaniel",
352
+ "216": "clumber, clumber spaniel",
353
+ "217": "English springer, English springer spaniel",
354
+ "218": "Welsh springer spaniel",
355
+ "219": "cocker spaniel, English cocker spaniel, cocker",
356
+ "220": "Sussex spaniel",
357
+ "221": "Irish water spaniel",
358
+ "222": "kuvasz",
359
+ "223": "schipperke",
360
+ "224": "groenendael",
361
+ "225": "malinois",
362
+ "226": "briard",
363
+ "227": "kelpie",
364
+ "228": "komondor",
365
+ "229": "Old English sheepdog, bobtail",
366
+ "230": "Shetland sheepdog, Shetland sheep dog, Shetland",
367
+ "231": "collie",
368
+ "232": "Border collie",
369
+ "233": "Bouvier des Flandres, Bouviers des Flandres",
370
+ "234": "Rottweiler",
371
+ "235": "German shepherd, German shepherd dog, German police dog, alsatian",
372
+ "236": "Doberman, Doberman pinscher",
373
+ "237": "miniature pinscher",
374
+ "238": "Greater Swiss Mountain dog",
375
+ "239": "Bernese mountain dog",
376
+ "240": "Appenzeller",
377
+ "241": "EntleBucher",
378
+ "242": "boxer",
379
+ "243": "bull mastiff",
380
+ "244": "Tibetan mastiff",
381
+ "245": "French bulldog",
382
+ "246": "Great Dane",
383
+ "247": "Saint Bernard, St Bernard",
384
+ "248": "Eskimo dog, husky",
385
+ "249": "malamute, malemute, Alaskan malamute",
386
+ "250": "Siberian husky",
387
+ "251": "dalmatian, coach dog, carriage dog",
388
+ "252": "affenpinscher, monkey pinscher, monkey dog",
389
+ "253": "basenji",
390
+ "254": "pug, pug-dog",
391
+ "255": "Leonberg",
392
+ "256": "Newfoundland, Newfoundland dog",
393
+ "257": "Great Pyrenees",
394
+ "258": "Samoyed, Samoyede",
395
+ "259": "Pomeranian",
396
+ "260": "chow, chow chow",
397
+ "261": "keeshond",
398
+ "262": "Brabancon griffon",
399
+ "263": "Pembroke, Pembroke Welsh corgi",
400
+ "264": "Cardigan, Cardigan Welsh corgi",
401
+ "265": "toy poodle",
402
+ "266": "miniature poodle",
403
+ "267": "standard poodle",
404
+ "268": "Mexican hairless",
405
+ "269": "timber wolf, grey wolf, gray wolf, Canis lupus",
406
+ "270": "white wolf, Arctic wolf, Canis lupus tundrarum",
407
+ "271": "red wolf, maned wolf, Canis rufus, Canis niger",
408
+ "272": "coyote, prairie wolf, brush wolf, Canis latrans",
409
+ "273": "dingo, warrigal, warragal, Canis dingo",
410
+ "274": "dhole, Cuon alpinus",
411
+ "275": "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus",
412
+ "276": "hyena, hyaena",
413
+ "277": "red fox, Vulpes vulpes",
414
+ "278": "kit fox, Vulpes macrotis",
415
+ "279": "Arctic fox, white fox, Alopex lagopus",
416
+ "280": "grey fox, gray fox, Urocyon cinereoargenteus",
417
+ "281": "tabby, tabby cat",
418
+ "282": "tiger cat",
419
+ "283": "Persian cat",
420
+ "284": "Siamese cat, Siamese",
421
+ "285": "Egyptian cat",
422
+ "286": "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor",
423
+ "287": "lynx, catamount",
424
+ "288": "leopard, Panthera pardus",
425
+ "289": "snow leopard, ounce, Panthera uncia",
426
+ "290": "jaguar, panther, Panthera onca, Felis onca",
427
+ "291": "lion, king of beasts, Panthera leo",
428
+ "292": "tiger, Panthera tigris",
429
+ "293": "cheetah, chetah, Acinonyx jubatus",
430
+ "294": "brown bear, bruin, Ursus arctos",
431
+ "295": "American black bear, black bear, Ursus americanus, Euarctos americanus",
432
+ "296": "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus",
433
+ "297": "sloth bear, Melursus ursinus, Ursus ursinus",
434
+ "298": "mongoose",
435
+ "299": "meerkat, mierkat",
436
+ "300": "tiger beetle",
437
+ "301": "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle",
438
+ "302": "ground beetle, carabid beetle",
439
+ "303": "long-horned beetle, longicorn, longicorn beetle",
440
+ "304": "leaf beetle, chrysomelid",
441
+ "305": "dung beetle",
442
+ "306": "rhinoceros beetle",
443
+ "307": "weevil",
444
+ "308": "fly",
445
+ "309": "bee",
446
+ "310": "ant, emmet, pismire",
447
+ "311": "grasshopper, hopper",
448
+ "312": "cricket",
449
+ "313": "walking stick, walkingstick, stick insect",
450
+ "314": "cockroach, roach",
451
+ "315": "mantis, mantid",
452
+ "316": "cicada, cicala",
453
+ "317": "leafhopper",
454
+ "318": "lacewing, lacewing fly",
455
+ "319": "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk",
456
+ "320": "damselfly",
457
+ "321": "admiral",
458
+ "322": "ringlet, ringlet butterfly",
459
+ "323": "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus",
460
+ "324": "cabbage butterfly",
461
+ "325": "sulphur butterfly, sulfur butterfly",
462
+ "326": "lycaenid, lycaenid butterfly",
463
+ "327": "starfish, sea star",
464
+ "328": "sea urchin",
465
+ "329": "sea cucumber, holothurian",
466
+ "330": "wood rabbit, cottontail, cottontail rabbit",
467
+ "331": "hare",
468
+ "332": "Angora, Angora rabbit",
469
+ "333": "hamster",
470
+ "334": "porcupine, hedgehog",
471
+ "335": "fox squirrel, eastern fox squirrel, Sciurus niger",
472
+ "336": "marmot",
473
+ "337": "beaver",
474
+ "338": "guinea pig, Cavia cobaya",
475
+ "339": "sorrel",
476
+ "340": "zebra",
477
+ "341": "hog, pig, grunter, squealer, Sus scrofa",
478
+ "342": "wild boar, boar, Sus scrofa",
479
+ "343": "warthog",
480
+ "344": "hippopotamus, hippo, river horse, Hippopotamus amphibius",
481
+ "345": "ox",
482
+ "346": "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis",
483
+ "347": "bison",
484
+ "348": "ram, tup",
485
+ "349": "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis",
486
+ "350": "ibex, Capra ibex",
487
+ "351": "hartebeest",
488
+ "352": "impala, Aepyceros melampus",
489
+ "353": "gazelle",
490
+ "354": "Arabian camel, dromedary, Camelus dromedarius",
491
+ "355": "llama",
492
+ "356": "weasel",
493
+ "357": "mink",
494
+ "358": "polecat, fitch, foulmart, foumart, Mustela putorius",
495
+ "359": "black-footed ferret, ferret, Mustela nigripes",
496
+ "360": "otter",
497
+ "361": "skunk, polecat, wood pussy",
498
+ "362": "badger",
499
+ "363": "armadillo",
500
+ "364": "three-toed sloth, ai, Bradypus tridactylus",
501
+ "365": "orangutan, orang, orangutang, Pongo pygmaeus",
502
+ "366": "gorilla, Gorilla gorilla",
503
+ "367": "chimpanzee, chimp, Pan troglodytes",
504
+ "368": "gibbon, Hylobates lar",
505
+ "369": "siamang, Hylobates syndactylus, Symphalangus syndactylus",
506
+ "370": "guenon, guenon monkey",
507
+ "371": "patas, hussar monkey, Erythrocebus patas",
508
+ "372": "baboon",
509
+ "373": "macaque",
510
+ "374": "langur",
511
+ "375": "colobus, colobus monkey",
512
+ "376": "proboscis monkey, Nasalis larvatus",
513
+ "377": "marmoset",
514
+ "378": "capuchin, ringtail, Cebus capucinus",
515
+ "379": "howler monkey, howler",
516
+ "380": "titi, titi monkey",
517
+ "381": "spider monkey, Ateles geoffroyi",
518
+ "382": "squirrel monkey, Saimiri sciureus",
519
+ "383": "Madagascar cat, ring-tailed lemur, Lemur catta",
520
+ "384": "indri, indris, Indri indri, Indri brevicaudatus",
521
+ "385": "Indian elephant, Elephas maximus",
522
+ "386": "African elephant, Loxodonta africana",
523
+ "387": "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens",
524
+ "388": "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca",
525
+ "389": "barracouta, snoek",
526
+ "390": "eel",
527
+ "391": "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch",
528
+ "392": "rock beauty, Holocanthus tricolor",
529
+ "393": "anemone fish",
530
+ "394": "sturgeon",
531
+ "395": "gar, garfish, garpike, billfish, Lepisosteus osseus",
532
+ "396": "lionfish",
533
+ "397": "puffer, pufferfish, blowfish, globefish",
534
+ "398": "abacus",
535
+ "399": "abaya",
536
+ "400": "academic gown, academic robe, judge's robe",
537
+ "401": "accordion, piano accordion, squeeze box",
538
+ "402": "acoustic guitar",
539
+ "403": "aircraft carrier, carrier, flattop, attack aircraft carrier",
540
+ "404": "airliner",
541
+ "405": "airship, dirigible",
542
+ "406": "altar",
543
+ "407": "ambulance",
544
+ "408": "amphibian, amphibious vehicle",
545
+ "409": "analog clock",
546
+ "410": "apiary, bee house",
547
+ "411": "apron",
548
+ "412": "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin",
549
+ "413": "assault rifle, assault gun",
550
+ "414": "backpack, back pack, knapsack, packsack, rucksack, haversack",
551
+ "415": "bakery, bakeshop, bakehouse",
552
+ "416": "balance beam, beam",
553
+ "417": "balloon",
554
+ "418": "ballpoint, ballpoint pen, ballpen, Biro",
555
+ "419": "Band Aid",
556
+ "420": "banjo",
557
+ "421": "bannister, banister, balustrade, balusters, handrail",
558
+ "422": "barbell",
559
+ "423": "barber chair",
560
+ "424": "barbershop",
561
+ "425": "barn",
562
+ "426": "barometer",
563
+ "427": "barrel, cask",
564
+ "428": "barrow, garden cart, lawn cart, wheelbarrow",
565
+ "429": "baseball",
566
+ "430": "basketball",
567
+ "431": "bassinet",
568
+ "432": "bassoon",
569
+ "433": "bathing cap, swimming cap",
570
+ "434": "bath towel",
571
+ "435": "bathtub, bathing tub, bath, tub",
572
+ "436": "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon",
573
+ "437": "beacon, lighthouse, beacon light, pharos",
574
+ "438": "beaker",
575
+ "439": "bearskin, busby, shako",
576
+ "440": "beer bottle",
577
+ "441": "beer glass",
578
+ "442": "bell cote, bell cot",
579
+ "443": "bib",
580
+ "444": "bicycle-built-for-two, tandem bicycle, tandem",
581
+ "445": "bikini, two-piece",
582
+ "446": "binder, ring-binder",
583
+ "447": "binoculars, field glasses, opera glasses",
584
+ "448": "birdhouse",
585
+ "449": "boathouse",
586
+ "450": "bobsled, bobsleigh, bob",
587
+ "451": "bolo tie, bolo, bola tie, bola",
588
+ "452": "bonnet, poke bonnet",
589
+ "453": "bookcase",
590
+ "454": "bookshop, bookstore, bookstall",
591
+ "455": "bottlecap",
592
+ "456": "bow",
593
+ "457": "bow tie, bow-tie, bowtie",
594
+ "458": "brass, memorial tablet, plaque",
595
+ "459": "brassiere, bra, bandeau",
596
+ "460": "breakwater, groin, groyne, mole, bulwark, seawall, jetty",
597
+ "461": "breastplate, aegis, egis",
598
+ "462": "broom",
599
+ "463": "bucket, pail",
600
+ "464": "buckle",
601
+ "465": "bulletproof vest",
602
+ "466": "bullet train, bullet",
603
+ "467": "butcher shop, meat market",
604
+ "468": "cab, hack, taxi, taxicab",
605
+ "469": "caldron, cauldron",
606
+ "470": "candle, taper, wax light",
607
+ "471": "cannon",
608
+ "472": "canoe",
609
+ "473": "can opener, tin opener",
610
+ "474": "cardigan",
611
+ "475": "car mirror",
612
+ "476": "carousel, carrousel, merry-go-round, roundabout, whirligig",
613
+ "477": "carpenter's kit, tool kit",
614
+ "478": "carton",
615
+ "479": "car wheel",
616
+ "480": "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM",
617
+ "481": "cassette",
618
+ "482": "cassette player",
619
+ "483": "castle",
620
+ "484": "catamaran",
621
+ "485": "CD player",
622
+ "486": "cello, violoncello",
623
+ "487": "cellular telephone, cellular phone, cellphone, cell, mobile phone",
624
+ "488": "chain",
625
+ "489": "chainlink fence",
626
+ "490": "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour",
627
+ "491": "chain saw, chainsaw",
628
+ "492": "chest",
629
+ "493": "chiffonier, commode",
630
+ "494": "chime, bell, gong",
631
+ "495": "china cabinet, china closet",
632
+ "496": "Christmas stocking",
633
+ "497": "church, church building",
634
+ "498": "cinema, movie theater, movie theatre, movie house, picture palace",
635
+ "499": "cleaver, meat cleaver, chopper",
636
+ "500": "cliff dwelling",
637
+ "501": "cloak",
638
+ "502": "clog, geta, patten, sabot",
639
+ "503": "cocktail shaker",
640
+ "504": "coffee mug",
641
+ "505": "coffeepot",
642
+ "506": "coil, spiral, volute, whorl, helix",
643
+ "507": "combination lock",
644
+ "508": "computer keyboard, keypad",
645
+ "509": "confectionery, confectionary, candy store",
646
+ "510": "container ship, containership, container vessel",
647
+ "511": "convertible",
648
+ "512": "corkscrew, bottle screw",
649
+ "513": "cornet, horn, trumpet, trump",
650
+ "514": "cowboy boot",
651
+ "515": "cowboy hat, ten-gallon hat",
652
+ "516": "cradle",
653
+ "517": "crane",
654
+ "518": "crash helmet",
655
+ "519": "crate",
656
+ "520": "crib, cot",
657
+ "521": "Crock Pot",
658
+ "522": "croquet ball",
659
+ "523": "crutch",
660
+ "524": "cuirass",
661
+ "525": "dam, dike, dyke",
662
+ "526": "desk",
663
+ "527": "desktop computer",
664
+ "528": "dial telephone, dial phone",
665
+ "529": "diaper, nappy, napkin",
666
+ "530": "digital clock",
667
+ "531": "digital watch",
668
+ "532": "dining table, board",
669
+ "533": "dishrag, dishcloth",
670
+ "534": "dishwasher, dish washer, dishwashing machine",
671
+ "535": "disk brake, disc brake",
672
+ "536": "dock, dockage, docking facility",
673
+ "537": "dogsled, dog sled, dog sleigh",
674
+ "538": "dome",
675
+ "539": "doormat, welcome mat",
676
+ "540": "drilling platform, offshore rig",
677
+ "541": "drum, membranophone, tympan",
678
+ "542": "drumstick",
679
+ "543": "dumbbell",
680
+ "544": "Dutch oven",
681
+ "545": "electric fan, blower",
682
+ "546": "electric guitar",
683
+ "547": "electric locomotive",
684
+ "548": "entertainment center",
685
+ "549": "envelope",
686
+ "550": "espresso maker",
687
+ "551": "face powder",
688
+ "552": "feather boa, boa",
689
+ "553": "file, file cabinet, filing cabinet",
690
+ "554": "fireboat",
691
+ "555": "fire engine, fire truck",
692
+ "556": "fire screen, fireguard",
693
+ "557": "flagpole, flagstaff",
694
+ "558": "flute, transverse flute",
695
+ "559": "folding chair",
696
+ "560": "football helmet",
697
+ "561": "forklift",
698
+ "562": "fountain",
699
+ "563": "fountain pen",
700
+ "564": "four-poster",
701
+ "565": "freight car",
702
+ "566": "French horn, horn",
703
+ "567": "frying pan, frypan, skillet",
704
+ "568": "fur coat",
705
+ "569": "garbage truck, dustcart",
706
+ "570": "gasmask, respirator, gas helmet",
707
+ "571": "gas pump, gasoline pump, petrol pump, island dispenser",
708
+ "572": "goblet",
709
+ "573": "go-kart",
710
+ "574": "golf ball",
711
+ "575": "golfcart, golf cart",
712
+ "576": "gondola",
713
+ "577": "gong, tam-tam",
714
+ "578": "gown",
715
+ "579": "grand piano, grand",
716
+ "580": "greenhouse, nursery, glasshouse",
717
+ "581": "grille, radiator grille",
718
+ "582": "grocery store, grocery, food market, market",
719
+ "583": "guillotine",
720
+ "584": "hair slide",
721
+ "585": "hair spray",
722
+ "586": "half track",
723
+ "587": "hammer",
724
+ "588": "hamper",
725
+ "589": "hand blower, blow dryer, blow drier, hair dryer, hair drier",
726
+ "590": "hand-held computer, hand-held microcomputer",
727
+ "591": "handkerchief, hankie, hanky, hankey",
728
+ "592": "hard disc, hard disk, fixed disk",
729
+ "593": "harmonica, mouth organ, harp, mouth harp",
730
+ "594": "harp",
731
+ "595": "harvester, reaper",
732
+ "596": "hatchet",
733
+ "597": "holster",
734
+ "598": "home theater, home theatre",
735
+ "599": "honeycomb",
736
+ "600": "hook, claw",
737
+ "601": "hoopskirt, crinoline",
738
+ "602": "horizontal bar, high bar",
739
+ "603": "horse cart, horse-cart",
740
+ "604": "hourglass",
741
+ "605": "iPod",
742
+ "606": "iron, smoothing iron",
743
+ "607": "jack-o'-lantern",
744
+ "608": "jean, blue jean, denim",
745
+ "609": "jeep, landrover",
746
+ "610": "jersey, T-shirt, tee shirt",
747
+ "611": "jigsaw puzzle",
748
+ "612": "jinrikisha, ricksha, rickshaw",
749
+ "613": "joystick",
750
+ "614": "kimono",
751
+ "615": "knee pad",
752
+ "616": "knot",
753
+ "617": "lab coat, laboratory coat",
754
+ "618": "ladle",
755
+ "619": "lampshade, lamp shade",
756
+ "620": "laptop, laptop computer",
757
+ "621": "lawn mower, mower",
758
+ "622": "lens cap, lens cover",
759
+ "623": "letter opener, paper knife, paperknife",
760
+ "624": "library",
761
+ "625": "lifeboat",
762
+ "626": "lighter, light, igniter, ignitor",
763
+ "627": "limousine, limo",
764
+ "628": "liner, ocean liner",
765
+ "629": "lipstick, lip rouge",
766
+ "630": "Loafer",
767
+ "631": "lotion",
768
+ "632": "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system",
769
+ "633": "loupe, jeweler's loupe",
770
+ "634": "lumbermill, sawmill",
771
+ "635": "magnetic compass",
772
+ "636": "mailbag, postbag",
773
+ "637": "mailbox, letter box",
774
+ "638": "maillot",
775
+ "639": "maillot, tank suit",
776
+ "640": "manhole cover",
777
+ "641": "maraca",
778
+ "642": "marimba, xylophone",
779
+ "643": "mask",
780
+ "644": "matchstick",
781
+ "645": "maypole",
782
+ "646": "maze, labyrinth",
783
+ "647": "measuring cup",
784
+ "648": "medicine chest, medicine cabinet",
785
+ "649": "megalith, megalithic structure",
786
+ "650": "microphone, mike",
787
+ "651": "microwave, microwave oven",
788
+ "652": "military uniform",
789
+ "653": "milk can",
790
+ "654": "minibus",
791
+ "655": "miniskirt, mini",
792
+ "656": "minivan",
793
+ "657": "missile",
794
+ "658": "mitten",
795
+ "659": "mixing bowl",
796
+ "660": "mobile home, manufactured home",
797
+ "661": "Model T",
798
+ "662": "modem",
799
+ "663": "monastery",
800
+ "664": "monitor",
801
+ "665": "moped",
802
+ "666": "mortar",
803
+ "667": "mortarboard",
804
+ "668": "mosque",
805
+ "669": "mosquito net",
806
+ "670": "motor scooter, scooter",
807
+ "671": "mountain bike, all-terrain bike, off-roader",
808
+ "672": "mountain tent",
809
+ "673": "mouse, computer mouse",
810
+ "674": "mousetrap",
811
+ "675": "moving van",
812
+ "676": "muzzle",
813
+ "677": "nail",
814
+ "678": "neck brace",
815
+ "679": "necklace",
816
+ "680": "nipple",
817
+ "681": "notebook, notebook computer",
818
+ "682": "obelisk",
819
+ "683": "oboe, hautboy, hautbois",
820
+ "684": "ocarina, sweet potato",
821
+ "685": "odometer, hodometer, mileometer, milometer",
822
+ "686": "oil filter",
823
+ "687": "organ, pipe organ",
824
+ "688": "oscilloscope, scope, cathode-ray oscilloscope, CRO",
825
+ "689": "overskirt",
826
+ "690": "oxcart",
827
+ "691": "oxygen mask",
828
+ "692": "packet",
829
+ "693": "paddle, boat paddle",
830
+ "694": "paddlewheel, paddle wheel",
831
+ "695": "padlock",
832
+ "696": "paintbrush",
833
+ "697": "pajama, pyjama, pj's, jammies",
834
+ "698": "palace",
835
+ "699": "panpipe, pandean pipe, syrinx",
836
+ "700": "paper towel",
837
+ "701": "parachute, chute",
838
+ "702": "parallel bars, bars",
839
+ "703": "park bench",
840
+ "704": "parking meter",
841
+ "705": "passenger car, coach, carriage",
842
+ "706": "patio, terrace",
843
+ "707": "pay-phone, pay-station",
844
+ "708": "pedestal, plinth, footstall",
845
+ "709": "pencil box, pencil case",
846
+ "710": "pencil sharpener",
847
+ "711": "perfume, essence",
848
+ "712": "Petri dish",
849
+ "713": "photocopier",
850
+ "714": "pick, plectrum, plectron",
851
+ "715": "pickelhaube",
852
+ "716": "picket fence, paling",
853
+ "717": "pickup, pickup truck",
854
+ "718": "pier",
855
+ "719": "piggy bank, penny bank",
856
+ "720": "pill bottle",
857
+ "721": "pillow",
858
+ "722": "ping-pong ball",
859
+ "723": "pinwheel",
860
+ "724": "pirate, pirate ship",
861
+ "725": "pitcher, ewer",
862
+ "726": "plane, carpenter's plane, woodworking plane",
863
+ "727": "planetarium",
864
+ "728": "plastic bag",
865
+ "729": "plate rack",
866
+ "730": "plow, plough",
867
+ "731": "plunger, plumber's helper",
868
+ "732": "Polaroid camera, Polaroid Land camera",
869
+ "733": "pole",
870
+ "734": "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria",
871
+ "735": "poncho",
872
+ "736": "pool table, billiard table, snooker table",
873
+ "737": "pop bottle, soda bottle",
874
+ "738": "pot, flowerpot",
875
+ "739": "potter's wheel",
876
+ "740": "power drill",
877
+ "741": "prayer rug, prayer mat",
878
+ "742": "printer",
879
+ "743": "prison, prison house",
880
+ "744": "projectile, missile",
881
+ "745": "projector",
882
+ "746": "puck, hockey puck",
883
+ "747": "punching bag, punch bag, punching ball, punchball",
884
+ "748": "purse",
885
+ "749": "quill, quill pen",
886
+ "750": "quilt, comforter, comfort, puff",
887
+ "751": "racer, race car, racing car",
888
+ "752": "racket, racquet",
889
+ "753": "radiator",
890
+ "754": "radio, wireless",
891
+ "755": "radio telescope, radio reflector",
892
+ "756": "rain barrel",
893
+ "757": "recreational vehicle, RV, R.V.",
894
+ "758": "reel",
895
+ "759": "reflex camera",
896
+ "760": "refrigerator, icebox",
897
+ "761": "remote control, remote",
898
+ "762": "restaurant, eating house, eating place, eatery",
899
+ "763": "revolver, six-gun, six-shooter",
900
+ "764": "rifle",
901
+ "765": "rocking chair, rocker",
902
+ "766": "rotisserie",
903
+ "767": "rubber eraser, rubber, pencil eraser",
904
+ "768": "rugby ball",
905
+ "769": "rule, ruler",
906
+ "770": "running shoe",
907
+ "771": "safe",
908
+ "772": "safety pin",
909
+ "773": "saltshaker, salt shaker",
910
+ "774": "sandal",
911
+ "775": "sarong",
912
+ "776": "sax, saxophone",
913
+ "777": "scabbard",
914
+ "778": "scale, weighing machine",
915
+ "779": "school bus",
916
+ "780": "schooner",
917
+ "781": "scoreboard",
918
+ "782": "screen, CRT screen",
919
+ "783": "screw",
920
+ "784": "screwdriver",
921
+ "785": "seat belt, seatbelt",
922
+ "786": "sewing machine",
923
+ "787": "shield, buckler",
924
+ "788": "shoe shop, shoe-shop, shoe store",
925
+ "789": "shoji",
926
+ "790": "shopping basket",
927
+ "791": "shopping cart",
928
+ "792": "shovel",
929
+ "793": "shower cap",
930
+ "794": "shower curtain",
931
+ "795": "ski",
932
+ "796": "ski mask",
933
+ "797": "sleeping bag",
934
+ "798": "slide rule, slipstick",
935
+ "799": "sliding door",
936
+ "800": "slot, one-armed bandit",
937
+ "801": "snorkel",
938
+ "802": "snowmobile",
939
+ "803": "snowplow, snowplough",
940
+ "804": "soap dispenser",
941
+ "805": "soccer ball",
942
+ "806": "sock",
943
+ "807": "solar dish, solar collector, solar furnace",
944
+ "808": "sombrero",
945
+ "809": "soup bowl",
946
+ "810": "space bar",
947
+ "811": "space heater",
948
+ "812": "space shuttle",
949
+ "813": "spatula",
950
+ "814": "speedboat",
951
+ "815": "spider web, spider's web",
952
+ "816": "spindle",
953
+ "817": "sports car, sport car",
954
+ "818": "spotlight, spot",
955
+ "819": "stage",
956
+ "820": "steam locomotive",
957
+ "821": "steel arch bridge",
958
+ "822": "steel drum",
959
+ "823": "stethoscope",
960
+ "824": "stole",
961
+ "825": "stone wall",
962
+ "826": "stopwatch, stop watch",
963
+ "827": "stove",
964
+ "828": "strainer",
965
+ "829": "streetcar, tram, tramcar, trolley, trolley car",
966
+ "830": "stretcher",
967
+ "831": "studio couch, day bed",
968
+ "832": "stupa, tope",
969
+ "833": "submarine, pigboat, sub, U-boat",
970
+ "834": "suit, suit of clothes",
971
+ "835": "sundial",
972
+ "836": "sunglass",
973
+ "837": "sunglasses, dark glasses, shades",
974
+ "838": "sunscreen, sunblock, sun blocker",
975
+ "839": "suspension bridge",
976
+ "840": "swab, swob, mop",
977
+ "841": "sweatshirt",
978
+ "842": "swimming trunks, bathing trunks",
979
+ "843": "swing",
980
+ "844": "switch, electric switch, electrical switch",
981
+ "845": "syringe",
982
+ "846": "table lamp",
983
+ "847": "tank, army tank, armored combat vehicle, armoured combat vehicle",
984
+ "848": "tape player",
985
+ "849": "teapot",
986
+ "850": "teddy, teddy bear",
987
+ "851": "television, television system",
988
+ "852": "tennis ball",
989
+ "853": "thatch, thatched roof",
990
+ "854": "theater curtain, theatre curtain",
991
+ "855": "thimble",
992
+ "856": "thresher, thrasher, threshing machine",
993
+ "857": "throne",
994
+ "858": "tile roof",
995
+ "859": "toaster",
996
+ "860": "tobacco shop, tobacconist shop, tobacconist",
997
+ "861": "toilet seat",
998
+ "862": "torch",
999
+ "863": "totem pole",
1000
+ "864": "tow truck, tow car, wrecker",
1001
+ "865": "toyshop",
1002
+ "866": "tractor",
1003
+ "867": "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi",
1004
+ "868": "tray",
1005
+ "869": "trench coat",
1006
+ "870": "tricycle, trike, velocipede",
1007
+ "871": "trimaran",
1008
+ "872": "tripod",
1009
+ "873": "triumphal arch",
1010
+ "874": "trolleybus, trolley coach, trackless trolley",
1011
+ "875": "trombone",
1012
+ "876": "tub, vat",
1013
+ "877": "turnstile",
1014
+ "878": "typewriter keyboard",
1015
+ "879": "umbrella",
1016
+ "880": "unicycle, monocycle",
1017
+ "881": "upright, upright piano",
1018
+ "882": "vacuum, vacuum cleaner",
1019
+ "883": "vase",
1020
+ "884": "vault",
1021
+ "885": "velvet",
1022
+ "886": "vending machine",
1023
+ "887": "vestment",
1024
+ "888": "viaduct",
1025
+ "889": "violin, fiddle",
1026
+ "890": "volleyball",
1027
+ "891": "waffle iron",
1028
+ "892": "wall clock",
1029
+ "893": "wallet, billfold, notecase, pocketbook",
1030
+ "894": "wardrobe, closet, press",
1031
+ "895": "warplane, military plane",
1032
+ "896": "washbasin, handbasin, washbowl, lavabo, wash-hand basin",
1033
+ "897": "washer, automatic washer, washing machine",
1034
+ "898": "water bottle",
1035
+ "899": "water jug",
1036
+ "900": "water tower",
1037
+ "901": "whiskey jug",
1038
+ "902": "whistle",
1039
+ "903": "wig",
1040
+ "904": "window screen",
1041
+ "905": "window shade",
1042
+ "906": "Windsor tie",
1043
+ "907": "wine bottle",
1044
+ "908": "wing",
1045
+ "909": "wok",
1046
+ "910": "wooden spoon",
1047
+ "911": "wool, woolen, woollen",
1048
+ "912": "worm fence, snake fence, snake-rail fence, Virginia fence",
1049
+ "913": "wreck",
1050
+ "914": "yawl",
1051
+ "915": "yurt",
1052
+ "916": "web site, website, internet site, site",
1053
+ "917": "comic book",
1054
+ "918": "crossword puzzle, crossword",
1055
+ "919": "street sign",
1056
+ "920": "traffic light, traffic signal, stoplight",
1057
+ "921": "book jacket, dust cover, dust jacket, dust wrapper",
1058
+ "922": "menu",
1059
+ "923": "plate",
1060
+ "924": "guacamole",
1061
+ "925": "consomme",
1062
+ "926": "hot pot, hotpot",
1063
+ "927": "trifle",
1064
+ "928": "ice cream, icecream",
1065
+ "929": "ice lolly, lolly, lollipop, popsicle",
1066
+ "930": "French loaf",
1067
+ "931": "bagel, beigel",
1068
+ "932": "pretzel",
1069
+ "933": "cheeseburger",
1070
+ "934": "hotdog, hot dog, red hot",
1071
+ "935": "mashed potato",
1072
+ "936": "head cabbage",
1073
+ "937": "broccoli",
1074
+ "938": "cauliflower",
1075
+ "939": "zucchini, courgette",
1076
+ "940": "spaghetti squash",
1077
+ "941": "acorn squash",
1078
+ "942": "butternut squash",
1079
+ "943": "cucumber, cuke",
1080
+ "944": "artichoke, globe artichoke",
1081
+ "945": "bell pepper",
1082
+ "946": "cardoon",
1083
+ "947": "mushroom",
1084
+ "948": "Granny Smith",
1085
+ "949": "strawberry",
1086
+ "950": "orange",
1087
+ "951": "lemon",
1088
+ "952": "fig",
1089
+ "953": "pineapple, ananas",
1090
+ "954": "banana",
1091
+ "955": "jackfruit, jak, jack",
1092
+ "956": "custard apple",
1093
+ "957": "pomegranate",
1094
+ "958": "hay",
1095
+ "959": "carbonara",
1096
+ "960": "chocolate sauce, chocolate syrup",
1097
+ "961": "dough",
1098
+ "962": "meat loaf, meatloaf",
1099
+ "963": "pizza, pizza pie",
1100
+ "964": "potpie",
1101
+ "965": "burrito",
1102
+ "966": "red wine",
1103
+ "967": "espresso",
1104
+ "968": "cup",
1105
+ "969": "eggnog",
1106
+ "970": "alp",
1107
+ "971": "bubble",
1108
+ "972": "cliff, drop, drop-off",
1109
+ "973": "coral reef",
1110
+ "974": "geyser",
1111
+ "975": "lakeside, lakeshore",
1112
+ "976": "promontory, headland, head, foreland",
1113
+ "977": "sandbar, sand bar",
1114
+ "978": "seashore, coast, seacoast, sea-coast",
1115
+ "979": "valley, vale",
1116
+ "980": "volcano",
1117
+ "981": "ballplayer, baseball player",
1118
+ "982": "groom, bridegroom",
1119
+ "983": "scuba diver",
1120
+ "984": "rapeseed",
1121
+ "985": "daisy",
1122
+ "986": "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum",
1123
+ "987": "corn",
1124
+ "988": "acorn",
1125
+ "989": "hip, rose hip, rosehip",
1126
+ "990": "buckeye, horse chestnut, conker",
1127
+ "991": "coral fungus",
1128
+ "992": "agaric",
1129
+ "993": "gyromitra",
1130
+ "994": "stinkhorn, carrion fungus",
1131
+ "995": "earthstar",
1132
+ "996": "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa",
1133
+ "997": "bolete",
1134
+ "998": "ear, spike, capitulum",
1135
+ "999": "toilet tissue, toilet paper, bathroom tissue"
1136
+ },
1137
+ "image_size": 224,
1138
+ "initializer_range": 0.02,
1139
+ "is_decoder": false,
1140
+ "is_encoder_decoder": false,
1141
+ "label2id": {
1142
+ "Afghan hound, Afghan": 160,
1143
+ "African chameleon, Chamaeleo chamaeleon": 47,
1144
+ "African crocodile, Nile crocodile, Crocodylus niloticus": 49,
1145
+ "African elephant, Loxodonta africana": 386,
1146
+ "African grey, African gray, Psittacus erithacus": 87,
1147
+ "African hunting dog, hyena dog, Cape hunting dog, Lycaon pictus": 275,
1148
+ "Airedale, Airedale terrier": 191,
1149
+ "American Staffordshire terrier, Staffordshire terrier, American pit bull terrier, pit bull terrier": 180,
1150
+ "American alligator, Alligator mississipiensis": 50,
1151
+ "American black bear, black bear, Ursus americanus, Euarctos americanus": 295,
1152
+ "American chameleon, anole, Anolis carolinensis": 40,
1153
+ "American coot, marsh hen, mud hen, water hen, Fulica americana": 137,
1154
+ "American egret, great white heron, Egretta albus": 132,
1155
+ "American lobster, Northern lobster, Maine lobster, Homarus americanus": 122,
1156
+ "Angora, Angora rabbit": 332,
1157
+ "Appenzeller": 240,
1158
+ "Arabian camel, dromedary, Camelus dromedarius": 354,
1159
+ "Arctic fox, white fox, Alopex lagopus": 279,
1160
+ "Australian terrier": 193,
1161
+ "Band Aid": 419,
1162
+ "Bedlington terrier": 181,
1163
+ "Bernese mountain dog": 239,
1164
+ "Blenheim spaniel": 156,
1165
+ "Border collie": 232,
1166
+ "Border terrier": 182,
1167
+ "Boston bull, Boston terrier": 195,
1168
+ "Bouvier des Flandres, Bouviers des Flandres": 233,
1169
+ "Brabancon griffon": 262,
1170
+ "Brittany spaniel": 215,
1171
+ "CD player": 485,
1172
+ "Cardigan, Cardigan Welsh corgi": 264,
1173
+ "Chesapeake Bay retriever": 209,
1174
+ "Chihuahua": 151,
1175
+ "Christmas stocking": 496,
1176
+ "Crock Pot": 521,
1177
+ "Dandie Dinmont, Dandie Dinmont terrier": 194,
1178
+ "Doberman, Doberman pinscher": 236,
1179
+ "Dungeness crab, Cancer magister": 118,
1180
+ "Dutch oven": 544,
1181
+ "Egyptian cat": 285,
1182
+ "English foxhound": 167,
1183
+ "English setter": 212,
1184
+ "English springer, English springer spaniel": 217,
1185
+ "EntleBucher": 241,
1186
+ "Eskimo dog, husky": 248,
1187
+ "European fire salamander, Salamandra salamandra": 25,
1188
+ "European gallinule, Porphyrio porphyrio": 136,
1189
+ "French bulldog": 245,
1190
+ "French horn, horn": 566,
1191
+ "French loaf": 930,
1192
+ "German shepherd, German shepherd dog, German police dog, alsatian": 235,
1193
+ "German short-haired pointer": 210,
1194
+ "Gila monster, Heloderma suspectum": 45,
1195
+ "Gordon setter": 214,
1196
+ "Granny Smith": 948,
1197
+ "Great Dane": 246,
1198
+ "Great Pyrenees": 257,
1199
+ "Greater Swiss Mountain dog": 238,
1200
+ "Ibizan hound, Ibizan Podenco": 173,
1201
+ "Indian cobra, Naja naja": 63,
1202
+ "Indian elephant, Elephas maximus": 385,
1203
+ "Irish setter, red setter": 213,
1204
+ "Irish terrier": 184,
1205
+ "Irish water spaniel": 221,
1206
+ "Irish wolfhound": 170,
1207
+ "Italian greyhound": 171,
1208
+ "Japanese spaniel": 152,
1209
+ "Kerry blue terrier": 183,
1210
+ "Komodo dragon, Komodo lizard, dragon lizard, giant lizard, Varanus komodoensis": 48,
1211
+ "Labrador retriever": 208,
1212
+ "Lakeland terrier": 189,
1213
+ "Leonberg": 255,
1214
+ "Lhasa, Lhasa apso": 204,
1215
+ "Loafer": 630,
1216
+ "Madagascar cat, ring-tailed lemur, Lemur catta": 383,
1217
+ "Maltese dog, Maltese terrier, Maltese": 153,
1218
+ "Mexican hairless": 268,
1219
+ "Model T": 661,
1220
+ "Newfoundland, Newfoundland dog": 256,
1221
+ "Norfolk terrier": 185,
1222
+ "Norwegian elkhound, elkhound": 174,
1223
+ "Norwich terrier": 186,
1224
+ "Old English sheepdog, bobtail": 229,
1225
+ "Pekinese, Pekingese, Peke": 154,
1226
+ "Pembroke, Pembroke Welsh corgi": 263,
1227
+ "Persian cat": 283,
1228
+ "Petri dish": 712,
1229
+ "Polaroid camera, Polaroid Land camera": 732,
1230
+ "Pomeranian": 259,
1231
+ "Rhodesian ridgeback": 159,
1232
+ "Rottweiler": 234,
1233
+ "Saint Bernard, St Bernard": 247,
1234
+ "Saluki, gazelle hound": 176,
1235
+ "Samoyed, Samoyede": 258,
1236
+ "Scotch terrier, Scottish terrier, Scottie": 199,
1237
+ "Scottish deerhound, deerhound": 177,
1238
+ "Sealyham terrier, Sealyham": 190,
1239
+ "Shetland sheepdog, Shetland sheep dog, Shetland": 230,
1240
+ "Shih-Tzu": 155,
1241
+ "Siamese cat, Siamese": 284,
1242
+ "Siberian husky": 250,
1243
+ "Staffordshire bullterrier, Staffordshire bull terrier": 179,
1244
+ "Sussex spaniel": 220,
1245
+ "Tibetan mastiff": 244,
1246
+ "Tibetan terrier, chrysanthemum dog": 200,
1247
+ "Walker hound, Walker foxhound": 166,
1248
+ "Weimaraner": 178,
1249
+ "Welsh springer spaniel": 218,
1250
+ "West Highland white terrier": 203,
1251
+ "Windsor tie": 906,
1252
+ "Yorkshire terrier": 187,
1253
+ "abacus": 398,
1254
+ "abaya": 399,
1255
+ "academic gown, academic robe, judge's robe": 400,
1256
+ "accordion, piano accordion, squeeze box": 401,
1257
+ "acorn": 988,
1258
+ "acorn squash": 941,
1259
+ "acoustic guitar": 402,
1260
+ "admiral": 321,
1261
+ "affenpinscher, monkey pinscher, monkey dog": 252,
1262
+ "agama": 42,
1263
+ "agaric": 992,
1264
+ "aircraft carrier, carrier, flattop, attack aircraft carrier": 403,
1265
+ "airliner": 404,
1266
+ "airship, dirigible": 405,
1267
+ "albatross, mollymawk": 146,
1268
+ "alligator lizard": 44,
1269
+ "alp": 970,
1270
+ "altar": 406,
1271
+ "ambulance": 407,
1272
+ "amphibian, amphibious vehicle": 408,
1273
+ "analog clock": 409,
1274
+ "anemone fish": 393,
1275
+ "ant, emmet, pismire": 310,
1276
+ "apiary, bee house": 410,
1277
+ "apron": 411,
1278
+ "armadillo": 363,
1279
+ "artichoke, globe artichoke": 944,
1280
+ "ashcan, trash can, garbage can, wastebin, ash bin, ash-bin, ashbin, dustbin, trash barrel, trash bin": 412,
1281
+ "assault rifle, assault gun": 413,
1282
+ "axolotl, mud puppy, Ambystoma mexicanum": 29,
1283
+ "baboon": 372,
1284
+ "backpack, back pack, knapsack, packsack, rucksack, haversack": 414,
1285
+ "badger": 362,
1286
+ "bagel, beigel": 931,
1287
+ "bakery, bakeshop, bakehouse": 415,
1288
+ "balance beam, beam": 416,
1289
+ "bald eagle, American eagle, Haliaeetus leucocephalus": 22,
1290
+ "balloon": 417,
1291
+ "ballplayer, baseball player": 981,
1292
+ "ballpoint, ballpoint pen, ballpen, Biro": 418,
1293
+ "banana": 954,
1294
+ "banded gecko": 38,
1295
+ "banjo": 420,
1296
+ "bannister, banister, balustrade, balusters, handrail": 421,
1297
+ "barbell": 422,
1298
+ "barber chair": 423,
1299
+ "barbershop": 424,
1300
+ "barn": 425,
1301
+ "barn spider, Araneus cavaticus": 73,
1302
+ "barometer": 426,
1303
+ "barracouta, snoek": 389,
1304
+ "barrel, cask": 427,
1305
+ "barrow, garden cart, lawn cart, wheelbarrow": 428,
1306
+ "baseball": 429,
1307
+ "basenji": 253,
1308
+ "basketball": 430,
1309
+ "basset, basset hound": 161,
1310
+ "bassinet": 431,
1311
+ "bassoon": 432,
1312
+ "bath towel": 434,
1313
+ "bathing cap, swimming cap": 433,
1314
+ "bathtub, bathing tub, bath, tub": 435,
1315
+ "beach wagon, station wagon, wagon, estate car, beach waggon, station waggon, waggon": 436,
1316
+ "beacon, lighthouse, beacon light, pharos": 437,
1317
+ "beagle": 162,
1318
+ "beaker": 438,
1319
+ "bearskin, busby, shako": 439,
1320
+ "beaver": 337,
1321
+ "bee": 309,
1322
+ "bee eater": 92,
1323
+ "beer bottle": 440,
1324
+ "beer glass": 441,
1325
+ "bell cote, bell cot": 442,
1326
+ "bell pepper": 945,
1327
+ "bib": 443,
1328
+ "bicycle-built-for-two, tandem bicycle, tandem": 444,
1329
+ "bighorn, bighorn sheep, cimarron, Rocky Mountain bighorn, Rocky Mountain sheep, Ovis canadensis": 349,
1330
+ "bikini, two-piece": 445,
1331
+ "binder, ring-binder": 446,
1332
+ "binoculars, field glasses, opera glasses": 447,
1333
+ "birdhouse": 448,
1334
+ "bison": 347,
1335
+ "bittern": 133,
1336
+ "black and gold garden spider, Argiope aurantia": 72,
1337
+ "black grouse": 80,
1338
+ "black stork, Ciconia nigra": 128,
1339
+ "black swan, Cygnus atratus": 100,
1340
+ "black widow, Latrodectus mactans": 75,
1341
+ "black-and-tan coonhound": 165,
1342
+ "black-footed ferret, ferret, Mustela nigripes": 359,
1343
+ "bloodhound, sleuthhound": 163,
1344
+ "bluetick": 164,
1345
+ "boa constrictor, Constrictor constrictor": 61,
1346
+ "boathouse": 449,
1347
+ "bobsled, bobsleigh, bob": 450,
1348
+ "bolete": 997,
1349
+ "bolo tie, bolo, bola tie, bola": 451,
1350
+ "bonnet, poke bonnet": 452,
1351
+ "book jacket, dust cover, dust jacket, dust wrapper": 921,
1352
+ "bookcase": 453,
1353
+ "bookshop, bookstore, bookstall": 454,
1354
+ "borzoi, Russian wolfhound": 169,
1355
+ "bottlecap": 455,
1356
+ "bow": 456,
1357
+ "bow tie, bow-tie, bowtie": 457,
1358
+ "box turtle, box tortoise": 37,
1359
+ "boxer": 242,
1360
+ "brain coral": 109,
1361
+ "brambling, Fringilla montifringilla": 10,
1362
+ "brass, memorial tablet, plaque": 458,
1363
+ "brassiere, bra, bandeau": 459,
1364
+ "breakwater, groin, groyne, mole, bulwark, seawall, jetty": 460,
1365
+ "breastplate, aegis, egis": 461,
1366
+ "briard": 226,
1367
+ "broccoli": 937,
1368
+ "broom": 462,
1369
+ "brown bear, bruin, Ursus arctos": 294,
1370
+ "bubble": 971,
1371
+ "bucket, pail": 463,
1372
+ "buckeye, horse chestnut, conker": 990,
1373
+ "buckle": 464,
1374
+ "bulbul": 16,
1375
+ "bull mastiff": 243,
1376
+ "bullet train, bullet": 466,
1377
+ "bulletproof vest": 465,
1378
+ "bullfrog, Rana catesbeiana": 30,
1379
+ "burrito": 965,
1380
+ "bustard": 138,
1381
+ "butcher shop, meat market": 467,
1382
+ "butternut squash": 942,
1383
+ "cab, hack, taxi, taxicab": 468,
1384
+ "cabbage butterfly": 324,
1385
+ "cairn, cairn terrier": 192,
1386
+ "caldron, cauldron": 469,
1387
+ "can opener, tin opener": 473,
1388
+ "candle, taper, wax light": 470,
1389
+ "cannon": 471,
1390
+ "canoe": 472,
1391
+ "capuchin, ringtail, Cebus capucinus": 378,
1392
+ "car mirror": 475,
1393
+ "car wheel": 479,
1394
+ "carbonara": 959,
1395
+ "cardigan": 474,
1396
+ "cardoon": 946,
1397
+ "carousel, carrousel, merry-go-round, roundabout, whirligig": 476,
1398
+ "carpenter's kit, tool kit": 477,
1399
+ "carton": 478,
1400
+ "cash machine, cash dispenser, automated teller machine, automatic teller machine, automated teller, automatic teller, ATM": 480,
1401
+ "cassette": 481,
1402
+ "cassette player": 482,
1403
+ "castle": 483,
1404
+ "catamaran": 484,
1405
+ "cauliflower": 938,
1406
+ "cello, violoncello": 486,
1407
+ "cellular telephone, cellular phone, cellphone, cell, mobile phone": 487,
1408
+ "centipede": 79,
1409
+ "chain": 488,
1410
+ "chain mail, ring mail, mail, chain armor, chain armour, ring armor, ring armour": 490,
1411
+ "chain saw, chainsaw": 491,
1412
+ "chainlink fence": 489,
1413
+ "chambered nautilus, pearly nautilus, nautilus": 117,
1414
+ "cheeseburger": 933,
1415
+ "cheetah, chetah, Acinonyx jubatus": 293,
1416
+ "chest": 492,
1417
+ "chickadee": 19,
1418
+ "chiffonier, commode": 493,
1419
+ "chime, bell, gong": 494,
1420
+ "chimpanzee, chimp, Pan troglodytes": 367,
1421
+ "china cabinet, china closet": 495,
1422
+ "chiton, coat-of-mail shell, sea cradle, polyplacophore": 116,
1423
+ "chocolate sauce, chocolate syrup": 960,
1424
+ "chow, chow chow": 260,
1425
+ "church, church building": 497,
1426
+ "cicada, cicala": 316,
1427
+ "cinema, movie theater, movie theatre, movie house, picture palace": 498,
1428
+ "cleaver, meat cleaver, chopper": 499,
1429
+ "cliff dwelling": 500,
1430
+ "cliff, drop, drop-off": 972,
1431
+ "cloak": 501,
1432
+ "clog, geta, patten, sabot": 502,
1433
+ "clumber, clumber spaniel": 216,
1434
+ "cock": 7,
1435
+ "cocker spaniel, English cocker spaniel, cocker": 219,
1436
+ "cockroach, roach": 314,
1437
+ "cocktail shaker": 503,
1438
+ "coffee mug": 504,
1439
+ "coffeepot": 505,
1440
+ "coho, cohoe, coho salmon, blue jack, silver salmon, Oncorhynchus kisutch": 391,
1441
+ "coil, spiral, volute, whorl, helix": 506,
1442
+ "collie": 231,
1443
+ "colobus, colobus monkey": 375,
1444
+ "combination lock": 507,
1445
+ "comic book": 917,
1446
+ "common iguana, iguana, Iguana iguana": 39,
1447
+ "common newt, Triturus vulgaris": 26,
1448
+ "computer keyboard, keypad": 508,
1449
+ "conch": 112,
1450
+ "confectionery, confectionary, candy store": 509,
1451
+ "consomme": 925,
1452
+ "container ship, containership, container vessel": 510,
1453
+ "convertible": 511,
1454
+ "coral fungus": 991,
1455
+ "coral reef": 973,
1456
+ "corkscrew, bottle screw": 512,
1457
+ "corn": 987,
1458
+ "cornet, horn, trumpet, trump": 513,
1459
+ "coucal": 91,
1460
+ "cougar, puma, catamount, mountain lion, painter, panther, Felis concolor": 286,
1461
+ "cowboy boot": 514,
1462
+ "cowboy hat, ten-gallon hat": 515,
1463
+ "coyote, prairie wolf, brush wolf, Canis latrans": 272,
1464
+ "cradle": 516,
1465
+ "crane": 517,
1466
+ "crash helmet": 518,
1467
+ "crate": 519,
1468
+ "crayfish, crawfish, crawdad, crawdaddy": 124,
1469
+ "crib, cot": 520,
1470
+ "cricket": 312,
1471
+ "croquet ball": 522,
1472
+ "crossword puzzle, crossword": 918,
1473
+ "crutch": 523,
1474
+ "cucumber, cuke": 943,
1475
+ "cuirass": 524,
1476
+ "cup": 968,
1477
+ "curly-coated retriever": 206,
1478
+ "custard apple": 956,
1479
+ "daisy": 985,
1480
+ "dalmatian, coach dog, carriage dog": 251,
1481
+ "dam, dike, dyke": 525,
1482
+ "damselfly": 320,
1483
+ "desk": 526,
1484
+ "desktop computer": 527,
1485
+ "dhole, Cuon alpinus": 274,
1486
+ "dial telephone, dial phone": 528,
1487
+ "diamondback, diamondback rattlesnake, Crotalus adamanteus": 67,
1488
+ "diaper, nappy, napkin": 529,
1489
+ "digital clock": 530,
1490
+ "digital watch": 531,
1491
+ "dingo, warrigal, warragal, Canis dingo": 273,
1492
+ "dining table, board": 532,
1493
+ "dishrag, dishcloth": 533,
1494
+ "dishwasher, dish washer, dishwashing machine": 534,
1495
+ "disk brake, disc brake": 535,
1496
+ "dock, dockage, docking facility": 536,
1497
+ "dogsled, dog sled, dog sleigh": 537,
1498
+ "dome": 538,
1499
+ "doormat, welcome mat": 539,
1500
+ "dough": 961,
1501
+ "dowitcher": 142,
1502
+ "dragonfly, darning needle, devil's darning needle, sewing needle, snake feeder, snake doctor, mosquito hawk, skeeter hawk": 319,
1503
+ "drake": 97,
1504
+ "drilling platform, offshore rig": 540,
1505
+ "drum, membranophone, tympan": 541,
1506
+ "drumstick": 542,
1507
+ "dugong, Dugong dugon": 149,
1508
+ "dumbbell": 543,
1509
+ "dung beetle": 305,
1510
+ "ear, spike, capitulum": 998,
1511
+ "earthstar": 995,
1512
+ "echidna, spiny anteater, anteater": 102,
1513
+ "eel": 390,
1514
+ "eft": 27,
1515
+ "eggnog": 969,
1516
+ "electric fan, blower": 545,
1517
+ "electric guitar": 546,
1518
+ "electric locomotive": 547,
1519
+ "electric ray, crampfish, numbfish, torpedo": 5,
1520
+ "entertainment center": 548,
1521
+ "envelope": 549,
1522
+ "espresso": 967,
1523
+ "espresso maker": 550,
1524
+ "face powder": 551,
1525
+ "feather boa, boa": 552,
1526
+ "fiddler crab": 120,
1527
+ "fig": 952,
1528
+ "file, file cabinet, filing cabinet": 553,
1529
+ "fire engine, fire truck": 555,
1530
+ "fire screen, fireguard": 556,
1531
+ "fireboat": 554,
1532
+ "flagpole, flagstaff": 557,
1533
+ "flamingo": 130,
1534
+ "flat-coated retriever": 205,
1535
+ "flatworm, platyhelminth": 110,
1536
+ "flute, transverse flute": 558,
1537
+ "fly": 308,
1538
+ "folding chair": 559,
1539
+ "football helmet": 560,
1540
+ "forklift": 561,
1541
+ "fountain": 562,
1542
+ "fountain pen": 563,
1543
+ "four-poster": 564,
1544
+ "fox squirrel, eastern fox squirrel, Sciurus niger": 335,
1545
+ "freight car": 565,
1546
+ "frilled lizard, Chlamydosaurus kingi": 43,
1547
+ "frying pan, frypan, skillet": 567,
1548
+ "fur coat": 568,
1549
+ "gar, garfish, garpike, billfish, Lepisosteus osseus": 395,
1550
+ "garbage truck, dustcart": 569,
1551
+ "garden spider, Aranea diademata": 74,
1552
+ "garter snake, grass snake": 57,
1553
+ "gas pump, gasoline pump, petrol pump, island dispenser": 571,
1554
+ "gasmask, respirator, gas helmet": 570,
1555
+ "gazelle": 353,
1556
+ "geyser": 974,
1557
+ "giant panda, panda, panda bear, coon bear, Ailuropoda melanoleuca": 388,
1558
+ "giant schnauzer": 197,
1559
+ "gibbon, Hylobates lar": 368,
1560
+ "go-kart": 573,
1561
+ "goblet": 572,
1562
+ "golden retriever": 207,
1563
+ "goldfinch, Carduelis carduelis": 11,
1564
+ "goldfish, Carassius auratus": 1,
1565
+ "golf ball": 574,
1566
+ "golfcart, golf cart": 575,
1567
+ "gondola": 576,
1568
+ "gong, tam-tam": 577,
1569
+ "goose": 99,
1570
+ "gorilla, Gorilla gorilla": 366,
1571
+ "gown": 578,
1572
+ "grand piano, grand": 579,
1573
+ "grasshopper, hopper": 311,
1574
+ "great grey owl, great gray owl, Strix nebulosa": 24,
1575
+ "great white shark, white shark, man-eater, man-eating shark, Carcharodon carcharias": 2,
1576
+ "green lizard, Lacerta viridis": 46,
1577
+ "green mamba": 64,
1578
+ "green snake, grass snake": 55,
1579
+ "greenhouse, nursery, glasshouse": 580,
1580
+ "grey fox, gray fox, Urocyon cinereoargenteus": 280,
1581
+ "grey whale, gray whale, devilfish, Eschrichtius gibbosus, Eschrichtius robustus": 147,
1582
+ "grille, radiator grille": 581,
1583
+ "grocery store, grocery, food market, market": 582,
1584
+ "groenendael": 224,
1585
+ "groom, bridegroom": 982,
1586
+ "ground beetle, carabid beetle": 302,
1587
+ "guacamole": 924,
1588
+ "guenon, guenon monkey": 370,
1589
+ "guillotine": 583,
1590
+ "guinea pig, Cavia cobaya": 338,
1591
+ "gyromitra": 993,
1592
+ "hair slide": 584,
1593
+ "hair spray": 585,
1594
+ "half track": 586,
1595
+ "hammer": 587,
1596
+ "hammerhead, hammerhead shark": 4,
1597
+ "hamper": 588,
1598
+ "hamster": 333,
1599
+ "hand blower, blow dryer, blow drier, hair dryer, hair drier": 589,
1600
+ "hand-held computer, hand-held microcomputer": 590,
1601
+ "handkerchief, hankie, hanky, hankey": 591,
1602
+ "hard disc, hard disk, fixed disk": 592,
1603
+ "hare": 331,
1604
+ "harmonica, mouth organ, harp, mouth harp": 593,
1605
+ "harp": 594,
1606
+ "hartebeest": 351,
1607
+ "harvester, reaper": 595,
1608
+ "harvestman, daddy longlegs, Phalangium opilio": 70,
1609
+ "hatchet": 596,
1610
+ "hay": 958,
1611
+ "head cabbage": 936,
1612
+ "hen": 8,
1613
+ "hen-of-the-woods, hen of the woods, Polyporus frondosus, Grifola frondosa": 996,
1614
+ "hermit crab": 125,
1615
+ "hip, rose hip, rosehip": 989,
1616
+ "hippopotamus, hippo, river horse, Hippopotamus amphibius": 344,
1617
+ "hog, pig, grunter, squealer, Sus scrofa": 341,
1618
+ "hognose snake, puff adder, sand viper": 54,
1619
+ "holster": 597,
1620
+ "home theater, home theatre": 598,
1621
+ "honeycomb": 599,
1622
+ "hook, claw": 600,
1623
+ "hoopskirt, crinoline": 601,
1624
+ "horizontal bar, high bar": 602,
1625
+ "hornbill": 93,
1626
+ "horned viper, cerastes, sand viper, horned asp, Cerastes cornutus": 66,
1627
+ "horse cart, horse-cart": 603,
1628
+ "hot pot, hotpot": 926,
1629
+ "hotdog, hot dog, red hot": 934,
1630
+ "hourglass": 604,
1631
+ "house finch, linnet, Carpodacus mexicanus": 12,
1632
+ "howler monkey, howler": 379,
1633
+ "hummingbird": 94,
1634
+ "hyena, hyaena": 276,
1635
+ "iPod": 605,
1636
+ "ibex, Capra ibex": 350,
1637
+ "ice bear, polar bear, Ursus Maritimus, Thalarctos maritimus": 296,
1638
+ "ice cream, icecream": 928,
1639
+ "ice lolly, lolly, lollipop, popsicle": 929,
1640
+ "impala, Aepyceros melampus": 352,
1641
+ "indigo bunting, indigo finch, indigo bird, Passerina cyanea": 14,
1642
+ "indri, indris, Indri indri, Indri brevicaudatus": 384,
1643
+ "iron, smoothing iron": 606,
1644
+ "isopod": 126,
1645
+ "jacamar": 95,
1646
+ "jack-o'-lantern": 607,
1647
+ "jackfruit, jak, jack": 955,
1648
+ "jaguar, panther, Panthera onca, Felis onca": 290,
1649
+ "jay": 17,
1650
+ "jean, blue jean, denim": 608,
1651
+ "jeep, landrover": 609,
1652
+ "jellyfish": 107,
1653
+ "jersey, T-shirt, tee shirt": 610,
1654
+ "jigsaw puzzle": 611,
1655
+ "jinrikisha, ricksha, rickshaw": 612,
1656
+ "joystick": 613,
1657
+ "junco, snowbird": 13,
1658
+ "keeshond": 261,
1659
+ "kelpie": 227,
1660
+ "killer whale, killer, orca, grampus, sea wolf, Orcinus orca": 148,
1661
+ "kimono": 614,
1662
+ "king crab, Alaska crab, Alaskan king crab, Alaska king crab, Paralithodes camtschatica": 121,
1663
+ "king penguin, Aptenodytes patagonica": 145,
1664
+ "king snake, kingsnake": 56,
1665
+ "kit fox, Vulpes macrotis": 278,
1666
+ "kite": 21,
1667
+ "knee pad": 615,
1668
+ "knot": 616,
1669
+ "koala, koala bear, kangaroo bear, native bear, Phascolarctos cinereus": 105,
1670
+ "komondor": 228,
1671
+ "kuvasz": 222,
1672
+ "lab coat, laboratory coat": 617,
1673
+ "lacewing, lacewing fly": 318,
1674
+ "ladle": 618,
1675
+ "ladybug, ladybeetle, lady beetle, ladybird, ladybird beetle": 301,
1676
+ "lakeside, lakeshore": 975,
1677
+ "lampshade, lamp shade": 619,
1678
+ "langur": 374,
1679
+ "laptop, laptop computer": 620,
1680
+ "lawn mower, mower": 621,
1681
+ "leaf beetle, chrysomelid": 304,
1682
+ "leafhopper": 317,
1683
+ "leatherback turtle, leatherback, leathery turtle, Dermochelys coriacea": 34,
1684
+ "lemon": 951,
1685
+ "lens cap, lens cover": 622,
1686
+ "leopard, Panthera pardus": 288,
1687
+ "lesser panda, red panda, panda, bear cat, cat bear, Ailurus fulgens": 387,
1688
+ "letter opener, paper knife, paperknife": 623,
1689
+ "library": 624,
1690
+ "lifeboat": 625,
1691
+ "lighter, light, igniter, ignitor": 626,
1692
+ "limousine, limo": 627,
1693
+ "limpkin, Aramus pictus": 135,
1694
+ "liner, ocean liner": 628,
1695
+ "lion, king of beasts, Panthera leo": 291,
1696
+ "lionfish": 396,
1697
+ "lipstick, lip rouge": 629,
1698
+ "little blue heron, Egretta caerulea": 131,
1699
+ "llama": 355,
1700
+ "loggerhead, loggerhead turtle, Caretta caretta": 33,
1701
+ "long-horned beetle, longicorn, longicorn beetle": 303,
1702
+ "lorikeet": 90,
1703
+ "lotion": 631,
1704
+ "loudspeaker, speaker, speaker unit, loudspeaker system, speaker system": 632,
1705
+ "loupe, jeweler's loupe": 633,
1706
+ "lumbermill, sawmill": 634,
1707
+ "lycaenid, lycaenid butterfly": 326,
1708
+ "lynx, catamount": 287,
1709
+ "macaque": 373,
1710
+ "macaw": 88,
1711
+ "magnetic compass": 635,
1712
+ "magpie": 18,
1713
+ "mailbag, postbag": 636,
1714
+ "mailbox, letter box": 637,
1715
+ "maillot": 638,
1716
+ "maillot, tank suit": 639,
1717
+ "malamute, malemute, Alaskan malamute": 249,
1718
+ "malinois": 225,
1719
+ "manhole cover": 640,
1720
+ "mantis, mantid": 315,
1721
+ "maraca": 641,
1722
+ "marimba, xylophone": 642,
1723
+ "marmoset": 377,
1724
+ "marmot": 336,
1725
+ "mashed potato": 935,
1726
+ "mask": 643,
1727
+ "matchstick": 644,
1728
+ "maypole": 645,
1729
+ "maze, labyrinth": 646,
1730
+ "measuring cup": 647,
1731
+ "meat loaf, meatloaf": 962,
1732
+ "medicine chest, medicine cabinet": 648,
1733
+ "meerkat, mierkat": 299,
1734
+ "megalith, megalithic structure": 649,
1735
+ "menu": 922,
1736
+ "microphone, mike": 650,
1737
+ "microwave, microwave oven": 651,
1738
+ "military uniform": 652,
1739
+ "milk can": 653,
1740
+ "miniature pinscher": 237,
1741
+ "miniature poodle": 266,
1742
+ "miniature schnauzer": 196,
1743
+ "minibus": 654,
1744
+ "miniskirt, mini": 655,
1745
+ "minivan": 656,
1746
+ "mink": 357,
1747
+ "missile": 657,
1748
+ "mitten": 658,
1749
+ "mixing bowl": 659,
1750
+ "mobile home, manufactured home": 660,
1751
+ "modem": 662,
1752
+ "monarch, monarch butterfly, milkweed butterfly, Danaus plexippus": 323,
1753
+ "monastery": 663,
1754
+ "mongoose": 298,
1755
+ "monitor": 664,
1756
+ "moped": 665,
1757
+ "mortar": 666,
1758
+ "mortarboard": 667,
1759
+ "mosque": 668,
1760
+ "mosquito net": 669,
1761
+ "motor scooter, scooter": 670,
1762
+ "mountain bike, all-terrain bike, off-roader": 671,
1763
+ "mountain tent": 672,
1764
+ "mouse, computer mouse": 673,
1765
+ "mousetrap": 674,
1766
+ "moving van": 675,
1767
+ "mud turtle": 35,
1768
+ "mushroom": 947,
1769
+ "muzzle": 676,
1770
+ "nail": 677,
1771
+ "neck brace": 678,
1772
+ "necklace": 679,
1773
+ "nematode, nematode worm, roundworm": 111,
1774
+ "night snake, Hypsiglena torquata": 60,
1775
+ "nipple": 680,
1776
+ "notebook, notebook computer": 681,
1777
+ "obelisk": 682,
1778
+ "oboe, hautboy, hautbois": 683,
1779
+ "ocarina, sweet potato": 684,
1780
+ "odometer, hodometer, mileometer, milometer": 685,
1781
+ "oil filter": 686,
1782
+ "orange": 950,
1783
+ "orangutan, orang, orangutang, Pongo pygmaeus": 365,
1784
+ "organ, pipe organ": 687,
1785
+ "oscilloscope, scope, cathode-ray oscilloscope, CRO": 688,
1786
+ "ostrich, Struthio camelus": 9,
1787
+ "otter": 360,
1788
+ "otterhound, otter hound": 175,
1789
+ "overskirt": 689,
1790
+ "ox": 345,
1791
+ "oxcart": 690,
1792
+ "oxygen mask": 691,
1793
+ "oystercatcher, oyster catcher": 143,
1794
+ "packet": 692,
1795
+ "paddle, boat paddle": 693,
1796
+ "paddlewheel, paddle wheel": 694,
1797
+ "padlock": 695,
1798
+ "paintbrush": 696,
1799
+ "pajama, pyjama, pj's, jammies": 697,
1800
+ "palace": 698,
1801
+ "panpipe, pandean pipe, syrinx": 699,
1802
+ "paper towel": 700,
1803
+ "papillon": 157,
1804
+ "parachute, chute": 701,
1805
+ "parallel bars, bars": 702,
1806
+ "park bench": 703,
1807
+ "parking meter": 704,
1808
+ "partridge": 86,
1809
+ "passenger car, coach, carriage": 705,
1810
+ "patas, hussar monkey, Erythrocebus patas": 371,
1811
+ "patio, terrace": 706,
1812
+ "pay-phone, pay-station": 707,
1813
+ "peacock": 84,
1814
+ "pedestal, plinth, footstall": 708,
1815
+ "pelican": 144,
1816
+ "pencil box, pencil case": 709,
1817
+ "pencil sharpener": 710,
1818
+ "perfume, essence": 711,
1819
+ "photocopier": 713,
1820
+ "pick, plectrum, plectron": 714,
1821
+ "pickelhaube": 715,
1822
+ "picket fence, paling": 716,
1823
+ "pickup, pickup truck": 717,
1824
+ "pier": 718,
1825
+ "piggy bank, penny bank": 719,
1826
+ "pill bottle": 720,
1827
+ "pillow": 721,
1828
+ "pineapple, ananas": 953,
1829
+ "ping-pong ball": 722,
1830
+ "pinwheel": 723,
1831
+ "pirate, pirate ship": 724,
1832
+ "pitcher, ewer": 725,
1833
+ "pizza, pizza pie": 963,
1834
+ "plane, carpenter's plane, woodworking plane": 726,
1835
+ "planetarium": 727,
1836
+ "plastic bag": 728,
1837
+ "plate": 923,
1838
+ "plate rack": 729,
1839
+ "platypus, duckbill, duckbilled platypus, duck-billed platypus, Ornithorhynchus anatinus": 103,
1840
+ "plow, plough": 730,
1841
+ "plunger, plumber's helper": 731,
1842
+ "pole": 733,
1843
+ "polecat, fitch, foulmart, foumart, Mustela putorius": 358,
1844
+ "police van, police wagon, paddy wagon, patrol wagon, wagon, black Maria": 734,
1845
+ "pomegranate": 957,
1846
+ "poncho": 735,
1847
+ "pool table, billiard table, snooker table": 736,
1848
+ "pop bottle, soda bottle": 737,
1849
+ "porcupine, hedgehog": 334,
1850
+ "pot, flowerpot": 738,
1851
+ "potpie": 964,
1852
+ "potter's wheel": 739,
1853
+ "power drill": 740,
1854
+ "prairie chicken, prairie grouse, prairie fowl": 83,
1855
+ "prayer rug, prayer mat": 741,
1856
+ "pretzel": 932,
1857
+ "printer": 742,
1858
+ "prison, prison house": 743,
1859
+ "proboscis monkey, Nasalis larvatus": 376,
1860
+ "projectile, missile": 744,
1861
+ "projector": 745,
1862
+ "promontory, headland, head, foreland": 976,
1863
+ "ptarmigan": 81,
1864
+ "puck, hockey puck": 746,
1865
+ "puffer, pufferfish, blowfish, globefish": 397,
1866
+ "pug, pug-dog": 254,
1867
+ "punching bag, punch bag, punching ball, punchball": 747,
1868
+ "purse": 748,
1869
+ "quail": 85,
1870
+ "quill, quill pen": 749,
1871
+ "quilt, comforter, comfort, puff": 750,
1872
+ "racer, race car, racing car": 751,
1873
+ "racket, racquet": 752,
1874
+ "radiator": 753,
1875
+ "radio telescope, radio reflector": 755,
1876
+ "radio, wireless": 754,
1877
+ "rain barrel": 756,
1878
+ "ram, tup": 348,
1879
+ "rapeseed": 984,
1880
+ "recreational vehicle, RV, R.V.": 757,
1881
+ "red fox, Vulpes vulpes": 277,
1882
+ "red wine": 966,
1883
+ "red wolf, maned wolf, Canis rufus, Canis niger": 271,
1884
+ "red-backed sandpiper, dunlin, Erolia alpina": 140,
1885
+ "red-breasted merganser, Mergus serrator": 98,
1886
+ "redbone": 168,
1887
+ "redshank, Tringa totanus": 141,
1888
+ "reel": 758,
1889
+ "reflex camera": 759,
1890
+ "refrigerator, icebox": 760,
1891
+ "remote control, remote": 761,
1892
+ "restaurant, eating house, eating place, eatery": 762,
1893
+ "revolver, six-gun, six-shooter": 763,
1894
+ "rhinoceros beetle": 306,
1895
+ "rifle": 764,
1896
+ "ringlet, ringlet butterfly": 322,
1897
+ "ringneck snake, ring-necked snake, ring snake": 53,
1898
+ "robin, American robin, Turdus migratorius": 15,
1899
+ "rock beauty, Holocanthus tricolor": 392,
1900
+ "rock crab, Cancer irroratus": 119,
1901
+ "rock python, rock snake, Python sebae": 62,
1902
+ "rocking chair, rocker": 765,
1903
+ "rotisserie": 766,
1904
+ "rubber eraser, rubber, pencil eraser": 767,
1905
+ "ruddy turnstone, Arenaria interpres": 139,
1906
+ "ruffed grouse, partridge, Bonasa umbellus": 82,
1907
+ "rugby ball": 768,
1908
+ "rule, ruler": 769,
1909
+ "running shoe": 770,
1910
+ "safe": 771,
1911
+ "safety pin": 772,
1912
+ "saltshaker, salt shaker": 773,
1913
+ "sandal": 774,
1914
+ "sandbar, sand bar": 977,
1915
+ "sarong": 775,
1916
+ "sax, saxophone": 776,
1917
+ "scabbard": 777,
1918
+ "scale, weighing machine": 778,
1919
+ "schipperke": 223,
1920
+ "school bus": 779,
1921
+ "schooner": 780,
1922
+ "scoreboard": 781,
1923
+ "scorpion": 71,
1924
+ "screen, CRT screen": 782,
1925
+ "screw": 783,
1926
+ "screwdriver": 784,
1927
+ "scuba diver": 983,
1928
+ "sea anemone, anemone": 108,
1929
+ "sea cucumber, holothurian": 329,
1930
+ "sea lion": 150,
1931
+ "sea slug, nudibranch": 115,
1932
+ "sea snake": 65,
1933
+ "sea urchin": 328,
1934
+ "seashore, coast, seacoast, sea-coast": 978,
1935
+ "seat belt, seatbelt": 785,
1936
+ "sewing machine": 786,
1937
+ "shield, buckler": 787,
1938
+ "shoe shop, shoe-shop, shoe store": 788,
1939
+ "shoji": 789,
1940
+ "shopping basket": 790,
1941
+ "shopping cart": 791,
1942
+ "shovel": 792,
1943
+ "shower cap": 793,
1944
+ "shower curtain": 794,
1945
+ "siamang, Hylobates syndactylus, Symphalangus syndactylus": 369,
1946
+ "sidewinder, horned rattlesnake, Crotalus cerastes": 68,
1947
+ "silky terrier, Sydney silky": 201,
1948
+ "ski": 795,
1949
+ "ski mask": 796,
1950
+ "skunk, polecat, wood pussy": 361,
1951
+ "sleeping bag": 797,
1952
+ "slide rule, slipstick": 798,
1953
+ "sliding door": 799,
1954
+ "slot, one-armed bandit": 800,
1955
+ "sloth bear, Melursus ursinus, Ursus ursinus": 297,
1956
+ "slug": 114,
1957
+ "snail": 113,
1958
+ "snorkel": 801,
1959
+ "snow leopard, ounce, Panthera uncia": 289,
1960
+ "snowmobile": 802,
1961
+ "snowplow, snowplough": 803,
1962
+ "soap dispenser": 804,
1963
+ "soccer ball": 805,
1964
+ "sock": 806,
1965
+ "soft-coated wheaten terrier": 202,
1966
+ "solar dish, solar collector, solar furnace": 807,
1967
+ "sombrero": 808,
1968
+ "sorrel": 339,
1969
+ "soup bowl": 809,
1970
+ "space bar": 810,
1971
+ "space heater": 811,
1972
+ "space shuttle": 812,
1973
+ "spaghetti squash": 940,
1974
+ "spatula": 813,
1975
+ "speedboat": 814,
1976
+ "spider monkey, Ateles geoffroyi": 381,
1977
+ "spider web, spider's web": 815,
1978
+ "spindle": 816,
1979
+ "spiny lobster, langouste, rock lobster, crawfish, crayfish, sea crawfish": 123,
1980
+ "spoonbill": 129,
1981
+ "sports car, sport car": 817,
1982
+ "spotlight, spot": 818,
1983
+ "spotted salamander, Ambystoma maculatum": 28,
1984
+ "squirrel monkey, Saimiri sciureus": 382,
1985
+ "stage": 819,
1986
+ "standard poodle": 267,
1987
+ "standard schnauzer": 198,
1988
+ "starfish, sea star": 327,
1989
+ "steam locomotive": 820,
1990
+ "steel arch bridge": 821,
1991
+ "steel drum": 822,
1992
+ "stethoscope": 823,
1993
+ "stingray": 6,
1994
+ "stinkhorn, carrion fungus": 994,
1995
+ "stole": 824,
1996
+ "stone wall": 825,
1997
+ "stopwatch, stop watch": 826,
1998
+ "stove": 827,
1999
+ "strainer": 828,
2000
+ "strawberry": 949,
2001
+ "street sign": 919,
2002
+ "streetcar, tram, tramcar, trolley, trolley car": 829,
2003
+ "stretcher": 830,
2004
+ "studio couch, day bed": 831,
2005
+ "stupa, tope": 832,
2006
+ "sturgeon": 394,
2007
+ "submarine, pigboat, sub, U-boat": 833,
2008
+ "suit, suit of clothes": 834,
2009
+ "sulphur butterfly, sulfur butterfly": 325,
2010
+ "sulphur-crested cockatoo, Kakatoe galerita, Cacatua galerita": 89,
2011
+ "sundial": 835,
2012
+ "sunglass": 836,
2013
+ "sunglasses, dark glasses, shades": 837,
2014
+ "sunscreen, sunblock, sun blocker": 838,
2015
+ "suspension bridge": 839,
2016
+ "swab, swob, mop": 840,
2017
+ "sweatshirt": 841,
2018
+ "swimming trunks, bathing trunks": 842,
2019
+ "swing": 843,
2020
+ "switch, electric switch, electrical switch": 844,
2021
+ "syringe": 845,
2022
+ "tabby, tabby cat": 281,
2023
+ "table lamp": 846,
2024
+ "tailed frog, bell toad, ribbed toad, tailed toad, Ascaphus trui": 32,
2025
+ "tank, army tank, armored combat vehicle, armoured combat vehicle": 847,
2026
+ "tape player": 848,
2027
+ "tarantula": 76,
2028
+ "teapot": 849,
2029
+ "teddy, teddy bear": 850,
2030
+ "television, television system": 851,
2031
+ "tench, Tinca tinca": 0,
2032
+ "tennis ball": 852,
2033
+ "terrapin": 36,
2034
+ "thatch, thatched roof": 853,
2035
+ "theater curtain, theatre curtain": 854,
2036
+ "thimble": 855,
2037
+ "three-toed sloth, ai, Bradypus tridactylus": 364,
2038
+ "thresher, thrasher, threshing machine": 856,
2039
+ "throne": 857,
2040
+ "thunder snake, worm snake, Carphophis amoenus": 52,
2041
+ "tick": 78,
2042
+ "tiger beetle": 300,
2043
+ "tiger cat": 282,
2044
+ "tiger shark, Galeocerdo cuvieri": 3,
2045
+ "tiger, Panthera tigris": 292,
2046
+ "tile roof": 858,
2047
+ "timber wolf, grey wolf, gray wolf, Canis lupus": 269,
2048
+ "titi, titi monkey": 380,
2049
+ "toaster": 859,
2050
+ "tobacco shop, tobacconist shop, tobacconist": 860,
2051
+ "toilet seat": 861,
2052
+ "toilet tissue, toilet paper, bathroom tissue": 999,
2053
+ "torch": 862,
2054
+ "totem pole": 863,
2055
+ "toucan": 96,
2056
+ "tow truck, tow car, wrecker": 864,
2057
+ "toy poodle": 265,
2058
+ "toy terrier": 158,
2059
+ "toyshop": 865,
2060
+ "tractor": 866,
2061
+ "traffic light, traffic signal, stoplight": 920,
2062
+ "trailer truck, tractor trailer, trucking rig, rig, articulated lorry, semi": 867,
2063
+ "tray": 868,
2064
+ "tree frog, tree-frog": 31,
2065
+ "trench coat": 869,
2066
+ "triceratops": 51,
2067
+ "tricycle, trike, velocipede": 870,
2068
+ "trifle": 927,
2069
+ "trilobite": 69,
2070
+ "trimaran": 871,
2071
+ "tripod": 872,
2072
+ "triumphal arch": 873,
2073
+ "trolleybus, trolley coach, trackless trolley": 874,
2074
+ "trombone": 875,
2075
+ "tub, vat": 876,
2076
+ "turnstile": 877,
2077
+ "tusker": 101,
2078
+ "typewriter keyboard": 878,
2079
+ "umbrella": 879,
2080
+ "unicycle, monocycle": 880,
2081
+ "upright, upright piano": 881,
2082
+ "vacuum, vacuum cleaner": 882,
2083
+ "valley, vale": 979,
2084
+ "vase": 883,
2085
+ "vault": 884,
2086
+ "velvet": 885,
2087
+ "vending machine": 886,
2088
+ "vestment": 887,
2089
+ "viaduct": 888,
2090
+ "vine snake": 59,
2091
+ "violin, fiddle": 889,
2092
+ "vizsla, Hungarian pointer": 211,
2093
+ "volcano": 980,
2094
+ "volleyball": 890,
2095
+ "vulture": 23,
2096
+ "waffle iron": 891,
2097
+ "walking stick, walkingstick, stick insect": 313,
2098
+ "wall clock": 892,
2099
+ "wallaby, brush kangaroo": 104,
2100
+ "wallet, billfold, notecase, pocketbook": 893,
2101
+ "wardrobe, closet, press": 894,
2102
+ "warplane, military plane": 895,
2103
+ "warthog": 343,
2104
+ "washbasin, handbasin, washbowl, lavabo, wash-hand basin": 896,
2105
+ "washer, automatic washer, washing machine": 897,
2106
+ "water bottle": 898,
2107
+ "water buffalo, water ox, Asiatic buffalo, Bubalus bubalis": 346,
2108
+ "water jug": 899,
2109
+ "water ouzel, dipper": 20,
2110
+ "water snake": 58,
2111
+ "water tower": 900,
2112
+ "weasel": 356,
2113
+ "web site, website, internet site, site": 916,
2114
+ "weevil": 307,
2115
+ "whippet": 172,
2116
+ "whiptail, whiptail lizard": 41,
2117
+ "whiskey jug": 901,
2118
+ "whistle": 902,
2119
+ "white stork, Ciconia ciconia": 127,
2120
+ "white wolf, Arctic wolf, Canis lupus tundrarum": 270,
2121
+ "wig": 903,
2122
+ "wild boar, boar, Sus scrofa": 342,
2123
+ "window screen": 904,
2124
+ "window shade": 905,
2125
+ "wine bottle": 907,
2126
+ "wing": 908,
2127
+ "wire-haired fox terrier": 188,
2128
+ "wok": 909,
2129
+ "wolf spider, hunting spider": 77,
2130
+ "wombat": 106,
2131
+ "wood rabbit, cottontail, cottontail rabbit": 330,
2132
+ "wooden spoon": 910,
2133
+ "wool, woolen, woollen": 911,
2134
+ "worm fence, snake fence, snake-rail fence, Virginia fence": 912,
2135
+ "wreck": 913,
2136
+ "yawl": 914,
2137
+ "yellow lady's slipper, yellow lady-slipper, Cypripedium calceolus, Cypripedium parviflorum": 986,
2138
+ "yurt": 915,
2139
+ "zebra": 340,
2140
+ "zucchini, courgette": 939
2141
+ },
2142
+ "layer_norm_eps": 1e-05,
2143
+ "length_penalty": 1.0,
2144
+ "max_length": 20,
2145
+ "min_length": 0,
2146
+ "mlp_ratio": 4.0,
2147
+ "model_type": "swin",
2148
+ "no_repeat_ngram_size": 0,
2149
+ "num_beam_groups": 1,
2150
+ "num_beams": 1,
2151
+ "num_channels": 3,
2152
+ "num_heads": [
2153
+ 3,
2154
+ 6,
2155
+ 12,
2156
+ 24
2157
+ ],
2158
+ "num_layers": 4,
2159
+ "num_return_sequences": 1,
2160
+ "output_attentions": false,
2161
+ "output_hidden_states": false,
2162
+ "output_scores": false,
2163
+ "pad_token_id": null,
2164
+ "patch_size": 4,
2165
+ "path_norm": true,
2166
+ "prefix": null,
2167
+ "problem_type": null,
2168
+ "pruned_heads": {},
2169
+ "qkv_bias": true,
2170
+ "remove_invalid_values": false,
2171
+ "repetition_penalty": 1.0,
2172
+ "return_dict": true,
2173
+ "return_dict_in_generate": false,
2174
+ "sep_token_id": null,
2175
+ "suppress_tokens": null,
2176
+ "task_specific_params": null,
2177
+ "temperature": 1.0,
2178
+ "tf_legacy_loss": false,
2179
+ "tie_encoder_decoder": false,
2180
+ "tie_word_embeddings": true,
2181
+ "tokenizer_class": null,
2182
+ "top_k": 50,
2183
+ "top_p": 1.0,
2184
+ "torch_dtype": "float32",
2185
+ "torchscript": false,
2186
+ "transformers_version": "4.24.0",
2187
+ "typical_p": 1.0,
2188
+ "use_absolute_embeddings": false,
2189
+ "use_bfloat16": false,
2190
+ "window_size": 7
2191
+ },
2192
+ "is_encoder_decoder": true,
2193
+ "model_type": "vision-encoder-decoder",
2194
+ "pad_token": "<|endoftext|>",
2195
+ "pad_token_id": 50256,
2196
+ "tie_word_embeddings": false,
2197
+ "torch_dtype": "float32",
2198
+ "transformers_version": null
2199
+ }
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bbb87adb228c6bc8c87d2fb15fc55ce1e821523e40f81cc0ac9ca29de4d5a347
3
+ size 989122885
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b2db8dc6db42bb3ca1496b524aba45af584070c33cb429c8811900fda793539
3
+ size 507406073
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a18357fec9ffa4c65d01a7087d18405e5d09e79fe4936130f4c70cc82e8c795f
3
+ size 14575
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54b0bf035048b8b45ded81667e1152826a13d1abf72812aa6f6bf1e002a1670e
3
+ size 627
trainer_state.json ADDED
@@ -0,0 +1,3570 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 2.2859742641448975,
3
+ "best_model_checkpoint": "../models/swin_NO_F_GPT_image_captioning\\checkpoint-59176",
4
+ "epoch": 1.0,
5
+ "global_step": 59176,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 5.0000000000000004e-08,
13
+ "loss": 1.9115,
14
+ "step": 100
15
+ },
16
+ {
17
+ "epoch": 0.0,
18
+ "learning_rate": 1.0000000000000001e-07,
19
+ "loss": 1.8638,
20
+ "step": 200
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 1.5000000000000002e-07,
25
+ "loss": 1.8939,
26
+ "step": 300
27
+ },
28
+ {
29
+ "epoch": 0.01,
30
+ "learning_rate": 2.0000000000000002e-07,
31
+ "loss": 1.94,
32
+ "step": 400
33
+ },
34
+ {
35
+ "epoch": 0.01,
36
+ "learning_rate": 2.5000000000000004e-07,
37
+ "loss": 1.8921,
38
+ "step": 500
39
+ },
40
+ {
41
+ "epoch": 0.01,
42
+ "learning_rate": 3.0000000000000004e-07,
43
+ "loss": 1.8659,
44
+ "step": 600
45
+ },
46
+ {
47
+ "epoch": 0.01,
48
+ "learning_rate": 3.5000000000000004e-07,
49
+ "loss": 1.8387,
50
+ "step": 700
51
+ },
52
+ {
53
+ "epoch": 0.01,
54
+ "learning_rate": 4.0000000000000003e-07,
55
+ "loss": 1.8242,
56
+ "step": 800
57
+ },
58
+ {
59
+ "epoch": 0.02,
60
+ "learning_rate": 4.5000000000000003e-07,
61
+ "loss": 1.813,
62
+ "step": 900
63
+ },
64
+ {
65
+ "epoch": 0.02,
66
+ "learning_rate": 5.000000000000001e-07,
67
+ "loss": 1.8073,
68
+ "step": 1000
69
+ },
70
+ {
71
+ "epoch": 0.02,
72
+ "learning_rate": 5.5e-07,
73
+ "loss": 1.7857,
74
+ "step": 1100
75
+ },
76
+ {
77
+ "epoch": 0.02,
78
+ "learning_rate": 6.000000000000001e-07,
79
+ "loss": 1.81,
80
+ "step": 1200
81
+ },
82
+ {
83
+ "epoch": 0.02,
84
+ "learning_rate": 6.5e-07,
85
+ "loss": 1.721,
86
+ "step": 1300
87
+ },
88
+ {
89
+ "epoch": 0.02,
90
+ "learning_rate": 7.000000000000001e-07,
91
+ "loss": 1.7273,
92
+ "step": 1400
93
+ },
94
+ {
95
+ "epoch": 0.03,
96
+ "learning_rate": 7.5e-07,
97
+ "loss": 1.7144,
98
+ "step": 1500
99
+ },
100
+ {
101
+ "epoch": 0.03,
102
+ "learning_rate": 8.000000000000001e-07,
103
+ "loss": 1.737,
104
+ "step": 1600
105
+ },
106
+ {
107
+ "epoch": 0.03,
108
+ "learning_rate": 8.500000000000001e-07,
109
+ "loss": 1.68,
110
+ "step": 1700
111
+ },
112
+ {
113
+ "epoch": 0.03,
114
+ "learning_rate": 9.000000000000001e-07,
115
+ "loss": 1.6471,
116
+ "step": 1800
117
+ },
118
+ {
119
+ "epoch": 0.03,
120
+ "learning_rate": 9.500000000000001e-07,
121
+ "loss": 1.7123,
122
+ "step": 1900
123
+ },
124
+ {
125
+ "epoch": 0.03,
126
+ "learning_rate": 1.0000000000000002e-06,
127
+ "loss": 1.6329,
128
+ "step": 2000
129
+ },
130
+ {
131
+ "epoch": 0.04,
132
+ "learning_rate": 1.0500000000000001e-06,
133
+ "loss": 1.6601,
134
+ "step": 2100
135
+ },
136
+ {
137
+ "epoch": 0.04,
138
+ "learning_rate": 1.1e-06,
139
+ "loss": 1.6305,
140
+ "step": 2200
141
+ },
142
+ {
143
+ "epoch": 0.04,
144
+ "learning_rate": 1.1500000000000002e-06,
145
+ "loss": 1.6655,
146
+ "step": 2300
147
+ },
148
+ {
149
+ "epoch": 0.04,
150
+ "learning_rate": 1.2000000000000002e-06,
151
+ "loss": 1.6398,
152
+ "step": 2400
153
+ },
154
+ {
155
+ "epoch": 0.04,
156
+ "learning_rate": 1.25e-06,
157
+ "loss": 1.6253,
158
+ "step": 2500
159
+ },
160
+ {
161
+ "epoch": 0.04,
162
+ "learning_rate": 1.3e-06,
163
+ "loss": 1.6158,
164
+ "step": 2600
165
+ },
166
+ {
167
+ "epoch": 0.05,
168
+ "learning_rate": 1.3500000000000002e-06,
169
+ "loss": 1.5647,
170
+ "step": 2700
171
+ },
172
+ {
173
+ "epoch": 0.05,
174
+ "learning_rate": 1.4000000000000001e-06,
175
+ "loss": 1.5577,
176
+ "step": 2800
177
+ },
178
+ {
179
+ "epoch": 0.05,
180
+ "learning_rate": 1.45e-06,
181
+ "loss": 1.5262,
182
+ "step": 2900
183
+ },
184
+ {
185
+ "epoch": 0.05,
186
+ "learning_rate": 1.5e-06,
187
+ "loss": 1.5114,
188
+ "step": 3000
189
+ },
190
+ {
191
+ "epoch": 0.05,
192
+ "learning_rate": 1.5500000000000002e-06,
193
+ "loss": 1.4956,
194
+ "step": 3100
195
+ },
196
+ {
197
+ "epoch": 0.05,
198
+ "learning_rate": 1.6000000000000001e-06,
199
+ "loss": 1.5055,
200
+ "step": 3200
201
+ },
202
+ {
203
+ "epoch": 0.06,
204
+ "learning_rate": 1.6500000000000003e-06,
205
+ "loss": 1.4823,
206
+ "step": 3300
207
+ },
208
+ {
209
+ "epoch": 0.06,
210
+ "learning_rate": 1.7000000000000002e-06,
211
+ "loss": 1.4824,
212
+ "step": 3400
213
+ },
214
+ {
215
+ "epoch": 0.06,
216
+ "learning_rate": 1.75e-06,
217
+ "loss": 1.4526,
218
+ "step": 3500
219
+ },
220
+ {
221
+ "epoch": 0.06,
222
+ "learning_rate": 1.8000000000000001e-06,
223
+ "loss": 1.445,
224
+ "step": 3600
225
+ },
226
+ {
227
+ "epoch": 0.06,
228
+ "learning_rate": 1.85e-06,
229
+ "loss": 1.4739,
230
+ "step": 3700
231
+ },
232
+ {
233
+ "epoch": 0.06,
234
+ "learning_rate": 1.9000000000000002e-06,
235
+ "loss": 1.3971,
236
+ "step": 3800
237
+ },
238
+ {
239
+ "epoch": 0.07,
240
+ "learning_rate": 1.9500000000000004e-06,
241
+ "loss": 1.4285,
242
+ "step": 3900
243
+ },
244
+ {
245
+ "epoch": 0.07,
246
+ "learning_rate": 2.0000000000000003e-06,
247
+ "loss": 1.3709,
248
+ "step": 4000
249
+ },
250
+ {
251
+ "epoch": 0.07,
252
+ "learning_rate": 2.05e-06,
253
+ "loss": 1.4105,
254
+ "step": 4100
255
+ },
256
+ {
257
+ "epoch": 0.07,
258
+ "learning_rate": 2.1000000000000002e-06,
259
+ "loss": 1.3386,
260
+ "step": 4200
261
+ },
262
+ {
263
+ "epoch": 0.07,
264
+ "learning_rate": 2.15e-06,
265
+ "loss": 1.3688,
266
+ "step": 4300
267
+ },
268
+ {
269
+ "epoch": 0.07,
270
+ "learning_rate": 2.2e-06,
271
+ "loss": 1.3148,
272
+ "step": 4400
273
+ },
274
+ {
275
+ "epoch": 0.08,
276
+ "learning_rate": 2.25e-06,
277
+ "loss": 1.3506,
278
+ "step": 4500
279
+ },
280
+ {
281
+ "epoch": 0.08,
282
+ "learning_rate": 2.3000000000000004e-06,
283
+ "loss": 1.3414,
284
+ "step": 4600
285
+ },
286
+ {
287
+ "epoch": 0.08,
288
+ "learning_rate": 2.35e-06,
289
+ "loss": 1.2912,
290
+ "step": 4700
291
+ },
292
+ {
293
+ "epoch": 0.08,
294
+ "learning_rate": 2.4000000000000003e-06,
295
+ "loss": 1.2854,
296
+ "step": 4800
297
+ },
298
+ {
299
+ "epoch": 0.08,
300
+ "learning_rate": 2.4500000000000003e-06,
301
+ "loss": 1.3153,
302
+ "step": 4900
303
+ },
304
+ {
305
+ "epoch": 0.08,
306
+ "learning_rate": 2.5e-06,
307
+ "loss": 1.2519,
308
+ "step": 5000
309
+ },
310
+ {
311
+ "epoch": 0.09,
312
+ "learning_rate": 2.55e-06,
313
+ "loss": 1.2903,
314
+ "step": 5100
315
+ },
316
+ {
317
+ "epoch": 0.09,
318
+ "learning_rate": 2.6e-06,
319
+ "loss": 1.2432,
320
+ "step": 5200
321
+ },
322
+ {
323
+ "epoch": 0.09,
324
+ "learning_rate": 2.6500000000000005e-06,
325
+ "loss": 1.2559,
326
+ "step": 5300
327
+ },
328
+ {
329
+ "epoch": 0.09,
330
+ "learning_rate": 2.7000000000000004e-06,
331
+ "loss": 1.219,
332
+ "step": 5400
333
+ },
334
+ {
335
+ "epoch": 0.09,
336
+ "learning_rate": 2.7500000000000004e-06,
337
+ "loss": 1.2051,
338
+ "step": 5500
339
+ },
340
+ {
341
+ "epoch": 0.09,
342
+ "learning_rate": 2.8000000000000003e-06,
343
+ "loss": 1.1742,
344
+ "step": 5600
345
+ },
346
+ {
347
+ "epoch": 0.1,
348
+ "learning_rate": 2.85e-06,
349
+ "loss": 1.2276,
350
+ "step": 5700
351
+ },
352
+ {
353
+ "epoch": 0.1,
354
+ "learning_rate": 2.9e-06,
355
+ "loss": 1.1489,
356
+ "step": 5800
357
+ },
358
+ {
359
+ "epoch": 0.1,
360
+ "learning_rate": 2.95e-06,
361
+ "loss": 1.114,
362
+ "step": 5900
363
+ },
364
+ {
365
+ "epoch": 0.1,
366
+ "learning_rate": 3e-06,
367
+ "loss": 1.1554,
368
+ "step": 6000
369
+ },
370
+ {
371
+ "epoch": 0.1,
372
+ "learning_rate": 3.05e-06,
373
+ "loss": 1.148,
374
+ "step": 6100
375
+ },
376
+ {
377
+ "epoch": 0.1,
378
+ "learning_rate": 3.1000000000000004e-06,
379
+ "loss": 1.1117,
380
+ "step": 6200
381
+ },
382
+ {
383
+ "epoch": 0.11,
384
+ "learning_rate": 3.1500000000000003e-06,
385
+ "loss": 1.1639,
386
+ "step": 6300
387
+ },
388
+ {
389
+ "epoch": 0.11,
390
+ "learning_rate": 3.2000000000000003e-06,
391
+ "loss": 1.1183,
392
+ "step": 6400
393
+ },
394
+ {
395
+ "epoch": 0.11,
396
+ "learning_rate": 3.2500000000000002e-06,
397
+ "loss": 1.1068,
398
+ "step": 6500
399
+ },
400
+ {
401
+ "epoch": 0.11,
402
+ "learning_rate": 3.3000000000000006e-06,
403
+ "loss": 1.0429,
404
+ "step": 6600
405
+ },
406
+ {
407
+ "epoch": 0.11,
408
+ "learning_rate": 3.3500000000000005e-06,
409
+ "loss": 1.048,
410
+ "step": 6700
411
+ },
412
+ {
413
+ "epoch": 0.11,
414
+ "learning_rate": 3.4000000000000005e-06,
415
+ "loss": 1.0517,
416
+ "step": 6800
417
+ },
418
+ {
419
+ "epoch": 0.12,
420
+ "learning_rate": 3.45e-06,
421
+ "loss": 1.0875,
422
+ "step": 6900
423
+ },
424
+ {
425
+ "epoch": 0.12,
426
+ "learning_rate": 3.5e-06,
427
+ "loss": 1.0267,
428
+ "step": 7000
429
+ },
430
+ {
431
+ "epoch": 0.12,
432
+ "learning_rate": 3.5500000000000003e-06,
433
+ "loss": 1.0076,
434
+ "step": 7100
435
+ },
436
+ {
437
+ "epoch": 0.12,
438
+ "learning_rate": 3.6000000000000003e-06,
439
+ "loss": 1.0332,
440
+ "step": 7200
441
+ },
442
+ {
443
+ "epoch": 0.12,
444
+ "learning_rate": 3.65e-06,
445
+ "loss": 1.022,
446
+ "step": 7300
447
+ },
448
+ {
449
+ "epoch": 0.13,
450
+ "learning_rate": 3.7e-06,
451
+ "loss": 0.9922,
452
+ "step": 7400
453
+ },
454
+ {
455
+ "epoch": 0.13,
456
+ "learning_rate": 3.7500000000000005e-06,
457
+ "loss": 0.9827,
458
+ "step": 7500
459
+ },
460
+ {
461
+ "epoch": 0.13,
462
+ "learning_rate": 3.8000000000000005e-06,
463
+ "loss": 0.9964,
464
+ "step": 7600
465
+ },
466
+ {
467
+ "epoch": 0.13,
468
+ "learning_rate": 3.85e-06,
469
+ "loss": 0.9998,
470
+ "step": 7700
471
+ },
472
+ {
473
+ "epoch": 0.13,
474
+ "learning_rate": 3.900000000000001e-06,
475
+ "loss": 0.9645,
476
+ "step": 7800
477
+ },
478
+ {
479
+ "epoch": 0.13,
480
+ "learning_rate": 3.95e-06,
481
+ "loss": 0.9919,
482
+ "step": 7900
483
+ },
484
+ {
485
+ "epoch": 0.14,
486
+ "learning_rate": 4.000000000000001e-06,
487
+ "loss": 0.9206,
488
+ "step": 8000
489
+ },
490
+ {
491
+ "epoch": 0.14,
492
+ "learning_rate": 4.05e-06,
493
+ "loss": 0.9339,
494
+ "step": 8100
495
+ },
496
+ {
497
+ "epoch": 0.14,
498
+ "learning_rate": 4.1e-06,
499
+ "loss": 0.8937,
500
+ "step": 8200
501
+ },
502
+ {
503
+ "epoch": 0.14,
504
+ "learning_rate": 4.15e-06,
505
+ "loss": 0.8807,
506
+ "step": 8300
507
+ },
508
+ {
509
+ "epoch": 0.14,
510
+ "learning_rate": 4.2000000000000004e-06,
511
+ "loss": 0.902,
512
+ "step": 8400
513
+ },
514
+ {
515
+ "epoch": 0.14,
516
+ "learning_rate": 4.25e-06,
517
+ "loss": 0.9295,
518
+ "step": 8500
519
+ },
520
+ {
521
+ "epoch": 0.15,
522
+ "learning_rate": 4.3e-06,
523
+ "loss": 0.8799,
524
+ "step": 8600
525
+ },
526
+ {
527
+ "epoch": 0.15,
528
+ "learning_rate": 4.350000000000001e-06,
529
+ "loss": 0.8545,
530
+ "step": 8700
531
+ },
532
+ {
533
+ "epoch": 0.15,
534
+ "learning_rate": 4.4e-06,
535
+ "loss": 0.8779,
536
+ "step": 8800
537
+ },
538
+ {
539
+ "epoch": 0.15,
540
+ "learning_rate": 4.450000000000001e-06,
541
+ "loss": 0.8964,
542
+ "step": 8900
543
+ },
544
+ {
545
+ "epoch": 0.15,
546
+ "learning_rate": 4.5e-06,
547
+ "loss": 0.8306,
548
+ "step": 9000
549
+ },
550
+ {
551
+ "epoch": 0.15,
552
+ "learning_rate": 4.5500000000000005e-06,
553
+ "loss": 0.8146,
554
+ "step": 9100
555
+ },
556
+ {
557
+ "epoch": 0.16,
558
+ "learning_rate": 4.600000000000001e-06,
559
+ "loss": 0.8287,
560
+ "step": 9200
561
+ },
562
+ {
563
+ "epoch": 0.16,
564
+ "learning_rate": 4.65e-06,
565
+ "loss": 0.8235,
566
+ "step": 9300
567
+ },
568
+ {
569
+ "epoch": 0.16,
570
+ "learning_rate": 4.7e-06,
571
+ "loss": 0.8055,
572
+ "step": 9400
573
+ },
574
+ {
575
+ "epoch": 0.16,
576
+ "learning_rate": 4.75e-06,
577
+ "loss": 0.8282,
578
+ "step": 9500
579
+ },
580
+ {
581
+ "epoch": 0.16,
582
+ "learning_rate": 4.800000000000001e-06,
583
+ "loss": 0.8218,
584
+ "step": 9600
585
+ },
586
+ {
587
+ "epoch": 0.16,
588
+ "learning_rate": 4.85e-06,
589
+ "loss": 0.8294,
590
+ "step": 9700
591
+ },
592
+ {
593
+ "epoch": 0.17,
594
+ "learning_rate": 4.9000000000000005e-06,
595
+ "loss": 0.8133,
596
+ "step": 9800
597
+ },
598
+ {
599
+ "epoch": 0.17,
600
+ "learning_rate": 4.95e-06,
601
+ "loss": 0.7674,
602
+ "step": 9900
603
+ },
604
+ {
605
+ "epoch": 0.17,
606
+ "learning_rate": 5e-06,
607
+ "loss": 0.7761,
608
+ "step": 10000
609
+ },
610
+ {
611
+ "epoch": 0.17,
612
+ "learning_rate": 4.989832438587929e-06,
613
+ "loss": 0.7799,
614
+ "step": 10100
615
+ },
616
+ {
617
+ "epoch": 0.17,
618
+ "learning_rate": 4.979664877175859e-06,
619
+ "loss": 0.8074,
620
+ "step": 10200
621
+ },
622
+ {
623
+ "epoch": 0.17,
624
+ "learning_rate": 4.9694973157637875e-06,
625
+ "loss": 0.7971,
626
+ "step": 10300
627
+ },
628
+ {
629
+ "epoch": 0.18,
630
+ "learning_rate": 4.959329754351716e-06,
631
+ "loss": 0.8144,
632
+ "step": 10400
633
+ },
634
+ {
635
+ "epoch": 0.18,
636
+ "learning_rate": 4.949162192939646e-06,
637
+ "loss": 0.7849,
638
+ "step": 10500
639
+ },
640
+ {
641
+ "epoch": 0.18,
642
+ "learning_rate": 4.938994631527575e-06,
643
+ "loss": 0.8072,
644
+ "step": 10600
645
+ },
646
+ {
647
+ "epoch": 0.18,
648
+ "learning_rate": 4.928827070115504e-06,
649
+ "loss": 0.7639,
650
+ "step": 10700
651
+ },
652
+ {
653
+ "epoch": 0.18,
654
+ "learning_rate": 4.918659508703433e-06,
655
+ "loss": 0.8055,
656
+ "step": 10800
657
+ },
658
+ {
659
+ "epoch": 0.18,
660
+ "learning_rate": 4.908491947291363e-06,
661
+ "loss": 0.8342,
662
+ "step": 10900
663
+ },
664
+ {
665
+ "epoch": 0.19,
666
+ "learning_rate": 4.898324385879291e-06,
667
+ "loss": 0.8107,
668
+ "step": 11000
669
+ },
670
+ {
671
+ "epoch": 0.19,
672
+ "learning_rate": 4.88815682446722e-06,
673
+ "loss": 0.8115,
674
+ "step": 11100
675
+ },
676
+ {
677
+ "epoch": 0.19,
678
+ "learning_rate": 4.87798926305515e-06,
679
+ "loss": 0.8227,
680
+ "step": 11200
681
+ },
682
+ {
683
+ "epoch": 0.19,
684
+ "learning_rate": 4.8678217016430785e-06,
685
+ "loss": 0.8339,
686
+ "step": 11300
687
+ },
688
+ {
689
+ "epoch": 0.19,
690
+ "learning_rate": 4.857654140231007e-06,
691
+ "loss": 0.8013,
692
+ "step": 11400
693
+ },
694
+ {
695
+ "epoch": 0.19,
696
+ "learning_rate": 4.847486578818936e-06,
697
+ "loss": 0.7854,
698
+ "step": 11500
699
+ },
700
+ {
701
+ "epoch": 0.2,
702
+ "learning_rate": 4.837319017406866e-06,
703
+ "loss": 0.8078,
704
+ "step": 11600
705
+ },
706
+ {
707
+ "epoch": 0.2,
708
+ "learning_rate": 4.827151455994794e-06,
709
+ "loss": 0.8368,
710
+ "step": 11700
711
+ },
712
+ {
713
+ "epoch": 0.2,
714
+ "learning_rate": 4.816983894582723e-06,
715
+ "loss": 0.8031,
716
+ "step": 11800
717
+ },
718
+ {
719
+ "epoch": 0.2,
720
+ "learning_rate": 4.806816333170653e-06,
721
+ "loss": 0.8054,
722
+ "step": 11900
723
+ },
724
+ {
725
+ "epoch": 0.2,
726
+ "learning_rate": 4.796648771758582e-06,
727
+ "loss": 0.8356,
728
+ "step": 12000
729
+ },
730
+ {
731
+ "epoch": 0.2,
732
+ "learning_rate": 4.786481210346511e-06,
733
+ "loss": 0.8048,
734
+ "step": 12100
735
+ },
736
+ {
737
+ "epoch": 0.21,
738
+ "learning_rate": 4.77631364893444e-06,
739
+ "loss": 0.8205,
740
+ "step": 12200
741
+ },
742
+ {
743
+ "epoch": 0.21,
744
+ "learning_rate": 4.7661460875223694e-06,
745
+ "loss": 0.8153,
746
+ "step": 12300
747
+ },
748
+ {
749
+ "epoch": 0.21,
750
+ "learning_rate": 4.755978526110298e-06,
751
+ "loss": 0.8099,
752
+ "step": 12400
753
+ },
754
+ {
755
+ "epoch": 0.21,
756
+ "learning_rate": 4.745810964698227e-06,
757
+ "loss": 0.8307,
758
+ "step": 12500
759
+ },
760
+ {
761
+ "epoch": 0.21,
762
+ "learning_rate": 4.7356434032861566e-06,
763
+ "loss": 0.8131,
764
+ "step": 12600
765
+ },
766
+ {
767
+ "epoch": 0.21,
768
+ "learning_rate": 4.725475841874085e-06,
769
+ "loss": 0.8255,
770
+ "step": 12700
771
+ },
772
+ {
773
+ "epoch": 0.22,
774
+ "learning_rate": 4.715308280462014e-06,
775
+ "loss": 0.8092,
776
+ "step": 12800
777
+ },
778
+ {
779
+ "epoch": 0.22,
780
+ "learning_rate": 4.705140719049943e-06,
781
+ "loss": 0.8543,
782
+ "step": 12900
783
+ },
784
+ {
785
+ "epoch": 0.22,
786
+ "learning_rate": 4.6949731576378724e-06,
787
+ "loss": 0.8896,
788
+ "step": 13000
789
+ },
790
+ {
791
+ "epoch": 0.22,
792
+ "learning_rate": 4.684805596225801e-06,
793
+ "loss": 0.8353,
794
+ "step": 13100
795
+ },
796
+ {
797
+ "epoch": 0.22,
798
+ "learning_rate": 4.674638034813731e-06,
799
+ "loss": 0.7927,
800
+ "step": 13200
801
+ },
802
+ {
803
+ "epoch": 0.22,
804
+ "learning_rate": 4.6644704734016595e-06,
805
+ "loss": 0.8064,
806
+ "step": 13300
807
+ },
808
+ {
809
+ "epoch": 0.23,
810
+ "learning_rate": 4.654302911989589e-06,
811
+ "loss": 0.8314,
812
+ "step": 13400
813
+ },
814
+ {
815
+ "epoch": 0.23,
816
+ "learning_rate": 4.644135350577518e-06,
817
+ "loss": 0.8067,
818
+ "step": 13500
819
+ },
820
+ {
821
+ "epoch": 0.23,
822
+ "learning_rate": 4.6339677891654475e-06,
823
+ "loss": 0.8384,
824
+ "step": 13600
825
+ },
826
+ {
827
+ "epoch": 0.23,
828
+ "learning_rate": 4.623800227753376e-06,
829
+ "loss": 0.8762,
830
+ "step": 13700
831
+ },
832
+ {
833
+ "epoch": 0.23,
834
+ "learning_rate": 4.613632666341305e-06,
835
+ "loss": 0.8433,
836
+ "step": 13800
837
+ },
838
+ {
839
+ "epoch": 0.23,
840
+ "learning_rate": 4.603465104929234e-06,
841
+ "loss": 0.8425,
842
+ "step": 13900
843
+ },
844
+ {
845
+ "epoch": 0.24,
846
+ "learning_rate": 4.593297543517163e-06,
847
+ "loss": 0.8143,
848
+ "step": 14000
849
+ },
850
+ {
851
+ "epoch": 0.24,
852
+ "learning_rate": 4.583129982105092e-06,
853
+ "loss": 0.8445,
854
+ "step": 14100
855
+ },
856
+ {
857
+ "epoch": 0.24,
858
+ "learning_rate": 4.572962420693021e-06,
859
+ "loss": 0.8211,
860
+ "step": 14200
861
+ },
862
+ {
863
+ "epoch": 0.24,
864
+ "learning_rate": 4.5627948592809505e-06,
865
+ "loss": 0.823,
866
+ "step": 14300
867
+ },
868
+ {
869
+ "epoch": 0.24,
870
+ "learning_rate": 4.552627297868879e-06,
871
+ "loss": 0.8214,
872
+ "step": 14400
873
+ },
874
+ {
875
+ "epoch": 0.25,
876
+ "learning_rate": 4.542459736456809e-06,
877
+ "loss": 0.8204,
878
+ "step": 14500
879
+ },
880
+ {
881
+ "epoch": 0.25,
882
+ "learning_rate": 4.532292175044738e-06,
883
+ "loss": 0.815,
884
+ "step": 14600
885
+ },
886
+ {
887
+ "epoch": 0.25,
888
+ "learning_rate": 4.522124613632667e-06,
889
+ "loss": 0.8516,
890
+ "step": 14700
891
+ },
892
+ {
893
+ "epoch": 0.25,
894
+ "learning_rate": 4.511957052220596e-06,
895
+ "loss": 0.8202,
896
+ "step": 14800
897
+ },
898
+ {
899
+ "epoch": 0.25,
900
+ "learning_rate": 4.501789490808525e-06,
901
+ "loss": 0.8116,
902
+ "step": 14900
903
+ },
904
+ {
905
+ "epoch": 0.25,
906
+ "learning_rate": 4.491621929396454e-06,
907
+ "loss": 0.8123,
908
+ "step": 15000
909
+ },
910
+ {
911
+ "epoch": 0.26,
912
+ "learning_rate": 4.481454367984383e-06,
913
+ "loss": 0.841,
914
+ "step": 15100
915
+ },
916
+ {
917
+ "epoch": 0.26,
918
+ "learning_rate": 4.471286806572312e-06,
919
+ "loss": 0.8247,
920
+ "step": 15200
921
+ },
922
+ {
923
+ "epoch": 0.26,
924
+ "learning_rate": 4.461119245160241e-06,
925
+ "loss": 0.8678,
926
+ "step": 15300
927
+ },
928
+ {
929
+ "epoch": 0.26,
930
+ "learning_rate": 4.45095168374817e-06,
931
+ "loss": 0.8544,
932
+ "step": 15400
933
+ },
934
+ {
935
+ "epoch": 0.26,
936
+ "learning_rate": 4.440784122336099e-06,
937
+ "loss": 0.8383,
938
+ "step": 15500
939
+ },
940
+ {
941
+ "epoch": 0.26,
942
+ "learning_rate": 4.430616560924028e-06,
943
+ "loss": 0.8706,
944
+ "step": 15600
945
+ },
946
+ {
947
+ "epoch": 0.27,
948
+ "learning_rate": 4.420448999511957e-06,
949
+ "loss": 0.8835,
950
+ "step": 15700
951
+ },
952
+ {
953
+ "epoch": 0.27,
954
+ "learning_rate": 4.410281438099886e-06,
955
+ "loss": 0.8462,
956
+ "step": 15800
957
+ },
958
+ {
959
+ "epoch": 0.27,
960
+ "learning_rate": 4.400113876687816e-06,
961
+ "loss": 0.8491,
962
+ "step": 15900
963
+ },
964
+ {
965
+ "epoch": 0.27,
966
+ "learning_rate": 4.389946315275745e-06,
967
+ "loss": 0.8531,
968
+ "step": 16000
969
+ },
970
+ {
971
+ "epoch": 0.27,
972
+ "learning_rate": 4.379778753863674e-06,
973
+ "loss": 0.8263,
974
+ "step": 16100
975
+ },
976
+ {
977
+ "epoch": 0.27,
978
+ "learning_rate": 4.369611192451603e-06,
979
+ "loss": 0.8539,
980
+ "step": 16200
981
+ },
982
+ {
983
+ "epoch": 0.28,
984
+ "learning_rate": 4.3594436310395316e-06,
985
+ "loss": 0.8483,
986
+ "step": 16300
987
+ },
988
+ {
989
+ "epoch": 0.28,
990
+ "learning_rate": 4.349276069627461e-06,
991
+ "loss": 0.8691,
992
+ "step": 16400
993
+ },
994
+ {
995
+ "epoch": 0.28,
996
+ "learning_rate": 4.33910850821539e-06,
997
+ "loss": 0.8756,
998
+ "step": 16500
999
+ },
1000
+ {
1001
+ "epoch": 0.28,
1002
+ "learning_rate": 4.328940946803319e-06,
1003
+ "loss": 0.8811,
1004
+ "step": 16600
1005
+ },
1006
+ {
1007
+ "epoch": 0.28,
1008
+ "learning_rate": 4.318773385391248e-06,
1009
+ "loss": 0.8712,
1010
+ "step": 16700
1011
+ },
1012
+ {
1013
+ "epoch": 0.28,
1014
+ "learning_rate": 4.308605823979177e-06,
1015
+ "loss": 0.8612,
1016
+ "step": 16800
1017
+ },
1018
+ {
1019
+ "epoch": 0.29,
1020
+ "learning_rate": 4.298438262567106e-06,
1021
+ "loss": 0.8675,
1022
+ "step": 16900
1023
+ },
1024
+ {
1025
+ "epoch": 0.29,
1026
+ "learning_rate": 4.288270701155035e-06,
1027
+ "loss": 0.8508,
1028
+ "step": 17000
1029
+ },
1030
+ {
1031
+ "epoch": 0.29,
1032
+ "learning_rate": 4.278103139742964e-06,
1033
+ "loss": 0.862,
1034
+ "step": 17100
1035
+ },
1036
+ {
1037
+ "epoch": 0.29,
1038
+ "learning_rate": 4.267935578330894e-06,
1039
+ "loss": 0.8782,
1040
+ "step": 17200
1041
+ },
1042
+ {
1043
+ "epoch": 0.29,
1044
+ "learning_rate": 4.2577680169188225e-06,
1045
+ "loss": 0.8776,
1046
+ "step": 17300
1047
+ },
1048
+ {
1049
+ "epoch": 0.29,
1050
+ "learning_rate": 4.247600455506752e-06,
1051
+ "loss": 0.877,
1052
+ "step": 17400
1053
+ },
1054
+ {
1055
+ "epoch": 0.3,
1056
+ "learning_rate": 4.237432894094681e-06,
1057
+ "loss": 0.8694,
1058
+ "step": 17500
1059
+ },
1060
+ {
1061
+ "epoch": 0.3,
1062
+ "learning_rate": 4.22726533268261e-06,
1063
+ "loss": 0.8865,
1064
+ "step": 17600
1065
+ },
1066
+ {
1067
+ "epoch": 0.3,
1068
+ "learning_rate": 4.217097771270538e-06,
1069
+ "loss": 0.9107,
1070
+ "step": 17700
1071
+ },
1072
+ {
1073
+ "epoch": 0.3,
1074
+ "learning_rate": 4.206930209858468e-06,
1075
+ "loss": 0.8476,
1076
+ "step": 17800
1077
+ },
1078
+ {
1079
+ "epoch": 0.3,
1080
+ "learning_rate": 4.196762648446397e-06,
1081
+ "loss": 0.8507,
1082
+ "step": 17900
1083
+ },
1084
+ {
1085
+ "epoch": 0.3,
1086
+ "learning_rate": 4.1865950870343255e-06,
1087
+ "loss": 0.8885,
1088
+ "step": 18000
1089
+ },
1090
+ {
1091
+ "epoch": 0.31,
1092
+ "learning_rate": 4.176427525622255e-06,
1093
+ "loss": 0.8543,
1094
+ "step": 18100
1095
+ },
1096
+ {
1097
+ "epoch": 0.31,
1098
+ "learning_rate": 4.166259964210184e-06,
1099
+ "loss": 0.8824,
1100
+ "step": 18200
1101
+ },
1102
+ {
1103
+ "epoch": 0.31,
1104
+ "learning_rate": 4.1560924027981135e-06,
1105
+ "loss": 0.8662,
1106
+ "step": 18300
1107
+ },
1108
+ {
1109
+ "epoch": 0.31,
1110
+ "learning_rate": 4.145924841386042e-06,
1111
+ "loss": 0.8742,
1112
+ "step": 18400
1113
+ },
1114
+ {
1115
+ "epoch": 0.31,
1116
+ "learning_rate": 4.135757279973972e-06,
1117
+ "loss": 0.8761,
1118
+ "step": 18500
1119
+ },
1120
+ {
1121
+ "epoch": 0.31,
1122
+ "learning_rate": 4.125589718561901e-06,
1123
+ "loss": 0.8311,
1124
+ "step": 18600
1125
+ },
1126
+ {
1127
+ "epoch": 0.32,
1128
+ "learning_rate": 4.115422157149829e-06,
1129
+ "loss": 0.8782,
1130
+ "step": 18700
1131
+ },
1132
+ {
1133
+ "epoch": 0.32,
1134
+ "learning_rate": 4.105254595737759e-06,
1135
+ "loss": 0.8901,
1136
+ "step": 18800
1137
+ },
1138
+ {
1139
+ "epoch": 0.32,
1140
+ "learning_rate": 4.095087034325688e-06,
1141
+ "loss": 0.8659,
1142
+ "step": 18900
1143
+ },
1144
+ {
1145
+ "epoch": 0.32,
1146
+ "learning_rate": 4.0849194729136165e-06,
1147
+ "loss": 0.895,
1148
+ "step": 19000
1149
+ },
1150
+ {
1151
+ "epoch": 0.32,
1152
+ "learning_rate": 4.074751911501546e-06,
1153
+ "loss": 0.8541,
1154
+ "step": 19100
1155
+ },
1156
+ {
1157
+ "epoch": 0.32,
1158
+ "learning_rate": 4.064584350089475e-06,
1159
+ "loss": 0.8535,
1160
+ "step": 19200
1161
+ },
1162
+ {
1163
+ "epoch": 0.33,
1164
+ "learning_rate": 4.054416788677404e-06,
1165
+ "loss": 0.8489,
1166
+ "step": 19300
1167
+ },
1168
+ {
1169
+ "epoch": 0.33,
1170
+ "learning_rate": 4.044249227265332e-06,
1171
+ "loss": 0.8234,
1172
+ "step": 19400
1173
+ },
1174
+ {
1175
+ "epoch": 0.33,
1176
+ "learning_rate": 4.034081665853262e-06,
1177
+ "loss": 0.9029,
1178
+ "step": 19500
1179
+ },
1180
+ {
1181
+ "epoch": 0.33,
1182
+ "learning_rate": 4.023914104441191e-06,
1183
+ "loss": 0.8754,
1184
+ "step": 19600
1185
+ },
1186
+ {
1187
+ "epoch": 0.33,
1188
+ "learning_rate": 4.01374654302912e-06,
1189
+ "loss": 0.8844,
1190
+ "step": 19700
1191
+ },
1192
+ {
1193
+ "epoch": 0.33,
1194
+ "learning_rate": 4.00357898161705e-06,
1195
+ "loss": 0.8986,
1196
+ "step": 19800
1197
+ },
1198
+ {
1199
+ "epoch": 0.34,
1200
+ "learning_rate": 3.993411420204979e-06,
1201
+ "loss": 0.8772,
1202
+ "step": 19900
1203
+ },
1204
+ {
1205
+ "epoch": 0.34,
1206
+ "learning_rate": 3.9832438587929074e-06,
1207
+ "loss": 0.895,
1208
+ "step": 20000
1209
+ },
1210
+ {
1211
+ "epoch": 0.34,
1212
+ "learning_rate": 3.973076297380837e-06,
1213
+ "loss": 0.894,
1214
+ "step": 20100
1215
+ },
1216
+ {
1217
+ "epoch": 0.34,
1218
+ "learning_rate": 3.962908735968766e-06,
1219
+ "loss": 0.8815,
1220
+ "step": 20200
1221
+ },
1222
+ {
1223
+ "epoch": 0.34,
1224
+ "learning_rate": 3.9527411745566946e-06,
1225
+ "loss": 0.8819,
1226
+ "step": 20300
1227
+ },
1228
+ {
1229
+ "epoch": 0.34,
1230
+ "learning_rate": 3.942573613144623e-06,
1231
+ "loss": 0.8863,
1232
+ "step": 20400
1233
+ },
1234
+ {
1235
+ "epoch": 0.35,
1236
+ "learning_rate": 3.932406051732553e-06,
1237
+ "loss": 0.9163,
1238
+ "step": 20500
1239
+ },
1240
+ {
1241
+ "epoch": 0.35,
1242
+ "learning_rate": 3.922238490320482e-06,
1243
+ "loss": 0.8853,
1244
+ "step": 20600
1245
+ },
1246
+ {
1247
+ "epoch": 0.35,
1248
+ "learning_rate": 3.9120709289084104e-06,
1249
+ "loss": 0.9038,
1250
+ "step": 20700
1251
+ },
1252
+ {
1253
+ "epoch": 0.35,
1254
+ "learning_rate": 3.90190336749634e-06,
1255
+ "loss": 0.8709,
1256
+ "step": 20800
1257
+ },
1258
+ {
1259
+ "epoch": 0.35,
1260
+ "learning_rate": 3.891735806084269e-06,
1261
+ "loss": 0.8971,
1262
+ "step": 20900
1263
+ },
1264
+ {
1265
+ "epoch": 0.35,
1266
+ "learning_rate": 3.881568244672198e-06,
1267
+ "loss": 0.9209,
1268
+ "step": 21000
1269
+ },
1270
+ {
1271
+ "epoch": 0.36,
1272
+ "learning_rate": 3.871400683260127e-06,
1273
+ "loss": 0.8834,
1274
+ "step": 21100
1275
+ },
1276
+ {
1277
+ "epoch": 0.36,
1278
+ "learning_rate": 3.861233121848057e-06,
1279
+ "loss": 0.8863,
1280
+ "step": 21200
1281
+ },
1282
+ {
1283
+ "epoch": 0.36,
1284
+ "learning_rate": 3.8510655604359855e-06,
1285
+ "loss": 0.906,
1286
+ "step": 21300
1287
+ },
1288
+ {
1289
+ "epoch": 0.36,
1290
+ "learning_rate": 3.840897999023914e-06,
1291
+ "loss": 0.9189,
1292
+ "step": 21400
1293
+ },
1294
+ {
1295
+ "epoch": 0.36,
1296
+ "learning_rate": 3.830730437611844e-06,
1297
+ "loss": 0.93,
1298
+ "step": 21500
1299
+ },
1300
+ {
1301
+ "epoch": 0.37,
1302
+ "learning_rate": 3.820562876199773e-06,
1303
+ "loss": 0.8958,
1304
+ "step": 21600
1305
+ },
1306
+ {
1307
+ "epoch": 0.37,
1308
+ "learning_rate": 3.8103953147877014e-06,
1309
+ "loss": 0.9083,
1310
+ "step": 21700
1311
+ },
1312
+ {
1313
+ "epoch": 0.37,
1314
+ "learning_rate": 3.8002277533756306e-06,
1315
+ "loss": 0.9295,
1316
+ "step": 21800
1317
+ },
1318
+ {
1319
+ "epoch": 0.37,
1320
+ "learning_rate": 3.7900601919635597e-06,
1321
+ "loss": 0.8769,
1322
+ "step": 21900
1323
+ },
1324
+ {
1325
+ "epoch": 0.37,
1326
+ "learning_rate": 3.779892630551489e-06,
1327
+ "loss": 0.8945,
1328
+ "step": 22000
1329
+ },
1330
+ {
1331
+ "epoch": 0.37,
1332
+ "learning_rate": 3.7697250691394177e-06,
1333
+ "loss": 0.8931,
1334
+ "step": 22100
1335
+ },
1336
+ {
1337
+ "epoch": 0.38,
1338
+ "learning_rate": 3.7595575077273473e-06,
1339
+ "loss": 0.905,
1340
+ "step": 22200
1341
+ },
1342
+ {
1343
+ "epoch": 0.38,
1344
+ "learning_rate": 3.749389946315276e-06,
1345
+ "loss": 0.9113,
1346
+ "step": 22300
1347
+ },
1348
+ {
1349
+ "epoch": 0.38,
1350
+ "learning_rate": 3.739222384903205e-06,
1351
+ "loss": 0.937,
1352
+ "step": 22400
1353
+ },
1354
+ {
1355
+ "epoch": 0.38,
1356
+ "learning_rate": 3.7290548234911344e-06,
1357
+ "loss": 0.8804,
1358
+ "step": 22500
1359
+ },
1360
+ {
1361
+ "epoch": 0.38,
1362
+ "learning_rate": 3.718887262079063e-06,
1363
+ "loss": 0.9093,
1364
+ "step": 22600
1365
+ },
1366
+ {
1367
+ "epoch": 0.38,
1368
+ "learning_rate": 3.7087197006669923e-06,
1369
+ "loss": 0.9133,
1370
+ "step": 22700
1371
+ },
1372
+ {
1373
+ "epoch": 0.39,
1374
+ "learning_rate": 3.698552139254921e-06,
1375
+ "loss": 0.9085,
1376
+ "step": 22800
1377
+ },
1378
+ {
1379
+ "epoch": 0.39,
1380
+ "learning_rate": 3.6883845778428507e-06,
1381
+ "loss": 0.9428,
1382
+ "step": 22900
1383
+ },
1384
+ {
1385
+ "epoch": 0.39,
1386
+ "learning_rate": 3.6782170164307795e-06,
1387
+ "loss": 0.9159,
1388
+ "step": 23000
1389
+ },
1390
+ {
1391
+ "epoch": 0.39,
1392
+ "learning_rate": 3.6680494550187086e-06,
1393
+ "loss": 0.9268,
1394
+ "step": 23100
1395
+ },
1396
+ {
1397
+ "epoch": 0.39,
1398
+ "learning_rate": 3.657881893606638e-06,
1399
+ "loss": 0.9015,
1400
+ "step": 23200
1401
+ },
1402
+ {
1403
+ "epoch": 0.39,
1404
+ "learning_rate": 3.647714332194567e-06,
1405
+ "loss": 0.9251,
1406
+ "step": 23300
1407
+ },
1408
+ {
1409
+ "epoch": 0.4,
1410
+ "learning_rate": 3.6375467707824958e-06,
1411
+ "loss": 0.8898,
1412
+ "step": 23400
1413
+ },
1414
+ {
1415
+ "epoch": 0.4,
1416
+ "learning_rate": 3.6273792093704245e-06,
1417
+ "loss": 0.9437,
1418
+ "step": 23500
1419
+ },
1420
+ {
1421
+ "epoch": 0.4,
1422
+ "learning_rate": 3.617211647958354e-06,
1423
+ "loss": 0.9087,
1424
+ "step": 23600
1425
+ },
1426
+ {
1427
+ "epoch": 0.4,
1428
+ "learning_rate": 3.607044086546283e-06,
1429
+ "loss": 0.9256,
1430
+ "step": 23700
1431
+ },
1432
+ {
1433
+ "epoch": 0.4,
1434
+ "learning_rate": 3.596876525134212e-06,
1435
+ "loss": 0.9217,
1436
+ "step": 23800
1437
+ },
1438
+ {
1439
+ "epoch": 0.4,
1440
+ "learning_rate": 3.5867089637221412e-06,
1441
+ "loss": 0.8974,
1442
+ "step": 23900
1443
+ },
1444
+ {
1445
+ "epoch": 0.41,
1446
+ "learning_rate": 3.5765414023100704e-06,
1447
+ "loss": 0.9285,
1448
+ "step": 24000
1449
+ },
1450
+ {
1451
+ "epoch": 0.41,
1452
+ "learning_rate": 3.566373840897999e-06,
1453
+ "loss": 0.9548,
1454
+ "step": 24100
1455
+ },
1456
+ {
1457
+ "epoch": 0.41,
1458
+ "learning_rate": 3.556206279485928e-06,
1459
+ "loss": 0.9424,
1460
+ "step": 24200
1461
+ },
1462
+ {
1463
+ "epoch": 0.41,
1464
+ "learning_rate": 3.5460387180738575e-06,
1465
+ "loss": 0.9324,
1466
+ "step": 24300
1467
+ },
1468
+ {
1469
+ "epoch": 0.41,
1470
+ "learning_rate": 3.5358711566617863e-06,
1471
+ "loss": 0.9411,
1472
+ "step": 24400
1473
+ },
1474
+ {
1475
+ "epoch": 0.41,
1476
+ "learning_rate": 3.5257035952497155e-06,
1477
+ "loss": 0.9177,
1478
+ "step": 24500
1479
+ },
1480
+ {
1481
+ "epoch": 0.42,
1482
+ "learning_rate": 3.5155360338376446e-06,
1483
+ "loss": 0.9298,
1484
+ "step": 24600
1485
+ },
1486
+ {
1487
+ "epoch": 0.42,
1488
+ "learning_rate": 3.505368472425574e-06,
1489
+ "loss": 0.9467,
1490
+ "step": 24700
1491
+ },
1492
+ {
1493
+ "epoch": 0.42,
1494
+ "learning_rate": 3.4952009110135026e-06,
1495
+ "loss": 0.9435,
1496
+ "step": 24800
1497
+ },
1498
+ {
1499
+ "epoch": 0.42,
1500
+ "learning_rate": 3.485033349601432e-06,
1501
+ "loss": 0.9262,
1502
+ "step": 24900
1503
+ },
1504
+ {
1505
+ "epoch": 0.42,
1506
+ "learning_rate": 3.474865788189361e-06,
1507
+ "loss": 0.9273,
1508
+ "step": 25000
1509
+ },
1510
+ {
1511
+ "epoch": 0.42,
1512
+ "learning_rate": 3.46469822677729e-06,
1513
+ "loss": 0.9661,
1514
+ "step": 25100
1515
+ },
1516
+ {
1517
+ "epoch": 0.43,
1518
+ "learning_rate": 3.454530665365219e-06,
1519
+ "loss": 0.9304,
1520
+ "step": 25200
1521
+ },
1522
+ {
1523
+ "epoch": 0.43,
1524
+ "learning_rate": 3.4443631039531485e-06,
1525
+ "loss": 0.9337,
1526
+ "step": 25300
1527
+ },
1528
+ {
1529
+ "epoch": 0.43,
1530
+ "learning_rate": 3.4341955425410772e-06,
1531
+ "loss": 0.9597,
1532
+ "step": 25400
1533
+ },
1534
+ {
1535
+ "epoch": 0.43,
1536
+ "learning_rate": 3.424027981129006e-06,
1537
+ "loss": 0.9275,
1538
+ "step": 25500
1539
+ },
1540
+ {
1541
+ "epoch": 0.43,
1542
+ "learning_rate": 3.4138604197169356e-06,
1543
+ "loss": 0.9072,
1544
+ "step": 25600
1545
+ },
1546
+ {
1547
+ "epoch": 0.43,
1548
+ "learning_rate": 3.4036928583048644e-06,
1549
+ "loss": 0.9558,
1550
+ "step": 25700
1551
+ },
1552
+ {
1553
+ "epoch": 0.44,
1554
+ "learning_rate": 3.3935252968927935e-06,
1555
+ "loss": 0.9421,
1556
+ "step": 25800
1557
+ },
1558
+ {
1559
+ "epoch": 0.44,
1560
+ "learning_rate": 3.3833577354807223e-06,
1561
+ "loss": 0.9435,
1562
+ "step": 25900
1563
+ },
1564
+ {
1565
+ "epoch": 0.44,
1566
+ "learning_rate": 3.373190174068652e-06,
1567
+ "loss": 0.9397,
1568
+ "step": 26000
1569
+ },
1570
+ {
1571
+ "epoch": 0.44,
1572
+ "learning_rate": 3.3630226126565807e-06,
1573
+ "loss": 0.9272,
1574
+ "step": 26100
1575
+ },
1576
+ {
1577
+ "epoch": 0.44,
1578
+ "learning_rate": 3.3528550512445094e-06,
1579
+ "loss": 0.9527,
1580
+ "step": 26200
1581
+ },
1582
+ {
1583
+ "epoch": 0.44,
1584
+ "learning_rate": 3.342687489832439e-06,
1585
+ "loss": 0.9442,
1586
+ "step": 26300
1587
+ },
1588
+ {
1589
+ "epoch": 0.45,
1590
+ "learning_rate": 3.3325199284203678e-06,
1591
+ "loss": 0.9789,
1592
+ "step": 26400
1593
+ },
1594
+ {
1595
+ "epoch": 0.45,
1596
+ "learning_rate": 3.322352367008297e-06,
1597
+ "loss": 0.9775,
1598
+ "step": 26500
1599
+ },
1600
+ {
1601
+ "epoch": 0.45,
1602
+ "learning_rate": 3.312184805596226e-06,
1603
+ "loss": 0.9649,
1604
+ "step": 26600
1605
+ },
1606
+ {
1607
+ "epoch": 0.45,
1608
+ "learning_rate": 3.3020172441841553e-06,
1609
+ "loss": 0.9828,
1610
+ "step": 26700
1611
+ },
1612
+ {
1613
+ "epoch": 0.45,
1614
+ "learning_rate": 3.291849682772084e-06,
1615
+ "loss": 0.9506,
1616
+ "step": 26800
1617
+ },
1618
+ {
1619
+ "epoch": 0.45,
1620
+ "learning_rate": 3.2816821213600133e-06,
1621
+ "loss": 0.9828,
1622
+ "step": 26900
1623
+ },
1624
+ {
1625
+ "epoch": 0.46,
1626
+ "learning_rate": 3.2715145599479424e-06,
1627
+ "loss": 0.9549,
1628
+ "step": 27000
1629
+ },
1630
+ {
1631
+ "epoch": 0.46,
1632
+ "learning_rate": 3.2613469985358716e-06,
1633
+ "loss": 0.987,
1634
+ "step": 27100
1635
+ },
1636
+ {
1637
+ "epoch": 0.46,
1638
+ "learning_rate": 3.2511794371238004e-06,
1639
+ "loss": 0.8978,
1640
+ "step": 27200
1641
+ },
1642
+ {
1643
+ "epoch": 0.46,
1644
+ "learning_rate": 3.24101187571173e-06,
1645
+ "loss": 0.9694,
1646
+ "step": 27300
1647
+ },
1648
+ {
1649
+ "epoch": 0.46,
1650
+ "learning_rate": 3.2308443142996587e-06,
1651
+ "loss": 1.0004,
1652
+ "step": 27400
1653
+ },
1654
+ {
1655
+ "epoch": 0.46,
1656
+ "learning_rate": 3.2206767528875875e-06,
1657
+ "loss": 0.9503,
1658
+ "step": 27500
1659
+ },
1660
+ {
1661
+ "epoch": 0.47,
1662
+ "learning_rate": 3.2105091914755167e-06,
1663
+ "loss": 0.9263,
1664
+ "step": 27600
1665
+ },
1666
+ {
1667
+ "epoch": 0.47,
1668
+ "learning_rate": 3.200341630063446e-06,
1669
+ "loss": 0.9818,
1670
+ "step": 27700
1671
+ },
1672
+ {
1673
+ "epoch": 0.47,
1674
+ "learning_rate": 3.190174068651375e-06,
1675
+ "loss": 0.9753,
1676
+ "step": 27800
1677
+ },
1678
+ {
1679
+ "epoch": 0.47,
1680
+ "learning_rate": 3.1800065072393038e-06,
1681
+ "loss": 0.975,
1682
+ "step": 27900
1683
+ },
1684
+ {
1685
+ "epoch": 0.47,
1686
+ "learning_rate": 3.1698389458272334e-06,
1687
+ "loss": 0.9324,
1688
+ "step": 28000
1689
+ },
1690
+ {
1691
+ "epoch": 0.47,
1692
+ "learning_rate": 3.159671384415162e-06,
1693
+ "loss": 1.0101,
1694
+ "step": 28100
1695
+ },
1696
+ {
1697
+ "epoch": 0.48,
1698
+ "learning_rate": 3.149503823003091e-06,
1699
+ "loss": 0.9815,
1700
+ "step": 28200
1701
+ },
1702
+ {
1703
+ "epoch": 0.48,
1704
+ "learning_rate": 3.13933626159102e-06,
1705
+ "loss": 0.9598,
1706
+ "step": 28300
1707
+ },
1708
+ {
1709
+ "epoch": 0.48,
1710
+ "learning_rate": 3.1291687001789493e-06,
1711
+ "loss": 0.9791,
1712
+ "step": 28400
1713
+ },
1714
+ {
1715
+ "epoch": 0.48,
1716
+ "learning_rate": 3.1190011387668784e-06,
1717
+ "loss": 0.9495,
1718
+ "step": 28500
1719
+ },
1720
+ {
1721
+ "epoch": 0.48,
1722
+ "learning_rate": 3.108833577354807e-06,
1723
+ "loss": 0.9832,
1724
+ "step": 28600
1725
+ },
1726
+ {
1727
+ "epoch": 0.48,
1728
+ "learning_rate": 3.098666015942737e-06,
1729
+ "loss": 1.0214,
1730
+ "step": 28700
1731
+ },
1732
+ {
1733
+ "epoch": 0.49,
1734
+ "learning_rate": 3.0884984545306656e-06,
1735
+ "loss": 0.9944,
1736
+ "step": 28800
1737
+ },
1738
+ {
1739
+ "epoch": 0.49,
1740
+ "learning_rate": 3.0783308931185947e-06,
1741
+ "loss": 0.9976,
1742
+ "step": 28900
1743
+ },
1744
+ {
1745
+ "epoch": 0.49,
1746
+ "learning_rate": 3.068163331706524e-06,
1747
+ "loss": 0.9992,
1748
+ "step": 29000
1749
+ },
1750
+ {
1751
+ "epoch": 0.49,
1752
+ "learning_rate": 3.057995770294453e-06,
1753
+ "loss": 0.9597,
1754
+ "step": 29100
1755
+ },
1756
+ {
1757
+ "epoch": 0.49,
1758
+ "learning_rate": 3.047828208882382e-06,
1759
+ "loss": 0.9812,
1760
+ "step": 29200
1761
+ },
1762
+ {
1763
+ "epoch": 0.5,
1764
+ "learning_rate": 3.0376606474703106e-06,
1765
+ "loss": 1.0031,
1766
+ "step": 29300
1767
+ },
1768
+ {
1769
+ "epoch": 0.5,
1770
+ "learning_rate": 3.0274930860582402e-06,
1771
+ "loss": 0.9859,
1772
+ "step": 29400
1773
+ },
1774
+ {
1775
+ "epoch": 0.5,
1776
+ "learning_rate": 3.017325524646169e-06,
1777
+ "loss": 0.9966,
1778
+ "step": 29500
1779
+ },
1780
+ {
1781
+ "epoch": 0.5,
1782
+ "learning_rate": 3.007157963234098e-06,
1783
+ "loss": 0.9993,
1784
+ "step": 29600
1785
+ },
1786
+ {
1787
+ "epoch": 0.5,
1788
+ "learning_rate": 2.9969904018220273e-06,
1789
+ "loss": 1.0101,
1790
+ "step": 29700
1791
+ },
1792
+ {
1793
+ "epoch": 0.5,
1794
+ "learning_rate": 2.9868228404099565e-06,
1795
+ "loss": 0.9613,
1796
+ "step": 29800
1797
+ },
1798
+ {
1799
+ "epoch": 0.51,
1800
+ "learning_rate": 2.9766552789978853e-06,
1801
+ "loss": 1.0252,
1802
+ "step": 29900
1803
+ },
1804
+ {
1805
+ "epoch": 0.51,
1806
+ "learning_rate": 2.966487717585814e-06,
1807
+ "loss": 1.055,
1808
+ "step": 30000
1809
+ },
1810
+ {
1811
+ "epoch": 0.51,
1812
+ "learning_rate": 2.9563201561737436e-06,
1813
+ "loss": 0.9934,
1814
+ "step": 30100
1815
+ },
1816
+ {
1817
+ "epoch": 0.51,
1818
+ "learning_rate": 2.9461525947616724e-06,
1819
+ "loss": 0.9714,
1820
+ "step": 30200
1821
+ },
1822
+ {
1823
+ "epoch": 0.51,
1824
+ "learning_rate": 2.9359850333496016e-06,
1825
+ "loss": 1.0161,
1826
+ "step": 30300
1827
+ },
1828
+ {
1829
+ "epoch": 0.51,
1830
+ "learning_rate": 2.9258174719375308e-06,
1831
+ "loss": 0.9844,
1832
+ "step": 30400
1833
+ },
1834
+ {
1835
+ "epoch": 0.52,
1836
+ "learning_rate": 2.91564991052546e-06,
1837
+ "loss": 1.0098,
1838
+ "step": 30500
1839
+ },
1840
+ {
1841
+ "epoch": 0.52,
1842
+ "learning_rate": 2.9054823491133887e-06,
1843
+ "loss": 1.0095,
1844
+ "step": 30600
1845
+ },
1846
+ {
1847
+ "epoch": 0.52,
1848
+ "learning_rate": 2.895314787701318e-06,
1849
+ "loss": 1.0176,
1850
+ "step": 30700
1851
+ },
1852
+ {
1853
+ "epoch": 0.52,
1854
+ "learning_rate": 2.885147226289247e-06,
1855
+ "loss": 1.0313,
1856
+ "step": 30800
1857
+ },
1858
+ {
1859
+ "epoch": 0.52,
1860
+ "learning_rate": 2.8749796648771762e-06,
1861
+ "loss": 1.0201,
1862
+ "step": 30900
1863
+ },
1864
+ {
1865
+ "epoch": 0.52,
1866
+ "learning_rate": 2.864812103465105e-06,
1867
+ "loss": 1.0095,
1868
+ "step": 31000
1869
+ },
1870
+ {
1871
+ "epoch": 0.53,
1872
+ "learning_rate": 2.8546445420530346e-06,
1873
+ "loss": 0.9885,
1874
+ "step": 31100
1875
+ },
1876
+ {
1877
+ "epoch": 0.53,
1878
+ "learning_rate": 2.8444769806409634e-06,
1879
+ "loss": 1.0684,
1880
+ "step": 31200
1881
+ },
1882
+ {
1883
+ "epoch": 0.53,
1884
+ "learning_rate": 2.834309419228892e-06,
1885
+ "loss": 0.9972,
1886
+ "step": 31300
1887
+ },
1888
+ {
1889
+ "epoch": 0.53,
1890
+ "learning_rate": 2.8241418578168217e-06,
1891
+ "loss": 1.0518,
1892
+ "step": 31400
1893
+ },
1894
+ {
1895
+ "epoch": 0.53,
1896
+ "learning_rate": 2.8139742964047505e-06,
1897
+ "loss": 1.0115,
1898
+ "step": 31500
1899
+ },
1900
+ {
1901
+ "epoch": 0.53,
1902
+ "learning_rate": 2.8038067349926796e-06,
1903
+ "loss": 1.0107,
1904
+ "step": 31600
1905
+ },
1906
+ {
1907
+ "epoch": 0.54,
1908
+ "learning_rate": 2.7936391735806084e-06,
1909
+ "loss": 1.0607,
1910
+ "step": 31700
1911
+ },
1912
+ {
1913
+ "epoch": 0.54,
1914
+ "learning_rate": 2.783471612168538e-06,
1915
+ "loss": 1.0564,
1916
+ "step": 31800
1917
+ },
1918
+ {
1919
+ "epoch": 0.54,
1920
+ "learning_rate": 2.7733040507564668e-06,
1921
+ "loss": 1.0554,
1922
+ "step": 31900
1923
+ },
1924
+ {
1925
+ "epoch": 0.54,
1926
+ "learning_rate": 2.7631364893443955e-06,
1927
+ "loss": 1.001,
1928
+ "step": 32000
1929
+ },
1930
+ {
1931
+ "epoch": 0.54,
1932
+ "learning_rate": 2.752968927932325e-06,
1933
+ "loss": 1.0299,
1934
+ "step": 32100
1935
+ },
1936
+ {
1937
+ "epoch": 0.54,
1938
+ "learning_rate": 2.742801366520254e-06,
1939
+ "loss": 1.0266,
1940
+ "step": 32200
1941
+ },
1942
+ {
1943
+ "epoch": 0.55,
1944
+ "learning_rate": 2.732633805108183e-06,
1945
+ "loss": 1.0076,
1946
+ "step": 32300
1947
+ },
1948
+ {
1949
+ "epoch": 0.55,
1950
+ "learning_rate": 2.722466243696112e-06,
1951
+ "loss": 1.0152,
1952
+ "step": 32400
1953
+ },
1954
+ {
1955
+ "epoch": 0.55,
1956
+ "learning_rate": 2.7122986822840414e-06,
1957
+ "loss": 1.0546,
1958
+ "step": 32500
1959
+ },
1960
+ {
1961
+ "epoch": 0.55,
1962
+ "learning_rate": 2.70213112087197e-06,
1963
+ "loss": 1.025,
1964
+ "step": 32600
1965
+ },
1966
+ {
1967
+ "epoch": 0.55,
1968
+ "learning_rate": 2.6919635594598994e-06,
1969
+ "loss": 1.0748,
1970
+ "step": 32700
1971
+ },
1972
+ {
1973
+ "epoch": 0.55,
1974
+ "learning_rate": 2.6817959980478285e-06,
1975
+ "loss": 1.0332,
1976
+ "step": 32800
1977
+ },
1978
+ {
1979
+ "epoch": 0.56,
1980
+ "learning_rate": 2.6716284366357577e-06,
1981
+ "loss": 1.0211,
1982
+ "step": 32900
1983
+ },
1984
+ {
1985
+ "epoch": 0.56,
1986
+ "learning_rate": 2.6614608752236865e-06,
1987
+ "loss": 1.0536,
1988
+ "step": 33000
1989
+ },
1990
+ {
1991
+ "epoch": 0.56,
1992
+ "learning_rate": 2.6512933138116152e-06,
1993
+ "loss": 0.9919,
1994
+ "step": 33100
1995
+ },
1996
+ {
1997
+ "epoch": 0.56,
1998
+ "learning_rate": 2.641125752399545e-06,
1999
+ "loss": 1.0245,
2000
+ "step": 33200
2001
+ },
2002
+ {
2003
+ "epoch": 0.56,
2004
+ "learning_rate": 2.6309581909874736e-06,
2005
+ "loss": 1.0171,
2006
+ "step": 33300
2007
+ },
2008
+ {
2009
+ "epoch": 0.56,
2010
+ "learning_rate": 2.6207906295754028e-06,
2011
+ "loss": 1.0299,
2012
+ "step": 33400
2013
+ },
2014
+ {
2015
+ "epoch": 0.57,
2016
+ "learning_rate": 2.610623068163332e-06,
2017
+ "loss": 1.0506,
2018
+ "step": 33500
2019
+ },
2020
+ {
2021
+ "epoch": 0.57,
2022
+ "learning_rate": 2.600455506751261e-06,
2023
+ "loss": 1.044,
2024
+ "step": 33600
2025
+ },
2026
+ {
2027
+ "epoch": 0.57,
2028
+ "learning_rate": 2.59028794533919e-06,
2029
+ "loss": 1.0657,
2030
+ "step": 33700
2031
+ },
2032
+ {
2033
+ "epoch": 0.57,
2034
+ "learning_rate": 2.5801203839271195e-06,
2035
+ "loss": 1.0766,
2036
+ "step": 33800
2037
+ },
2038
+ {
2039
+ "epoch": 0.57,
2040
+ "learning_rate": 2.5699528225150483e-06,
2041
+ "loss": 1.0482,
2042
+ "step": 33900
2043
+ },
2044
+ {
2045
+ "epoch": 0.57,
2046
+ "learning_rate": 2.559785261102977e-06,
2047
+ "loss": 1.0502,
2048
+ "step": 34000
2049
+ },
2050
+ {
2051
+ "epoch": 0.58,
2052
+ "learning_rate": 2.549617699690906e-06,
2053
+ "loss": 1.0814,
2054
+ "step": 34100
2055
+ },
2056
+ {
2057
+ "epoch": 0.58,
2058
+ "learning_rate": 2.5394501382788354e-06,
2059
+ "loss": 1.0862,
2060
+ "step": 34200
2061
+ },
2062
+ {
2063
+ "epoch": 0.58,
2064
+ "learning_rate": 2.5292825768667646e-06,
2065
+ "loss": 1.0954,
2066
+ "step": 34300
2067
+ },
2068
+ {
2069
+ "epoch": 0.58,
2070
+ "learning_rate": 2.5191150154546933e-06,
2071
+ "loss": 1.0866,
2072
+ "step": 34400
2073
+ },
2074
+ {
2075
+ "epoch": 0.58,
2076
+ "learning_rate": 2.508947454042623e-06,
2077
+ "loss": 1.0649,
2078
+ "step": 34500
2079
+ },
2080
+ {
2081
+ "epoch": 0.58,
2082
+ "learning_rate": 2.4987798926305517e-06,
2083
+ "loss": 1.0483,
2084
+ "step": 34600
2085
+ },
2086
+ {
2087
+ "epoch": 0.59,
2088
+ "learning_rate": 2.488612331218481e-06,
2089
+ "loss": 1.0383,
2090
+ "step": 34700
2091
+ },
2092
+ {
2093
+ "epoch": 0.59,
2094
+ "learning_rate": 2.47844476980641e-06,
2095
+ "loss": 1.0459,
2096
+ "step": 34800
2097
+ },
2098
+ {
2099
+ "epoch": 0.59,
2100
+ "learning_rate": 2.4682772083943392e-06,
2101
+ "loss": 1.0821,
2102
+ "step": 34900
2103
+ },
2104
+ {
2105
+ "epoch": 0.59,
2106
+ "learning_rate": 2.458109646982268e-06,
2107
+ "loss": 1.0808,
2108
+ "step": 35000
2109
+ },
2110
+ {
2111
+ "epoch": 0.59,
2112
+ "learning_rate": 2.447942085570197e-06,
2113
+ "loss": 1.0552,
2114
+ "step": 35100
2115
+ },
2116
+ {
2117
+ "epoch": 0.59,
2118
+ "learning_rate": 2.437774524158126e-06,
2119
+ "loss": 1.094,
2120
+ "step": 35200
2121
+ },
2122
+ {
2123
+ "epoch": 0.6,
2124
+ "learning_rate": 2.427606962746055e-06,
2125
+ "loss": 1.0991,
2126
+ "step": 35300
2127
+ },
2128
+ {
2129
+ "epoch": 0.6,
2130
+ "learning_rate": 2.4174394013339843e-06,
2131
+ "loss": 1.0807,
2132
+ "step": 35400
2133
+ },
2134
+ {
2135
+ "epoch": 0.6,
2136
+ "learning_rate": 2.4072718399219134e-06,
2137
+ "loss": 1.1117,
2138
+ "step": 35500
2139
+ },
2140
+ {
2141
+ "epoch": 0.6,
2142
+ "learning_rate": 2.3971042785098426e-06,
2143
+ "loss": 1.0754,
2144
+ "step": 35600
2145
+ },
2146
+ {
2147
+ "epoch": 0.6,
2148
+ "learning_rate": 2.3869367170977714e-06,
2149
+ "loss": 1.1518,
2150
+ "step": 35700
2151
+ },
2152
+ {
2153
+ "epoch": 0.6,
2154
+ "learning_rate": 2.3767691556857006e-06,
2155
+ "loss": 1.1195,
2156
+ "step": 35800
2157
+ },
2158
+ {
2159
+ "epoch": 0.61,
2160
+ "learning_rate": 2.3666015942736293e-06,
2161
+ "loss": 1.0949,
2162
+ "step": 35900
2163
+ },
2164
+ {
2165
+ "epoch": 0.61,
2166
+ "learning_rate": 2.3564340328615585e-06,
2167
+ "loss": 1.1088,
2168
+ "step": 36000
2169
+ },
2170
+ {
2171
+ "epoch": 0.61,
2172
+ "learning_rate": 2.3462664714494877e-06,
2173
+ "loss": 1.1107,
2174
+ "step": 36100
2175
+ },
2176
+ {
2177
+ "epoch": 0.61,
2178
+ "learning_rate": 2.336098910037417e-06,
2179
+ "loss": 1.0928,
2180
+ "step": 36200
2181
+ },
2182
+ {
2183
+ "epoch": 0.61,
2184
+ "learning_rate": 2.325931348625346e-06,
2185
+ "loss": 1.0953,
2186
+ "step": 36300
2187
+ },
2188
+ {
2189
+ "epoch": 0.62,
2190
+ "learning_rate": 2.315763787213275e-06,
2191
+ "loss": 1.1044,
2192
+ "step": 36400
2193
+ },
2194
+ {
2195
+ "epoch": 0.62,
2196
+ "learning_rate": 2.305596225801204e-06,
2197
+ "loss": 1.0717,
2198
+ "step": 36500
2199
+ },
2200
+ {
2201
+ "epoch": 0.62,
2202
+ "learning_rate": 2.295428664389133e-06,
2203
+ "loss": 1.1131,
2204
+ "step": 36600
2205
+ },
2206
+ {
2207
+ "epoch": 0.62,
2208
+ "learning_rate": 2.2852611029770623e-06,
2209
+ "loss": 1.0786,
2210
+ "step": 36700
2211
+ },
2212
+ {
2213
+ "epoch": 0.62,
2214
+ "learning_rate": 2.2750935415649915e-06,
2215
+ "loss": 1.0974,
2216
+ "step": 36800
2217
+ },
2218
+ {
2219
+ "epoch": 0.62,
2220
+ "learning_rate": 2.2649259801529203e-06,
2221
+ "loss": 1.0983,
2222
+ "step": 36900
2223
+ },
2224
+ {
2225
+ "epoch": 0.63,
2226
+ "learning_rate": 2.2547584187408495e-06,
2227
+ "loss": 1.1312,
2228
+ "step": 37000
2229
+ },
2230
+ {
2231
+ "epoch": 0.63,
2232
+ "learning_rate": 2.2445908573287782e-06,
2233
+ "loss": 1.1265,
2234
+ "step": 37100
2235
+ },
2236
+ {
2237
+ "epoch": 0.63,
2238
+ "learning_rate": 2.2344232959167074e-06,
2239
+ "loss": 1.1468,
2240
+ "step": 37200
2241
+ },
2242
+ {
2243
+ "epoch": 0.63,
2244
+ "learning_rate": 2.2242557345046366e-06,
2245
+ "loss": 1.1186,
2246
+ "step": 37300
2247
+ },
2248
+ {
2249
+ "epoch": 0.63,
2250
+ "learning_rate": 2.2140881730925658e-06,
2251
+ "loss": 1.1505,
2252
+ "step": 37400
2253
+ },
2254
+ {
2255
+ "epoch": 0.63,
2256
+ "learning_rate": 2.203920611680495e-06,
2257
+ "loss": 1.1365,
2258
+ "step": 37500
2259
+ },
2260
+ {
2261
+ "epoch": 0.64,
2262
+ "learning_rate": 2.1937530502684237e-06,
2263
+ "loss": 1.1404,
2264
+ "step": 37600
2265
+ },
2266
+ {
2267
+ "epoch": 0.64,
2268
+ "learning_rate": 2.183585488856353e-06,
2269
+ "loss": 1.1175,
2270
+ "step": 37700
2271
+ },
2272
+ {
2273
+ "epoch": 0.64,
2274
+ "learning_rate": 2.1734179274442816e-06,
2275
+ "loss": 1.1552,
2276
+ "step": 37800
2277
+ },
2278
+ {
2279
+ "epoch": 0.64,
2280
+ "learning_rate": 2.163250366032211e-06,
2281
+ "loss": 1.1204,
2282
+ "step": 37900
2283
+ },
2284
+ {
2285
+ "epoch": 0.64,
2286
+ "learning_rate": 2.15308280462014e-06,
2287
+ "loss": 1.1433,
2288
+ "step": 38000
2289
+ },
2290
+ {
2291
+ "epoch": 0.64,
2292
+ "learning_rate": 2.142915243208069e-06,
2293
+ "loss": 1.1573,
2294
+ "step": 38100
2295
+ },
2296
+ {
2297
+ "epoch": 0.65,
2298
+ "learning_rate": 2.1327476817959984e-06,
2299
+ "loss": 1.1685,
2300
+ "step": 38200
2301
+ },
2302
+ {
2303
+ "epoch": 0.65,
2304
+ "learning_rate": 2.122580120383927e-06,
2305
+ "loss": 1.1721,
2306
+ "step": 38300
2307
+ },
2308
+ {
2309
+ "epoch": 0.65,
2310
+ "learning_rate": 2.1124125589718563e-06,
2311
+ "loss": 1.1155,
2312
+ "step": 38400
2313
+ },
2314
+ {
2315
+ "epoch": 0.65,
2316
+ "learning_rate": 2.1022449975597855e-06,
2317
+ "loss": 1.1767,
2318
+ "step": 38500
2319
+ },
2320
+ {
2321
+ "epoch": 0.65,
2322
+ "learning_rate": 2.0920774361477147e-06,
2323
+ "loss": 1.1768,
2324
+ "step": 38600
2325
+ },
2326
+ {
2327
+ "epoch": 0.65,
2328
+ "learning_rate": 2.081909874735644e-06,
2329
+ "loss": 1.1607,
2330
+ "step": 38700
2331
+ },
2332
+ {
2333
+ "epoch": 0.66,
2334
+ "learning_rate": 2.0717423133235726e-06,
2335
+ "loss": 1.1792,
2336
+ "step": 38800
2337
+ },
2338
+ {
2339
+ "epoch": 0.66,
2340
+ "learning_rate": 2.0615747519115018e-06,
2341
+ "loss": 1.1723,
2342
+ "step": 38900
2343
+ },
2344
+ {
2345
+ "epoch": 0.66,
2346
+ "learning_rate": 2.0514071904994305e-06,
2347
+ "loss": 1.1904,
2348
+ "step": 39000
2349
+ },
2350
+ {
2351
+ "epoch": 0.66,
2352
+ "learning_rate": 2.0412396290873597e-06,
2353
+ "loss": 1.1876,
2354
+ "step": 39100
2355
+ },
2356
+ {
2357
+ "epoch": 0.66,
2358
+ "learning_rate": 2.031072067675289e-06,
2359
+ "loss": 1.1391,
2360
+ "step": 39200
2361
+ },
2362
+ {
2363
+ "epoch": 0.66,
2364
+ "learning_rate": 2.020904506263218e-06,
2365
+ "loss": 1.164,
2366
+ "step": 39300
2367
+ },
2368
+ {
2369
+ "epoch": 0.67,
2370
+ "learning_rate": 2.0107369448511472e-06,
2371
+ "loss": 1.2149,
2372
+ "step": 39400
2373
+ },
2374
+ {
2375
+ "epoch": 0.67,
2376
+ "learning_rate": 2.000569383439076e-06,
2377
+ "loss": 1.1875,
2378
+ "step": 39500
2379
+ },
2380
+ {
2381
+ "epoch": 0.67,
2382
+ "learning_rate": 1.990401822027005e-06,
2383
+ "loss": 1.2367,
2384
+ "step": 39600
2385
+ },
2386
+ {
2387
+ "epoch": 0.67,
2388
+ "learning_rate": 1.9802342606149344e-06,
2389
+ "loss": 1.2065,
2390
+ "step": 39700
2391
+ },
2392
+ {
2393
+ "epoch": 0.67,
2394
+ "learning_rate": 1.970066699202863e-06,
2395
+ "loss": 1.2258,
2396
+ "step": 39800
2397
+ },
2398
+ {
2399
+ "epoch": 0.67,
2400
+ "learning_rate": 1.9598991377907923e-06,
2401
+ "loss": 1.1814,
2402
+ "step": 39900
2403
+ },
2404
+ {
2405
+ "epoch": 0.68,
2406
+ "learning_rate": 1.9497315763787215e-06,
2407
+ "loss": 1.1806,
2408
+ "step": 40000
2409
+ },
2410
+ {
2411
+ "epoch": 0.68,
2412
+ "learning_rate": 1.9395640149666507e-06,
2413
+ "loss": 1.166,
2414
+ "step": 40100
2415
+ },
2416
+ {
2417
+ "epoch": 0.68,
2418
+ "learning_rate": 1.9293964535545794e-06,
2419
+ "loss": 1.2064,
2420
+ "step": 40200
2421
+ },
2422
+ {
2423
+ "epoch": 0.68,
2424
+ "learning_rate": 1.9192288921425086e-06,
2425
+ "loss": 1.194,
2426
+ "step": 40300
2427
+ },
2428
+ {
2429
+ "epoch": 0.68,
2430
+ "learning_rate": 1.9090613307304378e-06,
2431
+ "loss": 1.1971,
2432
+ "step": 40400
2433
+ },
2434
+ {
2435
+ "epoch": 0.68,
2436
+ "learning_rate": 1.8988937693183667e-06,
2437
+ "loss": 1.1894,
2438
+ "step": 40500
2439
+ },
2440
+ {
2441
+ "epoch": 0.69,
2442
+ "learning_rate": 1.888726207906296e-06,
2443
+ "loss": 1.2159,
2444
+ "step": 40600
2445
+ },
2446
+ {
2447
+ "epoch": 0.69,
2448
+ "learning_rate": 1.878558646494225e-06,
2449
+ "loss": 1.1986,
2450
+ "step": 40700
2451
+ },
2452
+ {
2453
+ "epoch": 0.69,
2454
+ "learning_rate": 1.868391085082154e-06,
2455
+ "loss": 1.2189,
2456
+ "step": 40800
2457
+ },
2458
+ {
2459
+ "epoch": 0.69,
2460
+ "learning_rate": 1.8582235236700833e-06,
2461
+ "loss": 1.2066,
2462
+ "step": 40900
2463
+ },
2464
+ {
2465
+ "epoch": 0.69,
2466
+ "learning_rate": 1.8480559622580122e-06,
2467
+ "loss": 1.1802,
2468
+ "step": 41000
2469
+ },
2470
+ {
2471
+ "epoch": 0.69,
2472
+ "learning_rate": 1.8378884008459414e-06,
2473
+ "loss": 1.252,
2474
+ "step": 41100
2475
+ },
2476
+ {
2477
+ "epoch": 0.7,
2478
+ "learning_rate": 1.8277208394338702e-06,
2479
+ "loss": 1.2466,
2480
+ "step": 41200
2481
+ },
2482
+ {
2483
+ "epoch": 0.7,
2484
+ "learning_rate": 1.8175532780217993e-06,
2485
+ "loss": 1.2056,
2486
+ "step": 41300
2487
+ },
2488
+ {
2489
+ "epoch": 0.7,
2490
+ "learning_rate": 1.8073857166097283e-06,
2491
+ "loss": 1.2143,
2492
+ "step": 41400
2493
+ },
2494
+ {
2495
+ "epoch": 0.7,
2496
+ "learning_rate": 1.7972181551976575e-06,
2497
+ "loss": 1.2032,
2498
+ "step": 41500
2499
+ },
2500
+ {
2501
+ "epoch": 0.7,
2502
+ "learning_rate": 1.7870505937855867e-06,
2503
+ "loss": 1.2404,
2504
+ "step": 41600
2505
+ },
2506
+ {
2507
+ "epoch": 0.7,
2508
+ "learning_rate": 1.7768830323735156e-06,
2509
+ "loss": 1.2306,
2510
+ "step": 41700
2511
+ },
2512
+ {
2513
+ "epoch": 0.71,
2514
+ "learning_rate": 1.7667154709614448e-06,
2515
+ "loss": 1.2319,
2516
+ "step": 41800
2517
+ },
2518
+ {
2519
+ "epoch": 0.71,
2520
+ "learning_rate": 1.7565479095493738e-06,
2521
+ "loss": 1.2316,
2522
+ "step": 41900
2523
+ },
2524
+ {
2525
+ "epoch": 0.71,
2526
+ "learning_rate": 1.746380348137303e-06,
2527
+ "loss": 1.2243,
2528
+ "step": 42000
2529
+ },
2530
+ {
2531
+ "epoch": 0.71,
2532
+ "learning_rate": 1.7362127867252322e-06,
2533
+ "loss": 1.2149,
2534
+ "step": 42100
2535
+ },
2536
+ {
2537
+ "epoch": 0.71,
2538
+ "learning_rate": 1.726045225313161e-06,
2539
+ "loss": 1.2745,
2540
+ "step": 42200
2541
+ },
2542
+ {
2543
+ "epoch": 0.71,
2544
+ "learning_rate": 1.71587766390109e-06,
2545
+ "loss": 1.1907,
2546
+ "step": 42300
2547
+ },
2548
+ {
2549
+ "epoch": 0.72,
2550
+ "learning_rate": 1.705710102489019e-06,
2551
+ "loss": 1.2545,
2552
+ "step": 42400
2553
+ },
2554
+ {
2555
+ "epoch": 0.72,
2556
+ "learning_rate": 1.6955425410769482e-06,
2557
+ "loss": 1.2322,
2558
+ "step": 42500
2559
+ },
2560
+ {
2561
+ "epoch": 0.72,
2562
+ "learning_rate": 1.6853749796648772e-06,
2563
+ "loss": 1.2505,
2564
+ "step": 42600
2565
+ },
2566
+ {
2567
+ "epoch": 0.72,
2568
+ "learning_rate": 1.6752074182528064e-06,
2569
+ "loss": 1.273,
2570
+ "step": 42700
2571
+ },
2572
+ {
2573
+ "epoch": 0.72,
2574
+ "learning_rate": 1.6650398568407356e-06,
2575
+ "loss": 1.2601,
2576
+ "step": 42800
2577
+ },
2578
+ {
2579
+ "epoch": 0.72,
2580
+ "learning_rate": 1.6548722954286645e-06,
2581
+ "loss": 1.2768,
2582
+ "step": 42900
2583
+ },
2584
+ {
2585
+ "epoch": 0.73,
2586
+ "learning_rate": 1.6447047340165937e-06,
2587
+ "loss": 1.2636,
2588
+ "step": 43000
2589
+ },
2590
+ {
2591
+ "epoch": 0.73,
2592
+ "learning_rate": 1.6345371726045225e-06,
2593
+ "loss": 1.2736,
2594
+ "step": 43100
2595
+ },
2596
+ {
2597
+ "epoch": 0.73,
2598
+ "learning_rate": 1.6243696111924517e-06,
2599
+ "loss": 1.2582,
2600
+ "step": 43200
2601
+ },
2602
+ {
2603
+ "epoch": 0.73,
2604
+ "learning_rate": 1.6142020497803808e-06,
2605
+ "loss": 1.2922,
2606
+ "step": 43300
2607
+ },
2608
+ {
2609
+ "epoch": 0.73,
2610
+ "learning_rate": 1.6040344883683098e-06,
2611
+ "loss": 1.2806,
2612
+ "step": 43400
2613
+ },
2614
+ {
2615
+ "epoch": 0.74,
2616
+ "learning_rate": 1.593866926956239e-06,
2617
+ "loss": 1.3124,
2618
+ "step": 43500
2619
+ },
2620
+ {
2621
+ "epoch": 0.74,
2622
+ "learning_rate": 1.583699365544168e-06,
2623
+ "loss": 1.2964,
2624
+ "step": 43600
2625
+ },
2626
+ {
2627
+ "epoch": 0.74,
2628
+ "learning_rate": 1.5735318041320971e-06,
2629
+ "loss": 1.2518,
2630
+ "step": 43700
2631
+ },
2632
+ {
2633
+ "epoch": 0.74,
2634
+ "learning_rate": 1.5633642427200263e-06,
2635
+ "loss": 1.2706,
2636
+ "step": 43800
2637
+ },
2638
+ {
2639
+ "epoch": 0.74,
2640
+ "learning_rate": 1.5531966813079553e-06,
2641
+ "loss": 1.2833,
2642
+ "step": 43900
2643
+ },
2644
+ {
2645
+ "epoch": 0.74,
2646
+ "learning_rate": 1.5430291198958845e-06,
2647
+ "loss": 1.2996,
2648
+ "step": 44000
2649
+ },
2650
+ {
2651
+ "epoch": 0.75,
2652
+ "learning_rate": 1.5328615584838132e-06,
2653
+ "loss": 1.2872,
2654
+ "step": 44100
2655
+ },
2656
+ {
2657
+ "epoch": 0.75,
2658
+ "learning_rate": 1.5226939970717424e-06,
2659
+ "loss": 1.2789,
2660
+ "step": 44200
2661
+ },
2662
+ {
2663
+ "epoch": 0.75,
2664
+ "learning_rate": 1.5125264356596714e-06,
2665
+ "loss": 1.2682,
2666
+ "step": 44300
2667
+ },
2668
+ {
2669
+ "epoch": 0.75,
2670
+ "learning_rate": 1.5023588742476005e-06,
2671
+ "loss": 1.3165,
2672
+ "step": 44400
2673
+ },
2674
+ {
2675
+ "epoch": 0.75,
2676
+ "learning_rate": 1.4921913128355297e-06,
2677
+ "loss": 1.3272,
2678
+ "step": 44500
2679
+ },
2680
+ {
2681
+ "epoch": 0.75,
2682
+ "learning_rate": 1.4820237514234587e-06,
2683
+ "loss": 1.3175,
2684
+ "step": 44600
2685
+ },
2686
+ {
2687
+ "epoch": 0.76,
2688
+ "learning_rate": 1.4718561900113879e-06,
2689
+ "loss": 1.3275,
2690
+ "step": 44700
2691
+ },
2692
+ {
2693
+ "epoch": 0.76,
2694
+ "learning_rate": 1.4616886285993168e-06,
2695
+ "loss": 1.2995,
2696
+ "step": 44800
2697
+ },
2698
+ {
2699
+ "epoch": 0.76,
2700
+ "learning_rate": 1.451521067187246e-06,
2701
+ "loss": 1.3184,
2702
+ "step": 44900
2703
+ },
2704
+ {
2705
+ "epoch": 0.76,
2706
+ "learning_rate": 1.4413535057751752e-06,
2707
+ "loss": 1.3338,
2708
+ "step": 45000
2709
+ },
2710
+ {
2711
+ "epoch": 0.76,
2712
+ "learning_rate": 1.431185944363104e-06,
2713
+ "loss": 1.3071,
2714
+ "step": 45100
2715
+ },
2716
+ {
2717
+ "epoch": 0.76,
2718
+ "learning_rate": 1.4210183829510331e-06,
2719
+ "loss": 1.2942,
2720
+ "step": 45200
2721
+ },
2722
+ {
2723
+ "epoch": 0.77,
2724
+ "learning_rate": 1.4108508215389621e-06,
2725
+ "loss": 1.3169,
2726
+ "step": 45300
2727
+ },
2728
+ {
2729
+ "epoch": 0.77,
2730
+ "learning_rate": 1.4006832601268913e-06,
2731
+ "loss": 1.3668,
2732
+ "step": 45400
2733
+ },
2734
+ {
2735
+ "epoch": 0.77,
2736
+ "learning_rate": 1.3905156987148203e-06,
2737
+ "loss": 1.3148,
2738
+ "step": 45500
2739
+ },
2740
+ {
2741
+ "epoch": 0.77,
2742
+ "learning_rate": 1.3803481373027494e-06,
2743
+ "loss": 1.365,
2744
+ "step": 45600
2745
+ },
2746
+ {
2747
+ "epoch": 0.77,
2748
+ "learning_rate": 1.3701805758906786e-06,
2749
+ "loss": 1.3083,
2750
+ "step": 45700
2751
+ },
2752
+ {
2753
+ "epoch": 0.77,
2754
+ "learning_rate": 1.3600130144786076e-06,
2755
+ "loss": 1.3567,
2756
+ "step": 45800
2757
+ },
2758
+ {
2759
+ "epoch": 0.78,
2760
+ "learning_rate": 1.3498454530665368e-06,
2761
+ "loss": 1.3985,
2762
+ "step": 45900
2763
+ },
2764
+ {
2765
+ "epoch": 0.78,
2766
+ "learning_rate": 1.3396778916544655e-06,
2767
+ "loss": 1.38,
2768
+ "step": 46000
2769
+ },
2770
+ {
2771
+ "epoch": 0.78,
2772
+ "learning_rate": 1.3295103302423947e-06,
2773
+ "loss": 1.3656,
2774
+ "step": 46100
2775
+ },
2776
+ {
2777
+ "epoch": 0.78,
2778
+ "learning_rate": 1.3193427688303239e-06,
2779
+ "loss": 1.3911,
2780
+ "step": 46200
2781
+ },
2782
+ {
2783
+ "epoch": 0.78,
2784
+ "learning_rate": 1.3091752074182529e-06,
2785
+ "loss": 1.3768,
2786
+ "step": 46300
2787
+ },
2788
+ {
2789
+ "epoch": 0.78,
2790
+ "learning_rate": 1.299007646006182e-06,
2791
+ "loss": 1.4085,
2792
+ "step": 46400
2793
+ },
2794
+ {
2795
+ "epoch": 0.79,
2796
+ "learning_rate": 1.288840084594111e-06,
2797
+ "loss": 1.3772,
2798
+ "step": 46500
2799
+ },
2800
+ {
2801
+ "epoch": 0.79,
2802
+ "learning_rate": 1.2786725231820402e-06,
2803
+ "loss": 1.3681,
2804
+ "step": 46600
2805
+ },
2806
+ {
2807
+ "epoch": 0.79,
2808
+ "learning_rate": 1.2685049617699692e-06,
2809
+ "loss": 1.3595,
2810
+ "step": 46700
2811
+ },
2812
+ {
2813
+ "epoch": 0.79,
2814
+ "learning_rate": 1.2583374003578983e-06,
2815
+ "loss": 1.372,
2816
+ "step": 46800
2817
+ },
2818
+ {
2819
+ "epoch": 0.79,
2820
+ "learning_rate": 1.2481698389458273e-06,
2821
+ "loss": 1.411,
2822
+ "step": 46900
2823
+ },
2824
+ {
2825
+ "epoch": 0.79,
2826
+ "learning_rate": 1.2380022775337563e-06,
2827
+ "loss": 1.3747,
2828
+ "step": 47000
2829
+ },
2830
+ {
2831
+ "epoch": 0.8,
2832
+ "learning_rate": 1.2278347161216855e-06,
2833
+ "loss": 1.349,
2834
+ "step": 47100
2835
+ },
2836
+ {
2837
+ "epoch": 0.8,
2838
+ "learning_rate": 1.2176671547096146e-06,
2839
+ "loss": 1.3944,
2840
+ "step": 47200
2841
+ },
2842
+ {
2843
+ "epoch": 0.8,
2844
+ "learning_rate": 1.2074995932975436e-06,
2845
+ "loss": 1.4021,
2846
+ "step": 47300
2847
+ },
2848
+ {
2849
+ "epoch": 0.8,
2850
+ "learning_rate": 1.1973320318854726e-06,
2851
+ "loss": 1.4005,
2852
+ "step": 47400
2853
+ },
2854
+ {
2855
+ "epoch": 0.8,
2856
+ "learning_rate": 1.1871644704734018e-06,
2857
+ "loss": 1.4209,
2858
+ "step": 47500
2859
+ },
2860
+ {
2861
+ "epoch": 0.8,
2862
+ "learning_rate": 1.1769969090613307e-06,
2863
+ "loss": 1.3936,
2864
+ "step": 47600
2865
+ },
2866
+ {
2867
+ "epoch": 0.81,
2868
+ "learning_rate": 1.16682934764926e-06,
2869
+ "loss": 1.375,
2870
+ "step": 47700
2871
+ },
2872
+ {
2873
+ "epoch": 0.81,
2874
+ "learning_rate": 1.156661786237189e-06,
2875
+ "loss": 1.388,
2876
+ "step": 47800
2877
+ },
2878
+ {
2879
+ "epoch": 0.81,
2880
+ "learning_rate": 1.146494224825118e-06,
2881
+ "loss": 1.3496,
2882
+ "step": 47900
2883
+ },
2884
+ {
2885
+ "epoch": 0.81,
2886
+ "learning_rate": 1.136326663413047e-06,
2887
+ "loss": 1.4065,
2888
+ "step": 48000
2889
+ },
2890
+ {
2891
+ "epoch": 0.81,
2892
+ "learning_rate": 1.1261591020009762e-06,
2893
+ "loss": 1.4378,
2894
+ "step": 48100
2895
+ },
2896
+ {
2897
+ "epoch": 0.81,
2898
+ "learning_rate": 1.1159915405889052e-06,
2899
+ "loss": 1.492,
2900
+ "step": 48200
2901
+ },
2902
+ {
2903
+ "epoch": 0.82,
2904
+ "learning_rate": 1.1058239791768343e-06,
2905
+ "loss": 1.4009,
2906
+ "step": 48300
2907
+ },
2908
+ {
2909
+ "epoch": 0.82,
2910
+ "learning_rate": 1.0956564177647633e-06,
2911
+ "loss": 1.4632,
2912
+ "step": 48400
2913
+ },
2914
+ {
2915
+ "epoch": 0.82,
2916
+ "learning_rate": 1.0854888563526925e-06,
2917
+ "loss": 1.433,
2918
+ "step": 48500
2919
+ },
2920
+ {
2921
+ "epoch": 0.82,
2922
+ "learning_rate": 1.0753212949406215e-06,
2923
+ "loss": 1.483,
2924
+ "step": 48600
2925
+ },
2926
+ {
2927
+ "epoch": 0.82,
2928
+ "learning_rate": 1.0651537335285506e-06,
2929
+ "loss": 1.4401,
2930
+ "step": 48700
2931
+ },
2932
+ {
2933
+ "epoch": 0.82,
2934
+ "learning_rate": 1.0549861721164796e-06,
2935
+ "loss": 1.4332,
2936
+ "step": 48800
2937
+ },
2938
+ {
2939
+ "epoch": 0.83,
2940
+ "learning_rate": 1.0448186107044088e-06,
2941
+ "loss": 1.4229,
2942
+ "step": 48900
2943
+ },
2944
+ {
2945
+ "epoch": 0.83,
2946
+ "learning_rate": 1.0346510492923378e-06,
2947
+ "loss": 1.4616,
2948
+ "step": 49000
2949
+ },
2950
+ {
2951
+ "epoch": 0.83,
2952
+ "learning_rate": 1.024483487880267e-06,
2953
+ "loss": 1.4566,
2954
+ "step": 49100
2955
+ },
2956
+ {
2957
+ "epoch": 0.83,
2958
+ "learning_rate": 1.014315926468196e-06,
2959
+ "loss": 1.4524,
2960
+ "step": 49200
2961
+ },
2962
+ {
2963
+ "epoch": 0.83,
2964
+ "learning_rate": 1.0041483650561249e-06,
2965
+ "loss": 1.4719,
2966
+ "step": 49300
2967
+ },
2968
+ {
2969
+ "epoch": 0.83,
2970
+ "learning_rate": 9.93980803644054e-07,
2971
+ "loss": 1.4893,
2972
+ "step": 49400
2973
+ },
2974
+ {
2975
+ "epoch": 0.84,
2976
+ "learning_rate": 9.838132422319832e-07,
2977
+ "loss": 1.4656,
2978
+ "step": 49500
2979
+ },
2980
+ {
2981
+ "epoch": 0.84,
2982
+ "learning_rate": 9.736456808199122e-07,
2983
+ "loss": 1.4937,
2984
+ "step": 49600
2985
+ },
2986
+ {
2987
+ "epoch": 0.84,
2988
+ "learning_rate": 9.634781194078414e-07,
2989
+ "loss": 1.4616,
2990
+ "step": 49700
2991
+ },
2992
+ {
2993
+ "epoch": 0.84,
2994
+ "learning_rate": 9.533105579957704e-07,
2995
+ "loss": 1.4421,
2996
+ "step": 49800
2997
+ },
2998
+ {
2999
+ "epoch": 0.84,
3000
+ "learning_rate": 9.431429965836994e-07,
3001
+ "loss": 1.5097,
3002
+ "step": 49900
3003
+ },
3004
+ {
3005
+ "epoch": 0.84,
3006
+ "learning_rate": 9.329754351716284e-07,
3007
+ "loss": 1.499,
3008
+ "step": 50000
3009
+ },
3010
+ {
3011
+ "epoch": 0.85,
3012
+ "learning_rate": 9.228078737595576e-07,
3013
+ "loss": 1.488,
3014
+ "step": 50100
3015
+ },
3016
+ {
3017
+ "epoch": 0.85,
3018
+ "learning_rate": 9.126403123474867e-07,
3019
+ "loss": 1.5273,
3020
+ "step": 50200
3021
+ },
3022
+ {
3023
+ "epoch": 0.85,
3024
+ "learning_rate": 9.024727509354157e-07,
3025
+ "loss": 1.4876,
3026
+ "step": 50300
3027
+ },
3028
+ {
3029
+ "epoch": 0.85,
3030
+ "learning_rate": 8.923051895233448e-07,
3031
+ "loss": 1.4964,
3032
+ "step": 50400
3033
+ },
3034
+ {
3035
+ "epoch": 0.85,
3036
+ "learning_rate": 8.821376281112738e-07,
3037
+ "loss": 1.4922,
3038
+ "step": 50500
3039
+ },
3040
+ {
3041
+ "epoch": 0.86,
3042
+ "learning_rate": 8.719700666992028e-07,
3043
+ "loss": 1.4608,
3044
+ "step": 50600
3045
+ },
3046
+ {
3047
+ "epoch": 0.86,
3048
+ "learning_rate": 8.61802505287132e-07,
3049
+ "loss": 1.4756,
3050
+ "step": 50700
3051
+ },
3052
+ {
3053
+ "epoch": 0.86,
3054
+ "learning_rate": 8.516349438750611e-07,
3055
+ "loss": 1.5232,
3056
+ "step": 50800
3057
+ },
3058
+ {
3059
+ "epoch": 0.86,
3060
+ "learning_rate": 8.414673824629902e-07,
3061
+ "loss": 1.5272,
3062
+ "step": 50900
3063
+ },
3064
+ {
3065
+ "epoch": 0.86,
3066
+ "learning_rate": 8.312998210509191e-07,
3067
+ "loss": 1.5539,
3068
+ "step": 51000
3069
+ },
3070
+ {
3071
+ "epoch": 0.86,
3072
+ "learning_rate": 8.211322596388482e-07,
3073
+ "loss": 1.5316,
3074
+ "step": 51100
3075
+ },
3076
+ {
3077
+ "epoch": 0.87,
3078
+ "learning_rate": 8.109646982267774e-07,
3079
+ "loss": 1.5529,
3080
+ "step": 51200
3081
+ },
3082
+ {
3083
+ "epoch": 0.87,
3084
+ "learning_rate": 8.007971368147065e-07,
3085
+ "loss": 1.5013,
3086
+ "step": 51300
3087
+ },
3088
+ {
3089
+ "epoch": 0.87,
3090
+ "learning_rate": 7.906295754026355e-07,
3091
+ "loss": 1.565,
3092
+ "step": 51400
3093
+ },
3094
+ {
3095
+ "epoch": 0.87,
3096
+ "learning_rate": 7.804620139905645e-07,
3097
+ "loss": 1.5304,
3098
+ "step": 51500
3099
+ },
3100
+ {
3101
+ "epoch": 0.87,
3102
+ "learning_rate": 7.702944525784936e-07,
3103
+ "loss": 1.5279,
3104
+ "step": 51600
3105
+ },
3106
+ {
3107
+ "epoch": 0.87,
3108
+ "learning_rate": 7.601268911664227e-07,
3109
+ "loss": 1.5389,
3110
+ "step": 51700
3111
+ },
3112
+ {
3113
+ "epoch": 0.88,
3114
+ "learning_rate": 7.499593297543518e-07,
3115
+ "loss": 1.5408,
3116
+ "step": 51800
3117
+ },
3118
+ {
3119
+ "epoch": 0.88,
3120
+ "learning_rate": 7.397917683422809e-07,
3121
+ "loss": 1.5557,
3122
+ "step": 51900
3123
+ },
3124
+ {
3125
+ "epoch": 0.88,
3126
+ "learning_rate": 7.296242069302099e-07,
3127
+ "loss": 1.5694,
3128
+ "step": 52000
3129
+ },
3130
+ {
3131
+ "epoch": 0.88,
3132
+ "learning_rate": 7.19456645518139e-07,
3133
+ "loss": 1.5553,
3134
+ "step": 52100
3135
+ },
3136
+ {
3137
+ "epoch": 0.88,
3138
+ "learning_rate": 7.09289084106068e-07,
3139
+ "loss": 1.5764,
3140
+ "step": 52200
3141
+ },
3142
+ {
3143
+ "epoch": 0.88,
3144
+ "learning_rate": 6.991215226939971e-07,
3145
+ "loss": 1.5792,
3146
+ "step": 52300
3147
+ },
3148
+ {
3149
+ "epoch": 0.89,
3150
+ "learning_rate": 6.889539612819263e-07,
3151
+ "loss": 1.5821,
3152
+ "step": 52400
3153
+ },
3154
+ {
3155
+ "epoch": 0.89,
3156
+ "learning_rate": 6.787863998698553e-07,
3157
+ "loss": 1.5484,
3158
+ "step": 52500
3159
+ },
3160
+ {
3161
+ "epoch": 0.89,
3162
+ "learning_rate": 6.686188384577843e-07,
3163
+ "loss": 1.5772,
3164
+ "step": 52600
3165
+ },
3166
+ {
3167
+ "epoch": 0.89,
3168
+ "learning_rate": 6.584512770457134e-07,
3169
+ "loss": 1.5898,
3170
+ "step": 52700
3171
+ },
3172
+ {
3173
+ "epoch": 0.89,
3174
+ "learning_rate": 6.482837156336425e-07,
3175
+ "loss": 1.5195,
3176
+ "step": 52800
3177
+ },
3178
+ {
3179
+ "epoch": 0.89,
3180
+ "learning_rate": 6.381161542215715e-07,
3181
+ "loss": 1.5598,
3182
+ "step": 52900
3183
+ },
3184
+ {
3185
+ "epoch": 0.9,
3186
+ "learning_rate": 6.279485928095006e-07,
3187
+ "loss": 1.6432,
3188
+ "step": 53000
3189
+ },
3190
+ {
3191
+ "epoch": 0.9,
3192
+ "learning_rate": 6.177810313974297e-07,
3193
+ "loss": 1.5635,
3194
+ "step": 53100
3195
+ },
3196
+ {
3197
+ "epoch": 0.9,
3198
+ "learning_rate": 6.076134699853588e-07,
3199
+ "loss": 1.5919,
3200
+ "step": 53200
3201
+ },
3202
+ {
3203
+ "epoch": 0.9,
3204
+ "learning_rate": 5.974459085732879e-07,
3205
+ "loss": 1.5913,
3206
+ "step": 53300
3207
+ },
3208
+ {
3209
+ "epoch": 0.9,
3210
+ "learning_rate": 5.872783471612168e-07,
3211
+ "loss": 1.5627,
3212
+ "step": 53400
3213
+ },
3214
+ {
3215
+ "epoch": 0.9,
3216
+ "learning_rate": 5.77110785749146e-07,
3217
+ "loss": 1.6507,
3218
+ "step": 53500
3219
+ },
3220
+ {
3221
+ "epoch": 0.91,
3222
+ "learning_rate": 5.669432243370751e-07,
3223
+ "loss": 1.7103,
3224
+ "step": 53600
3225
+ },
3226
+ {
3227
+ "epoch": 0.91,
3228
+ "learning_rate": 5.56775662925004e-07,
3229
+ "loss": 1.6273,
3230
+ "step": 53700
3231
+ },
3232
+ {
3233
+ "epoch": 0.91,
3234
+ "learning_rate": 5.466081015129332e-07,
3235
+ "loss": 1.6157,
3236
+ "step": 53800
3237
+ },
3238
+ {
3239
+ "epoch": 0.91,
3240
+ "learning_rate": 5.364405401008622e-07,
3241
+ "loss": 1.6314,
3242
+ "step": 53900
3243
+ },
3244
+ {
3245
+ "epoch": 0.91,
3246
+ "learning_rate": 5.262729786887913e-07,
3247
+ "loss": 1.6679,
3248
+ "step": 54000
3249
+ },
3250
+ {
3251
+ "epoch": 0.91,
3252
+ "learning_rate": 5.161054172767205e-07,
3253
+ "loss": 1.6815,
3254
+ "step": 54100
3255
+ },
3256
+ {
3257
+ "epoch": 0.92,
3258
+ "learning_rate": 5.059378558646494e-07,
3259
+ "loss": 1.6441,
3260
+ "step": 54200
3261
+ },
3262
+ {
3263
+ "epoch": 0.92,
3264
+ "learning_rate": 4.957702944525785e-07,
3265
+ "loss": 1.6241,
3266
+ "step": 54300
3267
+ },
3268
+ {
3269
+ "epoch": 0.92,
3270
+ "learning_rate": 4.856027330405076e-07,
3271
+ "loss": 1.6909,
3272
+ "step": 54400
3273
+ },
3274
+ {
3275
+ "epoch": 0.92,
3276
+ "learning_rate": 4.7543517162843665e-07,
3277
+ "loss": 1.7092,
3278
+ "step": 54500
3279
+ },
3280
+ {
3281
+ "epoch": 0.92,
3282
+ "learning_rate": 4.652676102163657e-07,
3283
+ "loss": 1.6423,
3284
+ "step": 54600
3285
+ },
3286
+ {
3287
+ "epoch": 0.92,
3288
+ "learning_rate": 4.5510004880429485e-07,
3289
+ "loss": 1.667,
3290
+ "step": 54700
3291
+ },
3292
+ {
3293
+ "epoch": 0.93,
3294
+ "learning_rate": 4.4493248739222387e-07,
3295
+ "loss": 1.6544,
3296
+ "step": 54800
3297
+ },
3298
+ {
3299
+ "epoch": 0.93,
3300
+ "learning_rate": 4.3476492598015294e-07,
3301
+ "loss": 1.674,
3302
+ "step": 54900
3303
+ },
3304
+ {
3305
+ "epoch": 0.93,
3306
+ "learning_rate": 4.24597364568082e-07,
3307
+ "loss": 1.6642,
3308
+ "step": 55000
3309
+ },
3310
+ {
3311
+ "epoch": 0.93,
3312
+ "learning_rate": 4.144298031560111e-07,
3313
+ "loss": 1.6554,
3314
+ "step": 55100
3315
+ },
3316
+ {
3317
+ "epoch": 0.93,
3318
+ "learning_rate": 4.042622417439402e-07,
3319
+ "loss": 1.7157,
3320
+ "step": 55200
3321
+ },
3322
+ {
3323
+ "epoch": 0.93,
3324
+ "learning_rate": 3.9409468033186924e-07,
3325
+ "loss": 1.6089,
3326
+ "step": 55300
3327
+ },
3328
+ {
3329
+ "epoch": 0.94,
3330
+ "learning_rate": 3.839271189197983e-07,
3331
+ "loss": 1.689,
3332
+ "step": 55400
3333
+ },
3334
+ {
3335
+ "epoch": 0.94,
3336
+ "learning_rate": 3.737595575077274e-07,
3337
+ "loss": 1.7004,
3338
+ "step": 55500
3339
+ },
3340
+ {
3341
+ "epoch": 0.94,
3342
+ "learning_rate": 3.6359199609565647e-07,
3343
+ "loss": 1.6773,
3344
+ "step": 55600
3345
+ },
3346
+ {
3347
+ "epoch": 0.94,
3348
+ "learning_rate": 3.534244346835855e-07,
3349
+ "loss": 1.6339,
3350
+ "step": 55700
3351
+ },
3352
+ {
3353
+ "epoch": 0.94,
3354
+ "learning_rate": 3.432568732715146e-07,
3355
+ "loss": 1.6879,
3356
+ "step": 55800
3357
+ },
3358
+ {
3359
+ "epoch": 0.94,
3360
+ "learning_rate": 3.330893118594437e-07,
3361
+ "loss": 1.7352,
3362
+ "step": 55900
3363
+ },
3364
+ {
3365
+ "epoch": 0.95,
3366
+ "learning_rate": 3.229217504473727e-07,
3367
+ "loss": 1.7616,
3368
+ "step": 56000
3369
+ },
3370
+ {
3371
+ "epoch": 0.95,
3372
+ "learning_rate": 3.1275418903530184e-07,
3373
+ "loss": 1.7308,
3374
+ "step": 56100
3375
+ },
3376
+ {
3377
+ "epoch": 0.95,
3378
+ "learning_rate": 3.0258662762323086e-07,
3379
+ "loss": 1.767,
3380
+ "step": 56200
3381
+ },
3382
+ {
3383
+ "epoch": 0.95,
3384
+ "learning_rate": 2.9241906621115993e-07,
3385
+ "loss": 1.7031,
3386
+ "step": 56300
3387
+ },
3388
+ {
3389
+ "epoch": 0.95,
3390
+ "learning_rate": 2.82251504799089e-07,
3391
+ "loss": 1.714,
3392
+ "step": 56400
3393
+ },
3394
+ {
3395
+ "epoch": 0.95,
3396
+ "learning_rate": 2.720839433870181e-07,
3397
+ "loss": 1.7357,
3398
+ "step": 56500
3399
+ },
3400
+ {
3401
+ "epoch": 0.96,
3402
+ "learning_rate": 2.6191638197494716e-07,
3403
+ "loss": 1.7049,
3404
+ "step": 56600
3405
+ },
3406
+ {
3407
+ "epoch": 0.96,
3408
+ "learning_rate": 2.5174882056287623e-07,
3409
+ "loss": 1.7434,
3410
+ "step": 56700
3411
+ },
3412
+ {
3413
+ "epoch": 0.96,
3414
+ "learning_rate": 2.415812591508053e-07,
3415
+ "loss": 1.75,
3416
+ "step": 56800
3417
+ },
3418
+ {
3419
+ "epoch": 0.96,
3420
+ "learning_rate": 2.3141369773873435e-07,
3421
+ "loss": 1.7449,
3422
+ "step": 56900
3423
+ },
3424
+ {
3425
+ "epoch": 0.96,
3426
+ "learning_rate": 2.2124613632666343e-07,
3427
+ "loss": 1.7693,
3428
+ "step": 57000
3429
+ },
3430
+ {
3431
+ "epoch": 0.96,
3432
+ "learning_rate": 2.110785749145925e-07,
3433
+ "loss": 1.7759,
3434
+ "step": 57100
3435
+ },
3436
+ {
3437
+ "epoch": 0.97,
3438
+ "learning_rate": 2.0091101350252158e-07,
3439
+ "loss": 1.805,
3440
+ "step": 57200
3441
+ },
3442
+ {
3443
+ "epoch": 0.97,
3444
+ "learning_rate": 1.9074345209045063e-07,
3445
+ "loss": 1.7565,
3446
+ "step": 57300
3447
+ },
3448
+ {
3449
+ "epoch": 0.97,
3450
+ "learning_rate": 1.8057589067837973e-07,
3451
+ "loss": 1.7891,
3452
+ "step": 57400
3453
+ },
3454
+ {
3455
+ "epoch": 0.97,
3456
+ "learning_rate": 1.704083292663088e-07,
3457
+ "loss": 1.7562,
3458
+ "step": 57500
3459
+ },
3460
+ {
3461
+ "epoch": 0.97,
3462
+ "learning_rate": 1.6024076785423785e-07,
3463
+ "loss": 1.7761,
3464
+ "step": 57600
3465
+ },
3466
+ {
3467
+ "epoch": 0.98,
3468
+ "learning_rate": 1.5007320644216692e-07,
3469
+ "loss": 1.798,
3470
+ "step": 57700
3471
+ },
3472
+ {
3473
+ "epoch": 0.98,
3474
+ "learning_rate": 1.39905645030096e-07,
3475
+ "loss": 1.7808,
3476
+ "step": 57800
3477
+ },
3478
+ {
3479
+ "epoch": 0.98,
3480
+ "learning_rate": 1.2973808361802505e-07,
3481
+ "loss": 1.7764,
3482
+ "step": 57900
3483
+ },
3484
+ {
3485
+ "epoch": 0.98,
3486
+ "learning_rate": 1.1957052220595415e-07,
3487
+ "loss": 1.7831,
3488
+ "step": 58000
3489
+ },
3490
+ {
3491
+ "epoch": 0.98,
3492
+ "learning_rate": 1.094029607938832e-07,
3493
+ "loss": 1.8296,
3494
+ "step": 58100
3495
+ },
3496
+ {
3497
+ "epoch": 0.98,
3498
+ "learning_rate": 9.923539938181228e-08,
3499
+ "loss": 1.7863,
3500
+ "step": 58200
3501
+ },
3502
+ {
3503
+ "epoch": 0.99,
3504
+ "learning_rate": 8.906783796974134e-08,
3505
+ "loss": 1.7902,
3506
+ "step": 58300
3507
+ },
3508
+ {
3509
+ "epoch": 0.99,
3510
+ "learning_rate": 7.89002765576704e-08,
3511
+ "loss": 1.8269,
3512
+ "step": 58400
3513
+ },
3514
+ {
3515
+ "epoch": 0.99,
3516
+ "learning_rate": 6.873271514559948e-08,
3517
+ "loss": 1.8619,
3518
+ "step": 58500
3519
+ },
3520
+ {
3521
+ "epoch": 0.99,
3522
+ "learning_rate": 5.8565153733528555e-08,
3523
+ "loss": 1.8395,
3524
+ "step": 58600
3525
+ },
3526
+ {
3527
+ "epoch": 0.99,
3528
+ "learning_rate": 4.839759232145763e-08,
3529
+ "loss": 1.7979,
3530
+ "step": 58700
3531
+ },
3532
+ {
3533
+ "epoch": 0.99,
3534
+ "learning_rate": 3.82300309093867e-08,
3535
+ "loss": 1.8391,
3536
+ "step": 58800
3537
+ },
3538
+ {
3539
+ "epoch": 1.0,
3540
+ "learning_rate": 2.8062469497315768e-08,
3541
+ "loss": 1.8435,
3542
+ "step": 58900
3543
+ },
3544
+ {
3545
+ "epoch": 1.0,
3546
+ "learning_rate": 1.7894908085244836e-08,
3547
+ "loss": 1.7877,
3548
+ "step": 59000
3549
+ },
3550
+ {
3551
+ "epoch": 1.0,
3552
+ "learning_rate": 7.727346673173906e-09,
3553
+ "loss": 1.8712,
3554
+ "step": 59100
3555
+ },
3556
+ {
3557
+ "epoch": 1.0,
3558
+ "eval_loss": 2.2859742641448975,
3559
+ "eval_runtime": 193.5251,
3560
+ "eval_samples_per_second": 129.255,
3561
+ "eval_steps_per_second": 2.02,
3562
+ "step": 59176
3563
+ }
3564
+ ],
3565
+ "max_steps": 59176,
3566
+ "num_train_epochs": 1,
3567
+ "total_flos": 4.501774968361135e+19,
3568
+ "trial_name": null,
3569
+ "trial_params": null
3570
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93635651d623b1f61818d61d7cd0c84c1712852a22c8959755ddc6f17d93a4a6
3
+ size 3387