MeMo_BERT-WSD-MeMo-BERT-02_last

This model is a fine-tuned version of MiMe-MeMo/MeMo-BERT-02 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.3216
  • F1-score: 0.4444

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 61 1.6200 0.1229
No log 2.0 122 1.4272 0.2217
No log 3.0 183 1.4465 0.2220
No log 4.0 244 1.7271 0.2428
No log 5.0 305 1.8954 0.3110
No log 6.0 366 2.7308 0.1632
No log 7.0 427 2.3096 0.3502
No log 8.0 488 2.5584 0.4155
0.8087 9.0 549 3.1863 0.4054
0.8087 10.0 610 3.3216 0.4444
0.8087 11.0 671 3.3437 0.3938
0.8087 12.0 732 4.1038 0.3355
0.8087 13.0 793 4.4369 0.3054
0.8087 14.0 854 3.8867 0.3430
0.8087 15.0 915 3.9579 0.3430
0.8087 16.0 976 4.0195 0.3430
0.0152 17.0 1037 4.1380 0.3311
0.0152 18.0 1098 4.1298 0.3311
0.0152 19.0 1159 4.1499 0.3311
0.0152 20.0 1220 4.1574 0.3311

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
112
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/MeMo_BERT-WSD-MeMo-BERT-02_last

Finetuned
(3)
this model