MeMo_BERT-WSD-DanBERT

This model is a fine-tuned version of alexanderfalk/danbert-small-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.1673
  • F1-score: 0.3866

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 61 1.5325 0.1229
No log 2.0 122 1.5469 0.1229
No log 3.0 183 1.5848 0.1916
No log 4.0 244 1.7138 0.2595
No log 5.0 305 2.5576 0.1820
No log 6.0 366 2.5028 0.3250
No log 7.0 427 2.8110 0.2125
No log 8.0 488 3.2862 0.3449
0.7249 9.0 549 3.1673 0.3866
0.7249 10.0 610 4.1707 0.2961
0.7249 11.0 671 4.2567 0.3072
0.7249 12.0 732 4.0008 0.3608
0.7249 13.0 793 4.0726 0.3239
0.7249 14.0 854 4.2054 0.3091
0.7249 15.0 915 4.2703 0.3107
0.7249 16.0 976 4.2723 0.3014
0.0021 17.0 1037 4.2581 0.3014
0.0021 18.0 1098 4.2739 0.3014
0.0021 19.0 1159 4.2988 0.3014
0.0021 20.0 1220 4.3953 0.3107

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
13
Safetensors
Model size
83.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/MeMo_BERT-WSD-DanBERT

Finetuned
(2)
this model