MeMo_BERT-WSD-02

This model is a fine-tuned version of MiMe-MeMo/MeMo-BERT-02 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4274
  • F1-score: 0.3523

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 61 1.6387 0.1229
No log 2.0 122 1.4760 0.2016
No log 3.0 183 1.4995 0.2754
No log 4.0 244 1.9750 0.2519
No log 5.0 305 2.3945 0.3115
No log 6.0 366 2.9512 0.2336
No log 7.0 427 3.3875 0.2933
No log 8.0 488 3.4274 0.3523
0.6662 9.0 549 3.8142 0.3244
0.6662 10.0 610 4.3089 0.3271
0.6662 11.0 671 4.4936 0.2806
0.6662 12.0 732 4.4328 0.2893
0.6662 13.0 793 4.8685 0.2353
0.6662 14.0 854 4.4432 0.3018
0.6662 15.0 915 4.6090 0.2820
0.6662 16.0 976 4.5783 0.2871
0.0033 17.0 1037 4.6179 0.2871
0.0033 18.0 1098 4.7173 0.2847
0.0033 19.0 1159 4.7240 0.3029
0.0033 20.0 1220 4.7167 0.3029

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
4
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/MeMo_BERT-WSD-02

Finetuned
(3)
this model