MeMo Model (Word Sense Disambiguation)

This model is a fine-tuned version of MiMe-MeMo/MeMo-BERT-01 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7214
  • F1-score: 0.6667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss F1-score
No log 1.0 11 0.7214 0.6667
No log 2.0 22 1.2543 0.5429
No log 3.0 33 1.0829 0.6837
No log 4.0 44 1.3815 0.7552
No log 5.0 55 1.4733 0.7005
No log 6.0 66 2.3876 0.5513
No log 7.0 77 1.3215 0.8004
No log 8.0 88 1.4006 0.7608
No log 9.0 99 1.4862 0.7608
No log 10.0 110 1.4974 0.7608
No log 11.0 121 1.4966 0.7608
No log 12.0 132 1.5040 0.7608
No log 13.0 143 1.5010 0.7608
No log 14.0 154 1.4741 0.7608
No log 15.0 165 1.4507 0.7608
No log 16.0 176 1.4420 0.7608
No log 17.0 187 1.4398 0.7608
No log 18.0 198 1.4426 0.7608
No log 19.0 209 1.4438 0.7608
No log 20.0 220 1.4439 0.7608

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.1
Downloads last month
24
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for yemen2016/MeMo-BERT-WSD_old

Finetuned
(3)
this model