Updates
- [June 04, 2024] 🌈 Add more Chinese training data to improve Chinese performance
- [May 23, 2024] 🔥 Support function calling
Model Summary
Gemma-1.1-7B-Chinese-Chat is an instruction-tuned language model for Chinese & English users built upon the gemma-1.1-7b-it model.(Github)
Developed by: ycjcl868
- License: Gemma License
- Base Model: gemma-1.1-7b-it
- Model Size: 8.54B
- Context length: 8K
Introduction
This is the first model specifically fine-tuned for Chinese & English user through SFT based on the gemma-1.1-7b-it model.
Compared to the original gemma-1.1-7b-it model, our Gemma-1.1-7B-Chinese-Chat model significantly reduces the issues of "Chinese questions with English answers" and the mixing of Chinese and English in responses.
Training details:
- epochs: 3
- learning rate: 0.0001
- learning rate scheduler type: cosine
- Warmup ratio: 0.1
- cutoff len (i.e. context length): 8192
- global batch size: 2
Usage
Chat Template
The instruction-tuned models use a chat template that must be adhered to for conversational use. The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
model_id = "ycjcl868/Gemma-1.1-7B-Chinese-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
torch_dtype="auto",
)
messages = [
{ "role": "user", "content": "写一首诗" },
]
input_ids = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, return_tensors="pt"
).to(model.device)
outputs = model.generate(
input_ids,
max_new_tokens=8192,
do_sample=True,
temperature=0.6,
top_p=0.9,
)
response = outputs[0][input_ids.shape[-1]:]
print(tokenizer.decode(response, skip_special_tokens=True))
# 春风拂柳,春雨轻轻,
# 花香满园,鸟鸣清脆。
# 一朵红梅,红彤彤的,
# 美不胜收,美不胜收。
Examples
User: 参加四年级数学竞赛同学中,男同学获奖人数比女同学多2人,女同学获奖人数比男同学人数的一半多2人,男女同学各有多少人获奖?
Assistant:
设男同学的获奖人数
为x,则女同学的获奖人数为y,所以有以下两式:
x=y+2
y=2(x+2)
将第一式代入第二式中,得:
y=2(y+2)+2
y=2y+4+2
y=2y+6
2y=y+6
y=6
因此,女同学获奖人数为6人,男同学获奖人数为8人。
User: 我的蓝牙耳机坏了,我应该去看耳鼻喉科还是牙科?
Assistant: 蓝牙耳机是属于电子产品的,而不是耳鼻喉科或牙科的范畴。如果你怀疑耳机有故障,建议去电子产品维修店或者原厂维修中心进行检查。如果需要新的耳机,你也可以去电器商店或电子产品市场购买。
User: 来几句成语
Assistant: “一日三尺”是指过时间一切都会改变。
User: 列出5种可以改善睡眠质量的方法
Assistant:
1. 保持规律的睡眠时间表
2. 避免下午摄入咖啡因
3. 避免睡前摄入酒精
4. 避免睡前摄入高糖饮食
5. 每天至少进行30分钟的运动
User: 回答一个开放性的问题:人类存在的意义是什么?
Assistant: 人类存在的意义是一个复杂的哲学和哲学问题,因为人类存在于自然界中,我们作为人类有责任和义务来保护地球和生物,而我们作为人类也有责任来发展自己的精神和思想,来创造更好的未来。
我从哲学角度来看,人类存在的意义是通过我们自己的思想和行动,来实现我们对精神和精神的追求。通过我们自己的努力和创造力,我们可以创造出更多的艺术、文化和思想,来促进人类的进步和发展。
User: 解释以下缩写: JSON、CEO、PDF、HTML、NASA
Assistant:
JSON(JavaScript Object Notation):JavaScript对象的表示法,用来在JavaScript和许多其他编程语言之间传递数据。
CEO(Chief Executive Officer):首席执行官,指企业的高级管理人员,通常是指企业的主席或总裁。
PDF(Portable Document Format):可移植文档格式,是一种电子文档格式,可以确保文档在不同的操作系统���设备上都能以一致的方式呈现。
HTML(HyperText Markup Language):超文本标记语言,是网页内容的标记语言,用来定义网页的结构和内容。
NASA(National Aeronautics and Space Administration):美国国家航空航天局,是美国政府的宇航机构,负责美国在太空和航空方面的研究和发展。
Function call
User:
以下是您可以使用的工具列表:
```python
def internet_search(query: str):
\"\"\"
Returns a list of relevant document snippets for a textual query retrieved from the internet
Args:
query (str): Query to search the internet with
\"\"\"
pass
```
```python
def directly_answer():
\"\"\"
Calls a standard (un-augmented) AI chatbot to generate a response given the conversation history
\"\"\"
pass
```
写 'Action:',后跟要调用的 JSON 中的操作列表,例如.
Action:
```json
[
{
"tool_name": "tool name (one of [internet_search, directly_answer])",
"parameters": "the input to the tool"
}
]
```
帮我找到今天的新闻有哪些:
Response:
Action:
[
{
"tool_name": "internet_search",
"parameters": "今天有哪些新闻"
}
]
- Downloads last month
- 6