yassmine's picture
End of training
019bb7b
metadata
tags:
  - generated_from_trainer
metrics:
  - bleu
model-index:
  - name: plbart-finetuned-unitTest-1000
    results: []

plbart-finetuned-unitTest-1000

This model is a fine-tuned version of uclanlp/plbart-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0000
  • Bleu: 0.0000

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Bleu
No log 1.0 92 0.9023 0.0000
No log 2.0 184 0.8401 0.0000
No log 3.0 276 0.8096 0.0000
No log 4.0 368 0.7942 0.0000
No log 5.0 460 0.7848 0.0000
0.943 6.0 552 0.7818 0.0000
0.943 7.0 644 0.7911 0.0000
0.943 8.0 736 0.7874 0.0000
0.943 9.0 828 0.7970 0.0000
0.943 10.0 920 0.8062 0.0000
0.5025 11.0 1012 0.8085 0.0000
0.5025 12.0 1104 0.8179 0.0000
0.5025 13.0 1196 0.8360 0.0000
0.5025 14.0 1288 0.8385 0.0000
0.5025 15.0 1380 0.8470 0.0000
0.5025 16.0 1472 0.8556 0.0000
0.3309 17.0 1564 0.8619 0.0000
0.3309 18.0 1656 0.8701 0.0000
0.3309 19.0 1748 0.8827 0.0000
0.3309 20.0 1840 0.8871 0.0000
0.3309 21.0 1932 0.8970 0.0000
0.2266 22.0 2024 0.8984 0.0000
0.2266 23.0 2116 0.9051 0.0000
0.2266 24.0 2208 0.9188 0.0000
0.2266 25.0 2300 0.9205 0.0000
0.2266 26.0 2392 0.9278 0.0000
0.2266 27.0 2484 0.9333 0.0000
0.1639 28.0 2576 0.9456 0.0000
0.1639 29.0 2668 0.9454 0.0000
0.1639 30.0 2760 0.9522 0.0000
0.1639 31.0 2852 0.9513 0.0000
0.1639 32.0 2944 0.9554 0.0000
0.1251 33.0 3036 0.9661 0.0000
0.1251 34.0 3128 0.9698 0.0000
0.1251 35.0 3220 0.9750 0.0000
0.1251 36.0 3312 0.9722 0.0000
0.1251 37.0 3404 0.9780 0.0000
0.1251 38.0 3496 0.9789 0.0000
0.1019 39.0 3588 0.9825 0.0000
0.1019 40.0 3680 0.9913 0.0000
0.1019 41.0 3772 0.9906 0.0000
0.1019 42.0 3864 0.9922 0.0000
0.1019 43.0 3956 0.9937 0.0000
0.0863 44.0 4048 0.9981 0.0000
0.0863 45.0 4140 0.9979 0.0000
0.0863 46.0 4232 0.9984 0.0000
0.0863 47.0 4324 0.9970 0.0000
0.0863 48.0 4416 1.0003 0.0000
0.0783 49.0 4508 0.9993 0.0000
0.0783 50.0 4600 1.0000 0.0000

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.1
  • Tokenizers 0.13.3