yasirfaizahmed
commited on
Commit
•
8942b9c
1
Parent(s):
1e3d4ab
working code
Browse files- notes/mnist.ipynb +276 -109
notes/mnist.ipynb
CHANGED
@@ -6,18 +6,18 @@
|
|
6 |
"id": "b2d6f096-6123-4dd0-ae4f-c9abf70889c4",
|
7 |
"metadata": {
|
8 |
"execution": {
|
9 |
-
"iopub.execute_input": "2024-04-
|
10 |
-
"iopub.status.busy": "2024-04-
|
11 |
-
"iopub.status.idle": "2024-04-
|
12 |
-
"shell.execute_reply": "2024-04-
|
13 |
-
"shell.execute_reply.started": "2024-04-
|
14 |
}
|
15 |
},
|
16 |
"outputs": [
|
17 |
{
|
18 |
"data": {
|
19 |
"application/vnd.jupyter.widget-view+json": {
|
20 |
-
"model_id": "
|
21 |
"version_major": 2,
|
22 |
"version_minor": 0
|
23 |
},
|
@@ -31,7 +31,7 @@
|
|
31 |
{
|
32 |
"data": {
|
33 |
"application/vnd.jupyter.widget-view+json": {
|
34 |
-
"model_id": "
|
35 |
"version_major": 2,
|
36 |
"version_minor": 0
|
37 |
},
|
@@ -52,7 +52,7 @@
|
|
52 |
{
|
53 |
"data": {
|
54 |
"application/vnd.jupyter.widget-view+json": {
|
55 |
-
"model_id": "
|
56 |
"version_major": 2,
|
57 |
"version_minor": 0
|
58 |
},
|
@@ -66,7 +66,7 @@
|
|
66 |
{
|
67 |
"data": {
|
68 |
"application/vnd.jupyter.widget-view+json": {
|
69 |
-
"model_id": "
|
70 |
"version_major": 2,
|
71 |
"version_minor": 0
|
72 |
},
|
@@ -80,7 +80,7 @@
|
|
80 |
{
|
81 |
"data": {
|
82 |
"application/vnd.jupyter.widget-view+json": {
|
83 |
-
"model_id": "
|
84 |
"version_major": 2,
|
85 |
"version_minor": 0
|
86 |
},
|
@@ -94,7 +94,7 @@
|
|
94 |
{
|
95 |
"data": {
|
96 |
"application/vnd.jupyter.widget-view+json": {
|
97 |
-
"model_id": "
|
98 |
"version_major": 2,
|
99 |
"version_minor": 0
|
100 |
},
|
@@ -108,7 +108,7 @@
|
|
108 |
{
|
109 |
"data": {
|
110 |
"application/vnd.jupyter.widget-view+json": {
|
111 |
-
"model_id": "
|
112 |
"version_major": 2,
|
113 |
"version_minor": 0
|
114 |
},
|
@@ -122,7 +122,7 @@
|
|
122 |
{
|
123 |
"data": {
|
124 |
"application/vnd.jupyter.widget-view+json": {
|
125 |
-
"model_id": "
|
126 |
"version_major": 2,
|
127 |
"version_minor": 0
|
128 |
},
|
@@ -136,7 +136,7 @@
|
|
136 |
{
|
137 |
"data": {
|
138 |
"application/vnd.jupyter.widget-view+json": {
|
139 |
-
"model_id": "
|
140 |
"version_major": 2,
|
141 |
"version_minor": 0
|
142 |
},
|
@@ -150,7 +150,7 @@
|
|
150 |
{
|
151 |
"data": {
|
152 |
"application/vnd.jupyter.widget-view+json": {
|
153 |
-
"model_id": "
|
154 |
"version_major": 2,
|
155 |
"version_minor": 0
|
156 |
},
|
@@ -171,7 +171,7 @@
|
|
171 |
{
|
172 |
"data": {
|
173 |
"application/vnd.jupyter.widget-view+json": {
|
174 |
-
"model_id": "
|
175 |
"version_major": 2,
|
176 |
"version_minor": 0
|
177 |
},
|
@@ -192,14 +192,14 @@
|
|
192 |
{
|
193 |
"cell_type": "code",
|
194 |
"execution_count": 2,
|
195 |
-
"id": "
|
196 |
"metadata": {
|
197 |
"execution": {
|
198 |
-
"iopub.execute_input": "2024-04-
|
199 |
-
"iopub.status.busy": "2024-04-
|
200 |
-
"iopub.status.idle": "2024-04-
|
201 |
-
"shell.execute_reply": "2024-04-
|
202 |
-
"shell.execute_reply.started": "2024-04-
|
203 |
}
|
204 |
},
|
205 |
"outputs": [],
|
@@ -209,55 +209,28 @@
|
|
209 |
"import io\n",
|
210 |
"import tensorflow as tf\n",
|
211 |
"\n",
|
212 |
-
"
|
213 |
-
"
|
214 |
-
]
|
215 |
-
},
|
216 |
-
{
|
217 |
-
"cell_type": "code",
|
218 |
-
"execution_count": 3,
|
219 |
-
"id": "daafde17-8100-4f49-b27e-8aad43b129c6",
|
220 |
-
"metadata": {
|
221 |
-
"execution": {
|
222 |
-
"iopub.execute_input": "2024-04-04T08:47:56.925474Z",
|
223 |
-
"iopub.status.busy": "2024-04-04T08:47:56.924961Z",
|
224 |
-
"iopub.status.idle": "2024-04-04T08:48:32.236745Z",
|
225 |
-
"shell.execute_reply": "2024-04-04T08:48:32.234178Z",
|
226 |
-
"shell.execute_reply.started": "2024-04-04T08:47:56.925446Z"
|
227 |
-
}
|
228 |
-
},
|
229 |
-
"outputs": [],
|
230 |
-
"source": [
|
231 |
-
"from keras.utils import to_categorical\n",
|
232 |
-
"\n",
|
233 |
-
"dataset_train = dataset['train'].to_pandas()\n",
|
234 |
-
"dataset_train['image'] = dataset_train['image'].map(convert_image)\n",
|
235 |
"\n",
|
236 |
-
"
|
237 |
-
"dataset_test['image'] =
|
238 |
"\n",
|
239 |
-
"# Convert labels to NumPy arrays\n",
|
240 |
-
"X_train = np.array(dataset_train['image'].tolist())\n",
|
241 |
"y_train = np.array(dataset_train['label'])\n",
|
242 |
-
"\n",
|
243 |
-
"X_test = np.array(dataset_test['image'].tolist())\n",
|
244 |
"y_test = np.array(dataset_test['label'])\n",
|
245 |
-
"
|
246 |
-
"# dataset_test['label'] = dataset_test['label'].astype('float32')\n",
|
247 |
-
"\n"
|
248 |
]
|
249 |
},
|
250 |
{
|
251 |
"cell_type": "code",
|
252 |
-
"execution_count":
|
253 |
"id": "72022fd2-000d-4d5c-88d5-9afc62c283d5",
|
254 |
"metadata": {
|
255 |
"execution": {
|
256 |
-
"iopub.execute_input": "2024-04-
|
257 |
-
"iopub.status.busy": "2024-04-
|
258 |
-
"iopub.status.idle": "2024-04-
|
259 |
-
"shell.execute_reply": "2024-04-
|
260 |
-
"shell.execute_reply.started": "2024-04-
|
261 |
}
|
262 |
},
|
263 |
"outputs": [],
|
@@ -273,15 +246,15 @@
|
|
273 |
},
|
274 |
{
|
275 |
"cell_type": "code",
|
276 |
-
"execution_count":
|
277 |
"id": "dd7871ac-cacd-4866-bdda-67651f592262",
|
278 |
"metadata": {
|
279 |
"execution": {
|
280 |
-
"iopub.execute_input": "2024-04-
|
281 |
-
"iopub.status.busy": "2024-04-
|
282 |
-
"iopub.status.idle": "2024-04-
|
283 |
-
"shell.execute_reply": "2024-04-
|
284 |
-
"shell.execute_reply.started": "2024-04-
|
285 |
}
|
286 |
},
|
287 |
"outputs": [],
|
@@ -295,15 +268,15 @@
|
|
295 |
},
|
296 |
{
|
297 |
"cell_type": "code",
|
298 |
-
"execution_count":
|
299 |
"id": "280e0d9d-d9e8-41d9-b9ad-666e84fc0bfa",
|
300 |
"metadata": {
|
301 |
"execution": {
|
302 |
-
"iopub.execute_input": "2024-04-
|
303 |
-
"iopub.status.busy": "2024-04-
|
304 |
-
"iopub.status.idle": "2024-04-
|
305 |
-
"shell.execute_reply": "2024-04-
|
306 |
-
"shell.execute_reply.started": "2024-04-
|
307 |
}
|
308 |
},
|
309 |
"outputs": [
|
@@ -311,52 +284,55 @@
|
|
311 |
"name": "stdout",
|
312 |
"output_type": "stream",
|
313 |
"text": [
|
314 |
-
"Epoch 1/
|
315 |
-
"1875/1875 [==============================] -
|
316 |
-
"Epoch 2/
|
317 |
-
"1875/1875 [==============================] -
|
318 |
-
"Epoch 3/
|
319 |
-
"1875/1875 [==============================] -
|
320 |
-
"Epoch 4/
|
321 |
-
"1875/1875 [==============================] -
|
322 |
-
"Epoch 5/
|
323 |
-
"1875/1875 [==============================] -
|
324 |
-
"
|
325 |
-
"
|
326 |
-
"
|
327 |
-
"
|
328 |
-
"
|
329 |
-
" 0
|
330 |
-
"
|
331 |
-
"
|
332 |
-
"
|
|
|
333 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
}
|
335 |
],
|
336 |
"source": [
|
337 |
-
"
|
338 |
-
"# dataset_train['image'], dataset_test['label'],\n",
|
339 |
-
"# epochs=10,\n",
|
340 |
-
"# validation_data=(dataset_test['image'], dataset_test['label']),\n",
|
341 |
-
"# )\n",
|
342 |
-
"# dataset_train['label'].head(50)\n",
|
343 |
-
"model.fit(X_train, y_train, epochs=5, validation_data=(X_test, y_test))\n",
|
344 |
-
"\n",
|
345 |
-
"dataset_train.info()\n",
|
346 |
"\n"
|
347 |
]
|
348 |
},
|
349 |
{
|
350 |
"cell_type": "code",
|
351 |
-
"execution_count":
|
352 |
"id": "c7317f9a-14f4-4908-9895-8bc085900e28",
|
353 |
"metadata": {
|
354 |
"execution": {
|
355 |
-
"iopub.execute_input": "2024-04-
|
356 |
-
"iopub.status.busy": "2024-04-
|
357 |
-
"iopub.status.idle": "2024-04-
|
358 |
-
"shell.execute_reply": "2024-04-
|
359 |
-
"shell.execute_reply.started": "2024-04-
|
360 |
}
|
361 |
},
|
362 |
"outputs": [
|
@@ -364,16 +340,16 @@
|
|
364 |
"name": "stdout",
|
365 |
"output_type": "stream",
|
366 |
"text": [
|
367 |
-
"313/313 [==============================] -
|
368 |
]
|
369 |
},
|
370 |
{
|
371 |
"data": {
|
372 |
"text/plain": [
|
373 |
-
"0.
|
374 |
]
|
375 |
},
|
376 |
-
"execution_count":
|
377 |
"metadata": {},
|
378 |
"output_type": "execute_result"
|
379 |
}
|
@@ -382,6 +358,197 @@
|
|
382 |
"loss, accuracy = model.evaluate(X_test, y_test)\n",
|
383 |
"accuracy"
|
384 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
385 |
}
|
386 |
],
|
387 |
"metadata": {
|
|
|
6 |
"id": "b2d6f096-6123-4dd0-ae4f-c9abf70889c4",
|
7 |
"metadata": {
|
8 |
"execution": {
|
9 |
+
"iopub.execute_input": "2024-04-04T11:32:11.084868Z",
|
10 |
+
"iopub.status.busy": "2024-04-04T11:32:11.084300Z",
|
11 |
+
"iopub.status.idle": "2024-04-04T11:32:37.677559Z",
|
12 |
+
"shell.execute_reply": "2024-04-04T11:32:37.674899Z",
|
13 |
+
"shell.execute_reply.started": "2024-04-04T11:32:11.084821Z"
|
14 |
}
|
15 |
},
|
16 |
"outputs": [
|
17 |
{
|
18 |
"data": {
|
19 |
"application/vnd.jupyter.widget-view+json": {
|
20 |
+
"model_id": "89f99ed2104c400c89a0a4079cc36f94",
|
21 |
"version_major": 2,
|
22 |
"version_minor": 0
|
23 |
},
|
|
|
31 |
{
|
32 |
"data": {
|
33 |
"application/vnd.jupyter.widget-view+json": {
|
34 |
+
"model_id": "b925c2c62913473aa1a8047fb2003609",
|
35 |
"version_major": 2,
|
36 |
"version_minor": 0
|
37 |
},
|
|
|
52 |
{
|
53 |
"data": {
|
54 |
"application/vnd.jupyter.widget-view+json": {
|
55 |
+
"model_id": "62bc67afecc2488d84e6dc0d59fb3f1f",
|
56 |
"version_major": 2,
|
57 |
"version_minor": 0
|
58 |
},
|
|
|
66 |
{
|
67 |
"data": {
|
68 |
"application/vnd.jupyter.widget-view+json": {
|
69 |
+
"model_id": "2a2f6c3e41574694948f051a0fe10c3d",
|
70 |
"version_major": 2,
|
71 |
"version_minor": 0
|
72 |
},
|
|
|
80 |
{
|
81 |
"data": {
|
82 |
"application/vnd.jupyter.widget-view+json": {
|
83 |
+
"model_id": "7e7d94cbfe3147ff80323ebe74b0e960",
|
84 |
"version_major": 2,
|
85 |
"version_minor": 0
|
86 |
},
|
|
|
94 |
{
|
95 |
"data": {
|
96 |
"application/vnd.jupyter.widget-view+json": {
|
97 |
+
"model_id": "67f4f2d45c354e7da9114a7638fd2098",
|
98 |
"version_major": 2,
|
99 |
"version_minor": 0
|
100 |
},
|
|
|
108 |
{
|
109 |
"data": {
|
110 |
"application/vnd.jupyter.widget-view+json": {
|
111 |
+
"model_id": "c3ed5a8fe6c64817933a0cd892152949",
|
112 |
"version_major": 2,
|
113 |
"version_minor": 0
|
114 |
},
|
|
|
122 |
{
|
123 |
"data": {
|
124 |
"application/vnd.jupyter.widget-view+json": {
|
125 |
+
"model_id": "347a6af016c54c5098f4544fe8666d2c",
|
126 |
"version_major": 2,
|
127 |
"version_minor": 0
|
128 |
},
|
|
|
136 |
{
|
137 |
"data": {
|
138 |
"application/vnd.jupyter.widget-view+json": {
|
139 |
+
"model_id": "a5d6a4133e5f4b2f99fb819bb879db0f",
|
140 |
"version_major": 2,
|
141 |
"version_minor": 0
|
142 |
},
|
|
|
150 |
{
|
151 |
"data": {
|
152 |
"application/vnd.jupyter.widget-view+json": {
|
153 |
+
"model_id": "7a4468bfba904b6bad4575a5b73a2be1",
|
154 |
"version_major": 2,
|
155 |
"version_minor": 0
|
156 |
},
|
|
|
171 |
{
|
172 |
"data": {
|
173 |
"application/vnd.jupyter.widget-view+json": {
|
174 |
+
"model_id": "a9065c53e61d4dc7b258f008eb91d136",
|
175 |
"version_major": 2,
|
176 |
"version_minor": 0
|
177 |
},
|
|
|
192 |
{
|
193 |
"cell_type": "code",
|
194 |
"execution_count": 2,
|
195 |
+
"id": "ddf255fe-a5dc-47b7-acf8-9bb1c636679f",
|
196 |
"metadata": {
|
197 |
"execution": {
|
198 |
+
"iopub.execute_input": "2024-04-04T11:32:37.680763Z",
|
199 |
+
"iopub.status.busy": "2024-04-04T11:32:37.680286Z",
|
200 |
+
"iopub.status.idle": "2024-04-04T11:32:53.674997Z",
|
201 |
+
"shell.execute_reply": "2024-04-04T11:32:53.673895Z",
|
202 |
+
"shell.execute_reply.started": "2024-04-04T11:32:37.680723Z"
|
203 |
}
|
204 |
},
|
205 |
"outputs": [],
|
|
|
209 |
"import io\n",
|
210 |
"import tensorflow as tf\n",
|
211 |
"\n",
|
212 |
+
"dataset_train = dataset['train']\n",
|
213 |
+
"dataset_test = dataset['test']\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
"\n",
|
215 |
+
"X_train = np.array([np.array(PIL_object) for PIL_object in dataset_train['image']], dtype='float32')\n",
|
216 |
+
"X_test = np.array([np.array(PIL_object) for PIL_object in dataset_test['image']], dtype='float32')\n",
|
217 |
"\n",
|
|
|
|
|
218 |
"y_train = np.array(dataset_train['label'])\n",
|
|
|
|
|
219 |
"y_test = np.array(dataset_test['label'])\n",
|
220 |
+
" \n"
|
|
|
|
|
221 |
]
|
222 |
},
|
223 |
{
|
224 |
"cell_type": "code",
|
225 |
+
"execution_count": 3,
|
226 |
"id": "72022fd2-000d-4d5c-88d5-9afc62c283d5",
|
227 |
"metadata": {
|
228 |
"execution": {
|
229 |
+
"iopub.execute_input": "2024-04-04T11:32:53.682038Z",
|
230 |
+
"iopub.status.busy": "2024-04-04T11:32:53.681712Z",
|
231 |
+
"iopub.status.idle": "2024-04-04T11:32:55.198308Z",
|
232 |
+
"shell.execute_reply": "2024-04-04T11:32:55.196384Z",
|
233 |
+
"shell.execute_reply.started": "2024-04-04T11:32:53.682010Z"
|
234 |
}
|
235 |
},
|
236 |
"outputs": [],
|
|
|
246 |
},
|
247 |
{
|
248 |
"cell_type": "code",
|
249 |
+
"execution_count": 4,
|
250 |
"id": "dd7871ac-cacd-4866-bdda-67651f592262",
|
251 |
"metadata": {
|
252 |
"execution": {
|
253 |
+
"iopub.execute_input": "2024-04-04T11:32:55.224011Z",
|
254 |
+
"iopub.status.busy": "2024-04-04T11:32:55.223548Z",
|
255 |
+
"iopub.status.idle": "2024-04-04T11:32:55.254034Z",
|
256 |
+
"shell.execute_reply": "2024-04-04T11:32:55.252607Z",
|
257 |
+
"shell.execute_reply.started": "2024-04-04T11:32:55.223968Z"
|
258 |
}
|
259 |
},
|
260 |
"outputs": [],
|
|
|
268 |
},
|
269 |
{
|
270 |
"cell_type": "code",
|
271 |
+
"execution_count": 5,
|
272 |
"id": "280e0d9d-d9e8-41d9-b9ad-666e84fc0bfa",
|
273 |
"metadata": {
|
274 |
"execution": {
|
275 |
+
"iopub.execute_input": "2024-04-04T11:32:55.260216Z",
|
276 |
+
"iopub.status.busy": "2024-04-04T11:32:55.259580Z",
|
277 |
+
"iopub.status.idle": "2024-04-04T11:34:50.315214Z",
|
278 |
+
"shell.execute_reply": "2024-04-04T11:34:50.310372Z",
|
279 |
+
"shell.execute_reply.started": "2024-04-04T11:32:55.260155Z"
|
280 |
}
|
281 |
},
|
282 |
"outputs": [
|
|
|
284 |
"name": "stdout",
|
285 |
"output_type": "stream",
|
286 |
"text": [
|
287 |
+
"Epoch 1/10\n",
|
288 |
+
"1875/1875 [==============================] - 14s 6ms/step - loss: 2.5253 - sparse_categorical_accuracy: 0.8622 - val_loss: 0.4438 - val_sparse_categorical_accuracy: 0.8893\n",
|
289 |
+
"Epoch 2/10\n",
|
290 |
+
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.3722 - sparse_categorical_accuracy: 0.9146 - val_loss: 0.3441 - val_sparse_categorical_accuracy: 0.9107\n",
|
291 |
+
"Epoch 3/10\n",
|
292 |
+
"1875/1875 [==============================] - 10s 5ms/step - loss: 0.2708 - sparse_categorical_accuracy: 0.9325 - val_loss: 0.2953 - val_sparse_categorical_accuracy: 0.9309\n",
|
293 |
+
"Epoch 4/10\n",
|
294 |
+
"1875/1875 [==============================] - 10s 6ms/step - loss: 0.2511 - sparse_categorical_accuracy: 0.9359 - val_loss: 0.2580 - val_sparse_categorical_accuracy: 0.9378\n",
|
295 |
+
"Epoch 5/10\n",
|
296 |
+
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.2224 - sparse_categorical_accuracy: 0.9435 - val_loss: 0.2646 - val_sparse_categorical_accuracy: 0.9400\n",
|
297 |
+
"Epoch 6/10\n",
|
298 |
+
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.2134 - sparse_categorical_accuracy: 0.9463 - val_loss: 0.2550 - val_sparse_categorical_accuracy: 0.9456\n",
|
299 |
+
"Epoch 7/10\n",
|
300 |
+
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.1993 - sparse_categorical_accuracy: 0.9509 - val_loss: 0.2359 - val_sparse_categorical_accuracy: 0.9508\n",
|
301 |
+
"Epoch 8/10\n",
|
302 |
+
"1875/1875 [==============================] - 12s 6ms/step - loss: 0.1871 - sparse_categorical_accuracy: 0.9545 - val_loss: 0.2501 - val_sparse_categorical_accuracy: 0.9499\n",
|
303 |
+
"Epoch 9/10\n",
|
304 |
+
"1875/1875 [==============================] - 13s 7ms/step - loss: 0.1875 - sparse_categorical_accuracy: 0.9549 - val_loss: 0.2230 - val_sparse_categorical_accuracy: 0.9496\n",
|
305 |
+
"Epoch 10/10\n",
|
306 |
+
"1875/1875 [==============================] - 11s 6ms/step - loss: 0.1766 - sparse_categorical_accuracy: 0.9570 - val_loss: 0.2856 - val_sparse_categorical_accuracy: 0.9465\n"
|
307 |
]
|
308 |
+
},
|
309 |
+
{
|
310 |
+
"data": {
|
311 |
+
"text/plain": [
|
312 |
+
"<keras.callbacks.History at 0x7fd5e51fc5e0>"
|
313 |
+
]
|
314 |
+
},
|
315 |
+
"execution_count": 5,
|
316 |
+
"metadata": {},
|
317 |
+
"output_type": "execute_result"
|
318 |
}
|
319 |
],
|
320 |
"source": [
|
321 |
+
"model.fit(X_train, y_train, epochs=10, validation_data=(X_test, y_test))\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
322 |
"\n"
|
323 |
]
|
324 |
},
|
325 |
{
|
326 |
"cell_type": "code",
|
327 |
+
"execution_count": 6,
|
328 |
"id": "c7317f9a-14f4-4908-9895-8bc085900e28",
|
329 |
"metadata": {
|
330 |
"execution": {
|
331 |
+
"iopub.execute_input": "2024-04-04T11:34:50.323252Z",
|
332 |
+
"iopub.status.busy": "2024-04-04T11:34:50.322859Z",
|
333 |
+
"iopub.status.idle": "2024-04-04T11:34:51.995390Z",
|
334 |
+
"shell.execute_reply": "2024-04-04T11:34:51.994131Z",
|
335 |
+
"shell.execute_reply.started": "2024-04-04T11:34:50.323222Z"
|
336 |
}
|
337 |
},
|
338 |
"outputs": [
|
|
|
340 |
"name": "stdout",
|
341 |
"output_type": "stream",
|
342 |
"text": [
|
343 |
+
"313/313 [==============================] - 2s 5ms/step - loss: 0.2856 - sparse_categorical_accuracy: 0.9465\n"
|
344 |
]
|
345 |
},
|
346 |
{
|
347 |
"data": {
|
348 |
"text/plain": [
|
349 |
+
"0.9465000033378601"
|
350 |
]
|
351 |
},
|
352 |
+
"execution_count": 6,
|
353 |
"metadata": {},
|
354 |
"output_type": "execute_result"
|
355 |
}
|
|
|
358 |
"loss, accuracy = model.evaluate(X_test, y_test)\n",
|
359 |
"accuracy"
|
360 |
]
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"cell_type": "code",
|
364 |
+
"execution_count": 7,
|
365 |
+
"id": "4aaf2641-a8e4-450b-b5c9-230c18211377",
|
366 |
+
"metadata": {
|
367 |
+
"execution": {
|
368 |
+
"iopub.execute_input": "2024-04-04T11:34:52.005924Z",
|
369 |
+
"iopub.status.busy": "2024-04-04T11:34:52.004025Z",
|
370 |
+
"iopub.status.idle": "2024-04-04T11:34:52.106193Z",
|
371 |
+
"shell.execute_reply": "2024-04-04T11:34:52.104405Z",
|
372 |
+
"shell.execute_reply.started": "2024-04-04T11:34:52.005782Z"
|
373 |
+
}
|
374 |
+
},
|
375 |
+
"outputs": [],
|
376 |
+
"source": [
|
377 |
+
"model.save(\"../models/mnist-digit-classification.keras\")"
|
378 |
+
]
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"cell_type": "code",
|
382 |
+
"execution_count": 17,
|
383 |
+
"id": "3a9debbe-0995-403c-8667-947824f0735e",
|
384 |
+
"metadata": {
|
385 |
+
"execution": {
|
386 |
+
"iopub.execute_input": "2024-04-04T11:40:29.415780Z",
|
387 |
+
"iopub.status.busy": "2024-04-04T11:40:29.415049Z",
|
388 |
+
"iopub.status.idle": "2024-04-04T11:40:32.417113Z",
|
389 |
+
"shell.execute_reply": "2024-04-04T11:40:32.415279Z",
|
390 |
+
"shell.execute_reply.started": "2024-04-04T11:40:29.415741Z"
|
391 |
+
}
|
392 |
+
},
|
393 |
+
"outputs": [
|
394 |
+
{
|
395 |
+
"name": "stdout",
|
396 |
+
"output_type": "stream",
|
397 |
+
"text": [
|
398 |
+
"1/1 [==============================] - 0s 33ms/step\n",
|
399 |
+
"[[ -1.8562375 41.656296 46.951298 45.414635 20.483383 27.385012\n",
|
400 |
+
" -48.246223 58.661873 26.281921 26.166122 ]]\n",
|
401 |
+
"1/1 [==============================] - 0s 38ms/step\n",
|
402 |
+
"[[ -1.8562375 41.656296 46.951298 45.414635 20.483383 27.385012\n",
|
403 |
+
" -48.246223 58.661873 26.281921 26.166122 ]]\n"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"data": {
|
408 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAABwAAAAcCAAAAABXZoBIAAAAxUlEQVR4nGNgGDaAEUKFpD77sfTFHeyS9xQYGBg+X4UKPuk6w8DAwMDAAuGm6l/TMnSweCzLwPDntSTDozPIOhkYGBgYBA3PmDIw/Lh1XShnGi5nBP+9KIRLTuzl/2AokwlDMlv0/U1cGq1//rPDJcfQ+m83Ky45zrM/rHBqrPu3Daec9+8PlrjkhO/+W4ZLjvn0v9vKuCTV/v3zxSUn/+BfMSMuydZ//0xwydl+QpdEClsbHoa7X1AkWZA5F53f4TIWEwAAaRE8kJuHrgAAAAAASUVORK5CYII=\n",
|
409 |
+
"text/plain": [
|
410 |
+
"<PIL.PngImagePlugin.PngImageFile image mode=L size=28x28>"
|
411 |
+
]
|
412 |
+
},
|
413 |
+
"execution_count": 17,
|
414 |
+
"metadata": {},
|
415 |
+
"output_type": "execute_result"
|
416 |
+
}
|
417 |
+
],
|
418 |
+
"source": [
|
419 |
+
"index = 0\n",
|
420 |
+
"IMAGE_HEIGHT = 28\n",
|
421 |
+
"IMAGE_WIDTH = 28\n",
|
422 |
+
"IMAGE_CHANNEL = 1\n",
|
423 |
+
"\n",
|
424 |
+
"# image_to_predict = np.reshape(X_test[0], (1, 28, 28, 1))\n",
|
425 |
+
"image_to_predict = np.reshape(np.array(dataset_test['image'][index]), (1, IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNEL))\n",
|
426 |
+
"print(model.predict(image_to_predict))\n",
|
427 |
+
"\n",
|
428 |
+
"\n",
|
429 |
+
"image_to_predict = np.reshape(X_test[index], (1, 28, 28, 1))\n",
|
430 |
+
"print(model.predict(image_to_predict))\n",
|
431 |
+
"\n",
|
432 |
+
"dataset_test['image'][index]"
|
433 |
+
]
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"cell_type": "code",
|
437 |
+
"execution_count": 11,
|
438 |
+
"id": "7e213156-9fe7-422a-bbf1-05ba92584d0a",
|
439 |
+
"metadata": {
|
440 |
+
"execution": {
|
441 |
+
"iopub.execute_input": "2024-04-04T11:36:15.067062Z",
|
442 |
+
"iopub.status.busy": "2024-04-04T11:36:15.066433Z",
|
443 |
+
"iopub.status.idle": "2024-04-04T11:36:16.695706Z",
|
444 |
+
"shell.execute_reply": "2024-04-04T11:36:16.693747Z",
|
445 |
+
"shell.execute_reply.started": "2024-04-04T11:36:15.067008Z"
|
446 |
+
}
|
447 |
+
},
|
448 |
+
"outputs": [
|
449 |
+
{
|
450 |
+
"data": {
|
451 |
+
"text/plain": [
|
452 |
+
"array([[ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
453 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
454 |
+
" 0, 0],\n",
|
455 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
456 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
457 |
+
" 0, 0],\n",
|
458 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
459 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
460 |
+
" 0, 0],\n",
|
461 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
462 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
463 |
+
" 0, 0],\n",
|
464 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
465 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
466 |
+
" 0, 0],\n",
|
467 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
468 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
469 |
+
" 0, 0],\n",
|
470 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
471 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
472 |
+
" 0, 0],\n",
|
473 |
+
" [ 0, 0, 0, 0, 0, 0, 84, 185, 159, 151, 60, 36, 0,\n",
|
474 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
475 |
+
" 0, 0],\n",
|
476 |
+
" [ 0, 0, 0, 0, 0, 0, 222, 254, 254, 254, 254, 241, 198,\n",
|
477 |
+
" 198, 198, 198, 198, 198, 198, 198, 170, 52, 0, 0, 0, 0,\n",
|
478 |
+
" 0, 0],\n",
|
479 |
+
" [ 0, 0, 0, 0, 0, 0, 67, 114, 72, 114, 163, 227, 254,\n",
|
480 |
+
" 225, 254, 254, 254, 250, 229, 254, 254, 140, 0, 0, 0, 0,\n",
|
481 |
+
" 0, 0],\n",
|
482 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 17, 66,\n",
|
483 |
+
" 14, 67, 67, 67, 59, 21, 236, 254, 106, 0, 0, 0, 0,\n",
|
484 |
+
" 0, 0],\n",
|
485 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
486 |
+
" 0, 0, 0, 0, 0, 83, 253, 209, 18, 0, 0, 0, 0,\n",
|
487 |
+
" 0, 0],\n",
|
488 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
489 |
+
" 0, 0, 0, 0, 22, 233, 255, 83, 0, 0, 0, 0, 0,\n",
|
490 |
+
" 0, 0],\n",
|
491 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
492 |
+
" 0, 0, 0, 0, 129, 254, 238, 44, 0, 0, 0, 0, 0,\n",
|
493 |
+
" 0, 0],\n",
|
494 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
495 |
+
" 0, 0, 0, 59, 249, 254, 62, 0, 0, 0, 0, 0, 0,\n",
|
496 |
+
" 0, 0],\n",
|
497 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
498 |
+
" 0, 0, 0, 133, 254, 187, 5, 0, 0, 0, 0, 0, 0,\n",
|
499 |
+
" 0, 0],\n",
|
500 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
501 |
+
" 0, 0, 9, 205, 248, 58, 0, 0, 0, 0, 0, 0, 0,\n",
|
502 |
+
" 0, 0],\n",
|
503 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
504 |
+
" 0, 0, 126, 254, 182, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
505 |
+
" 0, 0],\n",
|
506 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
507 |
+
" 0, 75, 251, 240, 57, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
508 |
+
" 0, 0],\n",
|
509 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
510 |
+
" 19, 221, 254, 166, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
511 |
+
" 0, 0],\n",
|
512 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3,\n",
|
513 |
+
" 203, 254, 219, 35, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
514 |
+
" 0, 0],\n",
|
515 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 38,\n",
|
516 |
+
" 254, 254, 77, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
517 |
+
" 0, 0],\n",
|
518 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 31, 224,\n",
|
519 |
+
" 254, 115, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
520 |
+
" 0, 0],\n",
|
521 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 133, 254,\n",
|
522 |
+
" 254, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
523 |
+
" 0, 0],\n",
|
524 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 61, 242, 254,\n",
|
525 |
+
" 254, 52, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
526 |
+
" 0, 0],\n",
|
527 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121, 254, 254,\n",
|
528 |
+
" 219, 40, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
529 |
+
" 0, 0],\n",
|
530 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 121, 254, 207,\n",
|
531 |
+
" 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
532 |
+
" 0, 0],\n",
|
533 |
+
" [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
534 |
+
" 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
|
535 |
+
" 0, 0]], dtype=uint8)"
|
536 |
+
]
|
537 |
+
},
|
538 |
+
"execution_count": 11,
|
539 |
+
"metadata": {},
|
540 |
+
"output_type": "execute_result"
|
541 |
+
}
|
542 |
+
],
|
543 |
+
"source": []
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"cell_type": "code",
|
547 |
+
"execution_count": null,
|
548 |
+
"id": "a9acdfed-d868-441f-8123-8002d265b95f",
|
549 |
+
"metadata": {},
|
550 |
+
"outputs": [],
|
551 |
+
"source": []
|
552 |
}
|
553 |
],
|
554 |
"metadata": {
|