Commit
·
1e3d4ab
1
Parent(s):
4020c78
changes
Browse files- notes/mnist.ipynb +316 -28
notes/mnist.ipynb
CHANGED
@@ -2,29 +2,176 @@
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
-
"execution_count":
|
6 |
"id": "b2d6f096-6123-4dd0-ae4f-c9abf70889c4",
|
7 |
"metadata": {
|
8 |
"execution": {
|
9 |
-
"iopub.execute_input": "2024-04-
|
10 |
-
"iopub.status.busy": "2024-04-
|
11 |
-
"iopub.status.idle": "2024-04-
|
12 |
-
"shell.execute_reply": "2024-04-
|
13 |
-
"shell.execute_reply.started": "2024-04-
|
14 |
}
|
15 |
},
|
16 |
"outputs": [
|
17 |
{
|
18 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
"output_type": "stream",
|
20 |
"text": [
|
21 |
-
"
|
22 |
]
|
23 |
},
|
24 |
{
|
25 |
"data": {
|
26 |
"application/vnd.jupyter.widget-view+json": {
|
27 |
-
"model_id": "
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
"version_major": 2,
|
29 |
"version_minor": 0
|
30 |
},
|
@@ -44,15 +191,15 @@
|
|
44 |
},
|
45 |
{
|
46 |
"cell_type": "code",
|
47 |
-
"execution_count":
|
48 |
"id": "7c5ea43d-6a70-4deb-a90e-1d7758c961a3",
|
49 |
"metadata": {
|
50 |
"execution": {
|
51 |
-
"iopub.execute_input": "2024-04-
|
52 |
-
"iopub.status.busy": "2024-04-
|
53 |
-
"iopub.status.idle": "2024-04-
|
54 |
-
"shell.execute_reply": "2024-04-
|
55 |
-
"shell.execute_reply.started": "2024-04-
|
56 |
}
|
57 |
},
|
58 |
"outputs": [],
|
@@ -60,40 +207,181 @@
|
|
60 |
"import numpy as np\n",
|
61 |
"from PIL import Image\n",
|
62 |
"import io\n",
|
|
|
63 |
"\n",
|
64 |
-
"def
|
65 |
-
" return np.asarray(Image.open(io.BytesIO(byte_like_str_image['bytes'])))
|
66 |
]
|
67 |
},
|
68 |
{
|
69 |
"cell_type": "code",
|
70 |
-
"execution_count":
|
71 |
"id": "daafde17-8100-4f49-b27e-8aad43b129c6",
|
72 |
"metadata": {
|
73 |
"execution": {
|
74 |
-
"iopub.execute_input": "2024-04-
|
75 |
-
"iopub.status.busy": "2024-04-
|
76 |
-
"iopub.status.idle": "2024-04-
|
77 |
-
"shell.execute_reply": "2024-04-
|
78 |
-
"shell.execute_reply.started": "2024-04-
|
79 |
}
|
80 |
},
|
81 |
"outputs": [],
|
82 |
"source": [
|
|
|
|
|
83 |
"dataset_train = dataset['train'].to_pandas()\n",
|
84 |
-
"dataset_train['image'] = dataset_train['image'].map(
|
85 |
"\n",
|
86 |
"dataset_test = dataset['test'].to_pandas()\n",
|
87 |
-
"dataset_test['image'] = dataset_test['image'].map(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
]
|
89 |
},
|
90 |
{
|
91 |
"cell_type": "code",
|
92 |
-
"execution_count":
|
93 |
"id": "72022fd2-000d-4d5c-88d5-9afc62c283d5",
|
94 |
-
"metadata": {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
"outputs": [],
|
96 |
-
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
}
|
98 |
],
|
99 |
"metadata": {
|
|
|
2 |
"cells": [
|
3 |
{
|
4 |
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
"id": "b2d6f096-6123-4dd0-ae4f-c9abf70889c4",
|
7 |
"metadata": {
|
8 |
"execution": {
|
9 |
+
"iopub.execute_input": "2024-04-04T08:47:31.680497Z",
|
10 |
+
"iopub.status.busy": "2024-04-04T08:47:31.678982Z",
|
11 |
+
"iopub.status.idle": "2024-04-04T08:47:52.012034Z",
|
12 |
+
"shell.execute_reply": "2024-04-04T08:47:52.010508Z",
|
13 |
+
"shell.execute_reply.started": "2024-04-04T08:47:31.680435Z"
|
14 |
}
|
15 |
},
|
16 |
"outputs": [
|
17 |
{
|
18 |
+
"data": {
|
19 |
+
"application/vnd.jupyter.widget-view+json": {
|
20 |
+
"model_id": "f0c8978e9991468cb37176b7ee5e7f40",
|
21 |
+
"version_major": 2,
|
22 |
+
"version_minor": 0
|
23 |
+
},
|
24 |
+
"text/plain": [
|
25 |
+
"Downloading builder script: 0%| | 0.00/1.63k [00:00<?, ?B/s]"
|
26 |
+
]
|
27 |
+
},
|
28 |
+
"metadata": {},
|
29 |
+
"output_type": "display_data"
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"data": {
|
33 |
+
"application/vnd.jupyter.widget-view+json": {
|
34 |
+
"model_id": "1821c061525d4be1b088a0b1624ba0f7",
|
35 |
+
"version_major": 2,
|
36 |
+
"version_minor": 0
|
37 |
+
},
|
38 |
+
"text/plain": [
|
39 |
+
"Downloading metadata: 0%| | 0.00/1.01k [00:00<?, ?B/s]"
|
40 |
+
]
|
41 |
+
},
|
42 |
+
"metadata": {},
|
43 |
+
"output_type": "display_data"
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"name": "stdout",
|
47 |
"output_type": "stream",
|
48 |
"text": [
|
49 |
+
"Downloading and preparing dataset mnist/mnist (download: 11.06 MiB, generated: 19.44 MiB, post-processed: Unknown size, total: 30.50 MiB) to /root/.cache/huggingface/datasets/mnist/mnist/1.0.0/fda16c03c4ecfb13f165ba7e29cf38129ce035011519968cdaf74894ce91c9d4...\n"
|
50 |
]
|
51 |
},
|
52 |
{
|
53 |
"data": {
|
54 |
"application/vnd.jupyter.widget-view+json": {
|
55 |
+
"model_id": "eb3da6f2299d4012862a28dd3a74565d",
|
56 |
+
"version_major": 2,
|
57 |
+
"version_minor": 0
|
58 |
+
},
|
59 |
+
"text/plain": [
|
60 |
+
"Downloading data files: 0%| | 0/4 [00:00<?, ?it/s]"
|
61 |
+
]
|
62 |
+
},
|
63 |
+
"metadata": {},
|
64 |
+
"output_type": "display_data"
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"data": {
|
68 |
+
"application/vnd.jupyter.widget-view+json": {
|
69 |
+
"model_id": "e53657e2c6ad4c108ad703dae1f87efe",
|
70 |
+
"version_major": 2,
|
71 |
+
"version_minor": 0
|
72 |
+
},
|
73 |
+
"text/plain": [
|
74 |
+
"Downloading data: 0%| | 0.00/9.91M [00:00<?, ?B/s]"
|
75 |
+
]
|
76 |
+
},
|
77 |
+
"metadata": {},
|
78 |
+
"output_type": "display_data"
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"data": {
|
82 |
+
"application/vnd.jupyter.widget-view+json": {
|
83 |
+
"model_id": "2407ea55dc5348619ad666a16a3b97ff",
|
84 |
+
"version_major": 2,
|
85 |
+
"version_minor": 0
|
86 |
+
},
|
87 |
+
"text/plain": [
|
88 |
+
"Downloading data: 0%| | 0.00/28.9k [00:00<?, ?B/s]"
|
89 |
+
]
|
90 |
+
},
|
91 |
+
"metadata": {},
|
92 |
+
"output_type": "display_data"
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"data": {
|
96 |
+
"application/vnd.jupyter.widget-view+json": {
|
97 |
+
"model_id": "04a14bdbb03044979afd7c44ba0f424e",
|
98 |
+
"version_major": 2,
|
99 |
+
"version_minor": 0
|
100 |
+
},
|
101 |
+
"text/plain": [
|
102 |
+
"Downloading data: 0%| | 0.00/1.65M [00:00<?, ?B/s]"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
"metadata": {},
|
106 |
+
"output_type": "display_data"
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"data": {
|
110 |
+
"application/vnd.jupyter.widget-view+json": {
|
111 |
+
"model_id": "976dba4172974f01ae37ad90b1c6cb1d",
|
112 |
+
"version_major": 2,
|
113 |
+
"version_minor": 0
|
114 |
+
},
|
115 |
+
"text/plain": [
|
116 |
+
"Downloading data: 0%| | 0.00/4.54k [00:00<?, ?B/s]"
|
117 |
+
]
|
118 |
+
},
|
119 |
+
"metadata": {},
|
120 |
+
"output_type": "display_data"
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"data": {
|
124 |
+
"application/vnd.jupyter.widget-view+json": {
|
125 |
+
"model_id": "56d60d708f2549a5a0c6acc0e2499884",
|
126 |
+
"version_major": 2,
|
127 |
+
"version_minor": 0
|
128 |
+
},
|
129 |
+
"text/plain": [
|
130 |
+
"Extracting data files: 0%| | 0/4 [00:00<?, ?it/s]"
|
131 |
+
]
|
132 |
+
},
|
133 |
+
"metadata": {},
|
134 |
+
"output_type": "display_data"
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"data": {
|
138 |
+
"application/vnd.jupyter.widget-view+json": {
|
139 |
+
"model_id": "87ba67ec7d834407afd7fcf7a9d6ac13",
|
140 |
+
"version_major": 2,
|
141 |
+
"version_minor": 0
|
142 |
+
},
|
143 |
+
"text/plain": [
|
144 |
+
"Generating train split: 0%| | 0/60000 [00:00<?, ? examples/s]"
|
145 |
+
]
|
146 |
+
},
|
147 |
+
"metadata": {},
|
148 |
+
"output_type": "display_data"
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"data": {
|
152 |
+
"application/vnd.jupyter.widget-view+json": {
|
153 |
+
"model_id": "696c5019b4c24f049ce78744c1fecded",
|
154 |
+
"version_major": 2,
|
155 |
+
"version_minor": 0
|
156 |
+
},
|
157 |
+
"text/plain": [
|
158 |
+
"Generating test split: 0%| | 0/10000 [00:00<?, ? examples/s]"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
"metadata": {},
|
162 |
+
"output_type": "display_data"
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"name": "stdout",
|
166 |
+
"output_type": "stream",
|
167 |
+
"text": [
|
168 |
+
"Dataset mnist downloaded and prepared to /root/.cache/huggingface/datasets/mnist/mnist/1.0.0/fda16c03c4ecfb13f165ba7e29cf38129ce035011519968cdaf74894ce91c9d4. Subsequent calls will reuse this data.\n"
|
169 |
+
]
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"data": {
|
173 |
+
"application/vnd.jupyter.widget-view+json": {
|
174 |
+
"model_id": "d5193a728c974100b02fcb82ac236d80",
|
175 |
"version_major": 2,
|
176 |
"version_minor": 0
|
177 |
},
|
|
|
191 |
},
|
192 |
{
|
193 |
"cell_type": "code",
|
194 |
+
"execution_count": 2,
|
195 |
"id": "7c5ea43d-6a70-4deb-a90e-1d7758c961a3",
|
196 |
"metadata": {
|
197 |
"execution": {
|
198 |
+
"iopub.execute_input": "2024-04-04T08:47:52.015528Z",
|
199 |
+
"iopub.status.busy": "2024-04-04T08:47:52.014998Z",
|
200 |
+
"iopub.status.idle": "2024-04-04T08:47:56.923333Z",
|
201 |
+
"shell.execute_reply": "2024-04-04T08:47:56.922341Z",
|
202 |
+
"shell.execute_reply.started": "2024-04-04T08:47:52.015483Z"
|
203 |
}
|
204 |
},
|
205 |
"outputs": [],
|
|
|
207 |
"import numpy as np\n",
|
208 |
"from PIL import Image\n",
|
209 |
"import io\n",
|
210 |
+
"import tensorflow as tf\n",
|
211 |
"\n",
|
212 |
+
"def convert_image(byte_like_str_image):\n",
|
213 |
+
" return tf.convert_to_tensor(np.asarray(Image.open(io.BytesIO(byte_like_str_image['bytes']))), dtype = tf.float32)"
|
214 |
]
|
215 |
},
|
216 |
{
|
217 |
"cell_type": "code",
|
218 |
+
"execution_count": 3,
|
219 |
"id": "daafde17-8100-4f49-b27e-8aad43b129c6",
|
220 |
"metadata": {
|
221 |
"execution": {
|
222 |
+
"iopub.execute_input": "2024-04-04T08:47:56.925474Z",
|
223 |
+
"iopub.status.busy": "2024-04-04T08:47:56.924961Z",
|
224 |
+
"iopub.status.idle": "2024-04-04T08:48:32.236745Z",
|
225 |
+
"shell.execute_reply": "2024-04-04T08:48:32.234178Z",
|
226 |
+
"shell.execute_reply.started": "2024-04-04T08:47:56.925446Z"
|
227 |
}
|
228 |
},
|
229 |
"outputs": [],
|
230 |
"source": [
|
231 |
+
"from keras.utils import to_categorical\n",
|
232 |
+
"\n",
|
233 |
"dataset_train = dataset['train'].to_pandas()\n",
|
234 |
+
"dataset_train['image'] = dataset_train['image'].map(convert_image)\n",
|
235 |
"\n",
|
236 |
"dataset_test = dataset['test'].to_pandas()\n",
|
237 |
+
"dataset_test['image'] = dataset_test['image'].map(convert_image)\n",
|
238 |
+
"\n",
|
239 |
+
"# Convert labels to NumPy arrays\n",
|
240 |
+
"X_train = np.array(dataset_train['image'].tolist())\n",
|
241 |
+
"y_train = np.array(dataset_train['label'])\n",
|
242 |
+
"\n",
|
243 |
+
"X_test = np.array(dataset_test['image'].tolist())\n",
|
244 |
+
"y_test = np.array(dataset_test['label'])\n",
|
245 |
+
"# dataset_train['label'] = dataset_train['label'].astype('float32')\n",
|
246 |
+
"# dataset_test['label'] = dataset_test['label'].astype('float32')\n",
|
247 |
+
"\n"
|
248 |
]
|
249 |
},
|
250 |
{
|
251 |
"cell_type": "code",
|
252 |
+
"execution_count": 4,
|
253 |
"id": "72022fd2-000d-4d5c-88d5-9afc62c283d5",
|
254 |
+
"metadata": {
|
255 |
+
"execution": {
|
256 |
+
"iopub.execute_input": "2024-04-04T08:48:32.239111Z",
|
257 |
+
"iopub.status.busy": "2024-04-04T08:48:32.238769Z",
|
258 |
+
"iopub.status.idle": "2024-04-04T08:48:32.369358Z",
|
259 |
+
"shell.execute_reply": "2024-04-04T08:48:32.367989Z",
|
260 |
+
"shell.execute_reply.started": "2024-04-04T08:48:32.239071Z"
|
261 |
+
}
|
262 |
+
},
|
263 |
+
"outputs": [],
|
264 |
+
"source": [
|
265 |
+
"import tensorflow as tf\n",
|
266 |
+
"\n",
|
267 |
+
"model = tf.keras.models.Sequential([\n",
|
268 |
+
" tf.keras.layers.Flatten(input_shape=(28, 28)),\n",
|
269 |
+
" tf.keras.layers.Dense(128, activation='relu'),\n",
|
270 |
+
" tf.keras.layers.Dense(10)\n",
|
271 |
+
"])"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "code",
|
276 |
+
"execution_count": 5,
|
277 |
+
"id": "dd7871ac-cacd-4866-bdda-67651f592262",
|
278 |
+
"metadata": {
|
279 |
+
"execution": {
|
280 |
+
"iopub.execute_input": "2024-04-04T08:48:32.371520Z",
|
281 |
+
"iopub.status.busy": "2024-04-04T08:48:32.371132Z",
|
282 |
+
"iopub.status.idle": "2024-04-04T08:48:32.391109Z",
|
283 |
+
"shell.execute_reply": "2024-04-04T08:48:32.390162Z",
|
284 |
+
"shell.execute_reply.started": "2024-04-04T08:48:32.371484Z"
|
285 |
+
}
|
286 |
+
},
|
287 |
"outputs": [],
|
288 |
+
"source": [
|
289 |
+
"model.compile(\n",
|
290 |
+
" optimizer=tf.keras.optimizers.Adam(0.001),\n",
|
291 |
+
" loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),\n",
|
292 |
+
" metrics=[tf.keras.metrics.SparseCategoricalAccuracy()],\n",
|
293 |
+
")"
|
294 |
+
]
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"cell_type": "code",
|
298 |
+
"execution_count": 6,
|
299 |
+
"id": "280e0d9d-d9e8-41d9-b9ad-666e84fc0bfa",
|
300 |
+
"metadata": {
|
301 |
+
"execution": {
|
302 |
+
"iopub.execute_input": "2024-04-04T08:48:32.392690Z",
|
303 |
+
"iopub.status.busy": "2024-04-04T08:48:32.392405Z",
|
304 |
+
"iopub.status.idle": "2024-04-04T08:49:02.402966Z",
|
305 |
+
"shell.execute_reply": "2024-04-04T08:49:02.402204Z",
|
306 |
+
"shell.execute_reply.started": "2024-04-04T08:48:32.392662Z"
|
307 |
+
}
|
308 |
+
},
|
309 |
+
"outputs": [
|
310 |
+
{
|
311 |
+
"name": "stdout",
|
312 |
+
"output_type": "stream",
|
313 |
+
"text": [
|
314 |
+
"Epoch 1/5\n",
|
315 |
+
"1875/1875 [==============================] - 7s 3ms/step - loss: 2.6159 - sparse_categorical_accuracy: 0.8597 - val_loss: 0.5951 - val_sparse_categorical_accuracy: 0.8762\n",
|
316 |
+
"Epoch 2/5\n",
|
317 |
+
"1875/1875 [==============================] - 6s 3ms/step - loss: 0.4041 - sparse_categorical_accuracy: 0.9071 - val_loss: 0.4567 - val_sparse_categorical_accuracy: 0.9024\n",
|
318 |
+
"Epoch 3/5\n",
|
319 |
+
"1875/1875 [==============================] - 6s 3ms/step - loss: 0.2977 - sparse_categorical_accuracy: 0.9247 - val_loss: 0.3300 - val_sparse_categorical_accuracy: 0.9237\n",
|
320 |
+
"Epoch 4/5\n",
|
321 |
+
"1875/1875 [==============================] - 5s 3ms/step - loss: 0.2646 - sparse_categorical_accuracy: 0.9344 - val_loss: 0.2909 - val_sparse_categorical_accuracy: 0.9368\n",
|
322 |
+
"Epoch 5/5\n",
|
323 |
+
"1875/1875 [==============================] - 5s 3ms/step - loss: 0.2418 - sparse_categorical_accuracy: 0.9391 - val_loss: 0.2886 - val_sparse_categorical_accuracy: 0.9330\n",
|
324 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
325 |
+
"RangeIndex: 60000 entries, 0 to 59999\n",
|
326 |
+
"Data columns (total 2 columns):\n",
|
327 |
+
" # Column Non-Null Count Dtype \n",
|
328 |
+
"--- ------ -------------- ----- \n",
|
329 |
+
" 0 image 60000 non-null object\n",
|
330 |
+
" 1 label 60000 non-null int64 \n",
|
331 |
+
"dtypes: int64(1), object(1)\n",
|
332 |
+
"memory usage: 937.6+ KB\n"
|
333 |
+
]
|
334 |
+
}
|
335 |
+
],
|
336 |
+
"source": [
|
337 |
+
"# model.fit(\n",
|
338 |
+
"# dataset_train['image'], dataset_test['label'],\n",
|
339 |
+
"# epochs=10,\n",
|
340 |
+
"# validation_data=(dataset_test['image'], dataset_test['label']),\n",
|
341 |
+
"# )\n",
|
342 |
+
"# dataset_train['label'].head(50)\n",
|
343 |
+
"model.fit(X_train, y_train, epochs=5, validation_data=(X_test, y_test))\n",
|
344 |
+
"\n",
|
345 |
+
"dataset_train.info()\n",
|
346 |
+
"\n"
|
347 |
+
]
|
348 |
+
},
|
349 |
+
{
|
350 |
+
"cell_type": "code",
|
351 |
+
"execution_count": 8,
|
352 |
+
"id": "c7317f9a-14f4-4908-9895-8bc085900e28",
|
353 |
+
"metadata": {
|
354 |
+
"execution": {
|
355 |
+
"iopub.execute_input": "2024-04-04T08:49:35.659063Z",
|
356 |
+
"iopub.status.busy": "2024-04-04T08:49:35.658449Z",
|
357 |
+
"iopub.status.idle": "2024-04-04T08:49:36.588926Z",
|
358 |
+
"shell.execute_reply": "2024-04-04T08:49:36.588088Z",
|
359 |
+
"shell.execute_reply.started": "2024-04-04T08:49:35.659019Z"
|
360 |
+
}
|
361 |
+
},
|
362 |
+
"outputs": [
|
363 |
+
{
|
364 |
+
"name": "stdout",
|
365 |
+
"output_type": "stream",
|
366 |
+
"text": [
|
367 |
+
"313/313 [==============================] - 1s 3ms/step - loss: 0.2886 - sparse_categorical_accuracy: 0.9330\n"
|
368 |
+
]
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"data": {
|
372 |
+
"text/plain": [
|
373 |
+
"0.9330000281333923"
|
374 |
+
]
|
375 |
+
},
|
376 |
+
"execution_count": 8,
|
377 |
+
"metadata": {},
|
378 |
+
"output_type": "execute_result"
|
379 |
+
}
|
380 |
+
],
|
381 |
+
"source": [
|
382 |
+
"loss, accuracy = model.evaluate(X_test, y_test)\n",
|
383 |
+
"accuracy"
|
384 |
+
]
|
385 |
}
|
386 |
],
|
387 |
"metadata": {
|