|
--- |
|
license: apache-2.0 |
|
language: |
|
- en |
|
- he |
|
library_name: transformers |
|
--- |
|
# Hebrew-Mistral-7B-200K |
|
|
|
> **Please note: There has been some issues reported about this model, updates coming soon.** |
|
|
|
Hebrew-Mistral-7B-200K is an open-source Large Language Model (LLM) pretrained in hebrew and english pretrained with 7B billion parameters and with 200K context length, based on Mistral-7B-v1.0 from Mistral. |
|
|
|
It has an extended hebrew tokenizer with 64,000 tokens and is continuesly pretrained from Mistral-7B on tokens in both English and Hebrew. |
|
|
|
The resulting model is a powerful general-purpose language model suitable for a wide range of natural language processing tasks, with a focus on Hebrew language understanding and generation. |
|
|
|
### Usage |
|
|
|
Below are some code snippets on how to get quickly started with running the model. |
|
|
|
First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. |
|
|
|
### Running on CPU |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mistral-7B-200K") |
|
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mistral-7B-200K") |
|
|
|
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?" |
|
input_ids = tokenizer(input_text, return_tensors="pt") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### Running on GPU |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mistral-7B-200K") |
|
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mistral-7B-200K", device_map="auto") |
|
|
|
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?" |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### Running with 4-Bit precision |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Mistral-7B-200K") |
|
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Mistral-7B-200K", quantization_config = BitsAndBytesConfig(load_in_4bit=True)) |
|
|
|
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?" |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0]) |
|
``` |
|
|
|
### Notice |
|
|
|
Hebrew-Mistral-7B-200K is a pretrained base model and therefore does not have any moderation mechanisms. |
|
|
|
### Authors |
|
- Trained by Yam Peleg. |
|
|
|
|