|
--- |
|
license: other |
|
license_name: gemma-terms-of-use |
|
license_link: https://ai.google.dev/gemma/terms |
|
language: |
|
- en |
|
- he |
|
library_name: transformers |
|
--- |
|
# Hebrew-Gemma-11B-V2 |
|
|
|
An updated version of [Hebrew-Gemma-11B](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B) that was trained longer and had some bugs fixes. |
|
|
|
### Base Models: |
|
- **07.03.2024:** [Hebrew-Gemma-11B](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B) |
|
- **16.03.2024:** [Hebrew-Gemma-11B-V2](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B-V2) |
|
|
|
### Instruct Models: |
|
- **07.03.2024:** [Hebrew-Gemma-11B-Instruct](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B-Instruct) |
|
|
|
Hebrew-Gemma-11B is an open-source Large Language Model (LLM) is a hebrew/english pretrained generative text model with 11 billion parameters, based on the Gemma-7B architecture from Google. |
|
|
|
It is continued pretrain of gemma-7b, extended to a larger scale and trained on 3B additional tokens of both English and Hebrew text data. |
|
|
|
The resulting model Gemma-11B is a powerful general-purpose language model suitable for a wide range of natural language processing tasks, with a focus on Hebrew language understanding and generation. |
|
|
|
|
|
### Terms of Use |
|
|
|
As an extention of Gemma-7B, this model is subject to the original license and terms of use by Google. |
|
|
|
**Gemma-7B original Terms of Use**: [Terms](https://www.kaggle.com/models/google/gemma/license/consent) |
|
|
|
### Usage |
|
|
|
Below are some code snippets on how to get quickly started with running the model. |
|
|
|
First make sure to `pip install -U transformers`, then copy the snippet from the section that is relevant for your usecase. |
|
|
|
### Running on CPU |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B-V2") |
|
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B-V2") |
|
|
|
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?" |
|
input_ids = tokenizer(input_text, return_tensors="pt") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### Running on GPU |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B-V2") |
|
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B-V2", device_map="auto") |
|
|
|
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?" |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0])) |
|
``` |
|
|
|
### Running with 4-Bit precision |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("yam-peleg/Hebrew-Gemma-11B-V2") |
|
model = AutoModelForCausalLM.from_pretrained("yam-peleg/Hebrew-Gemma-11B-V2", quantization_config = BitsAndBytesConfig(load_in_4bit=True)) |
|
|
|
input_text = "ืฉืืื! ืื ืฉืืืื ืืืื?" |
|
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") |
|
|
|
outputs = model.generate(**input_ids) |
|
print(tokenizer.decode(outputs[0]) |
|
``` |
|
|
|
### Benchmark Results |
|
|
|
- Coming Soon! |
|
|
|
|
|
### Notice |
|
|
|
Hebrew-Gemma-11B-V2 is a pretrained base model and therefore does not have any moderation mechanisms. |
|
|
|
|
|
### Authors |
|
|
|
- Trained by Yam Peleg. |
|
- In collaboration with Jonathan Rouach and Arjeo, inc. |