yam-peleg's picture
Update README.md
a40259d verified
|
raw
history blame
2.43 kB
---
license: other
license_name: gemma-terms-of-use
license_link: https://ai.google.dev/gemma/terms
language:
- en
- he
library_name: transformers
---
# Hebrew-Gemma-11B-Instruct
### Base Models:
- **07.03.2024:** [Hebrew-Gemma-11B](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B)
- **16.03.2024:** [Hebrew-Gemma-11B-V2](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B-V2)
### Instruct Models:
- **07.03.2024:** [Hebrew-Gemma-11B-Instruct](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B-Instruct)
The Hebrew-Gemma-11B-Instruct Large Language Model (LLM) is a instruct fine-tuned version of the [Hebrew-Gemma-11B](https://huggingface.co/yam-peleg/Hebrew-Gemma-11B) generative text model using a variety of conversation datasets.
It is continued pretrain of gemma-7b, extended to a larger scale and trained on 3B additional tokens of both English and Hebrew text data.
# Instruction format
This format must be strictly respected, otherwise the model will generate sub-optimal outputs.
```
<bos><start_of_turn>user
Write a hello world program<end_of_turn>
<start_of_turn>model
Here is a simple hellow world program<end_of_turn><eos>
```
- The conversation starts with **`<bos>`**.
- Each turn is preceded by a **`<start_of_turn>`** delimiter and then the role of the entity (`user` or `model`).
- Turns finish with the **`<end_of_turn>`** token.
- Conversation finish with the **`<eos>`** token.
You can follow this format to build the prompt manually, if you need to do it without the tokenizer's chat template.
A simple example using the tokenizer's chat template:
```python
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "Hebrew-Gemma-11B-Instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda")
chat = [
{ "role": "user", "content": "讻转讜讘 拽讜讚 驻砖讜讟 讘驻讬讬转讜谉 砖诪讚驻讬住 诇诪住讱 讗转 讛转讗专讬讱 砖诇 讛讬讜诐" },
]
prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
```
### Terms of Use
As an extention of Gemma-7B, this model is subject to the original license and terms of use by Google.
### Benchmark Results
- Coming Soon!
### Notice
Hebrew-Gemma-11B is a pretrained base model and therefore does not have any moderation mechanisms.
### Authors
- Trained by Yam Peleg.
- In collaboration with Jonathan Rouach and Arjeo, inc.