qwen_cpo_entropy_0_01
This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:
- Loss: 0.5583
- Sft Loss: 3.4705
- Rewards/chosen: -3.3285
- Rewards/rejected: -4.3810
- Rewards/accuracies: 0.7226
- Rewards/margins: 1.0525
- Logps/rejected: -4.3810
- Logps/chosen: -3.3285
- Logits/rejected: 0.2811
- Logits/chosen: 0.1563
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 2
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3.0
Training results
Training Loss | Epoch | Step | Validation Loss | Sft Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.7019 | 0.2141 | 400 | 0.6977 | 1.4219 | -1.4375 | -1.6032 | 0.5631 | 0.1657 | -1.6032 | -1.4375 | 0.2993 | 0.2138 |
0.6225 | 0.4282 | 800 | 0.6192 | 2.0573 | -2.0770 | -2.5396 | 0.6669 | 0.4626 | -2.5396 | -2.0770 | 0.3429 | 0.2570 |
0.6242 | 0.6422 | 1200 | 0.5882 | 2.6279 | -2.4850 | -3.1039 | 0.6973 | 0.6190 | -3.1039 | -2.4850 | 0.5237 | 0.4102 |
0.5405 | 0.8563 | 1600 | 0.5781 | 2.5442 | -2.4160 | -3.0202 | 0.7092 | 0.6042 | -3.0202 | -2.4160 | 0.4122 | 0.3042 |
0.6195 | 1.0704 | 2000 | 0.5673 | 2.7121 | -2.5451 | -3.2527 | 0.7129 | 0.7076 | -3.2527 | -2.5451 | 0.4573 | 0.3371 |
0.5895 | 1.2845 | 2400 | 0.5590 | 3.0631 | -2.8962 | -3.7486 | 0.7322 | 0.8524 | -3.7486 | -2.8962 | 0.3362 | 0.2174 |
0.5512 | 1.4986 | 2800 | 0.5563 | 2.9053 | -2.7513 | -3.5751 | 0.7203 | 0.8238 | -3.5751 | -2.7513 | 0.2892 | 0.1750 |
0.5766 | 1.7127 | 3200 | 0.5520 | 2.9643 | -2.8134 | -3.6655 | 0.7263 | 0.8522 | -3.6655 | -2.8134 | 0.2677 | 0.1562 |
0.5625 | 1.9267 | 3600 | 0.5478 | 3.0563 | -2.8597 | -3.7385 | 0.7255 | 0.8788 | -3.7385 | -2.8597 | 0.3670 | 0.2441 |
0.4702 | 2.1408 | 4000 | 0.5592 | 3.5119 | -3.3071 | -4.3285 | 0.7240 | 1.0214 | -4.3285 | -3.3071 | 0.2395 | 0.1198 |
0.4882 | 2.3549 | 4400 | 0.5601 | 3.5201 | -3.3795 | -4.4355 | 0.7270 | 1.0560 | -4.4355 | -3.3795 | 0.2852 | 0.1603 |
0.4952 | 2.5690 | 4800 | 0.5580 | 3.4402 | -3.3065 | -4.3570 | 0.7233 | 1.0505 | -4.3570 | -3.3065 | 0.3210 | 0.1936 |
0.4272 | 2.7831 | 5200 | 0.5579 | 3.4523 | -3.3138 | -4.3619 | 0.7233 | 1.0481 | -4.3619 | -3.3138 | 0.3592 | 0.2281 |
0.459 | 2.9972 | 5600 | 0.5583 | 3.4705 | -3.3285 | -4.3810 | 0.7226 | 1.0525 | -4.3810 | -3.3285 | 0.2811 | 0.1563 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.2.2+cu121
- Datasets 2.18.0
- Tokenizers 0.19.1
- Downloads last month
- 120
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.