yakazimir's picture
End of training
60f572b verified
metadata
library_name: transformers
license: other
base_model: trl-lib/qwen1.5-0.5b-sft
tags:
  - alignment-handbook
  - trl
  - simpo
  - generated_from_trainer
  - trl
  - simpo
  - generated_from_trainer
datasets:
  - yakazimir/ultrafeedback_binarized
model-index:
  - name: qwen_cCPO_entropy_0_01
    results: []

qwen_cCPO_entropy_0_01

This model is a fine-tuned version of trl-lib/qwen1.5-0.5b-sft on the yakazimir/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4896
  • Sft Loss: 1.6913
  • Rewards/chosen: -1.6159
  • Rewards/rejected: -2.1942
  • Rewards/accuracies: 0.6714
  • Rewards/margins: 0.5783
  • Logps/rejected: -2.1942
  • Logps/chosen: -1.6159
  • Logits/rejected: 0.2372
  • Logits/chosen: 0.1346

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-06
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 3.0

Training results

Training Loss Epoch Step Validation Loss Sft Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.5602 0.2141 400 0.5593 1.3702 -1.3432 -1.4801 0.5579 0.1369 -1.4801 -1.3432 0.3397 0.2525
0.5448 0.4282 800 0.5318 1.4044 -1.3785 -1.6209 0.5883 0.2424 -1.6209 -1.3785 0.3618 0.2727
0.5415 0.6422 1200 0.5156 1.4648 -1.4398 -1.7890 0.6187 0.3493 -1.7890 -1.4398 0.3220 0.2312
0.4953 0.8563 1600 0.5101 1.4980 -1.4449 -1.7958 0.6261 0.3509 -1.7958 -1.4449 0.3743 0.2752
0.5743 1.0704 2000 0.5047 1.4884 -1.4330 -1.8072 0.6306 0.3742 -1.8072 -1.4330 0.3107 0.2131
0.4824 1.2845 2400 0.4963 1.6007 -1.5341 -2.0179 0.6536 0.4838 -2.0179 -1.5341 0.3099 0.2106
0.5266 1.4986 2800 0.4947 1.6155 -1.5391 -2.0193 0.6573 0.4801 -2.0193 -1.5391 0.2939 0.1953
0.5053 1.7127 3200 0.4936 1.5759 -1.5037 -1.9595 0.6484 0.4558 -1.9595 -1.5037 0.3131 0.2133
0.4712 1.9267 3600 0.4894 1.6467 -1.5640 -2.0770 0.6662 0.5129 -2.0770 -1.5640 0.3113 0.2089
0.4297 2.1408 4000 0.4894 1.6624 -1.5827 -2.1264 0.6699 0.5437 -2.1264 -1.5827 0.2311 0.1311
0.4418 2.3549 4400 0.4909 1.7121 -1.6395 -2.2277 0.6736 0.5882 -2.2277 -1.6395 0.2582 0.1535
0.4422 2.5690 4800 0.4894 1.6890 -1.6151 -2.1880 0.6699 0.5729 -2.1880 -1.6151 0.2371 0.1340
0.4463 2.7831 5200 0.4895 1.6851 -1.6106 -2.1856 0.6706 0.5751 -2.1856 -1.6106 0.2327 0.1306
0.4311 2.9972 5600 0.4896 1.6913 -1.6159 -2.1942 0.6714 0.5783 -2.1942 -1.6159 0.2372 0.1346

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.2.2+cu121
  • Datasets 2.18.0
  • Tokenizers 0.19.1