File size: 24,622 Bytes
e1aaaac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
import sys
from train.datasets import COCOFlickrDataset, ImageNetDataset
from CLIP_eval.eval_utils import load_clip_model
sys.path.append("open_flamingo")
import os
import shutil
import time
import string
import random
import numpy as np
import open_clip
import torch
import torch.nn.functional as F
from torch.utils.data import DataLoader
from training.scheduler import cosine_lr
from torchvision import transforms
from open_flamingo.eval.classification_utils import IMAGENET_1K_CLASS_ID_TO_LABEL
from train.pgd_train import pgd
from train.apgd_train import apgd_train as apgd
import wandb
from train.utils import init_wandb, AverageMeter
from train.sam_data import SamData
from open_flamingo.eval.models.utils import unwrap_model
from train.utils import str2bool
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--clip_model_name', type=str, default='ViT-L-14', help='ViT-L-14, ViT-B-32')
parser.add_argument('--pretrained', type=str, default='openai')
parser.add_argument('--dataset', type=str, default='imagenet')
parser.add_argument('--template', type=str, default='std')
parser.add_argument('--imagenet_root', type=str, default='/mnt/datasets/imagenet', help='Imagenet dataset root directory')
parser.add_argument('--output_normalize', type=str2bool, default=False, help='Whether the embedding is normalized')
parser.add_argument('--start_step', type=int, default=0, help='Start step for training')
parser.add_argument('--optimizer_state', type=str, default='', help='Optimizer state file path')
parser.add_argument('--steps', type=int, default=20000, help='Number of training steps')
parser.add_argument('--warmup', type=int, default=14000, help='Warmup steps')
parser.add_argument('--batch_size', type=int, default=256)
parser.add_argument('--loss', type=str, default='l2', help='ce, l2')
parser.add_argument('--loss_clean', type=str, default='none', help='ce, l2')
parser.add_argument('--clean_weight', type=float, default=0., help='Weight for clean loss')
parser.add_argument('--trades', type=str2bool, default=False, help='Use TRADES')
parser.add_argument('--opt', type=str, default='adamw', help='Optimizer type; sgd, adamw')
parser.add_argument('--momentum_sgd', type=float, default=0.9, help='Momentum for SGD optimizer')
parser.add_argument('--lr', type=float, default=1e-5, help='Learning rate')
parser.add_argument('--wd', type=float, default=1e-4, help='Weight decay')
parser.add_argument('--attack', type=str, default='apgd', help='Adversarial attack type')
parser.add_argument('--inner_loss', type=str, default='l2', help='Inner loss function for adversarial training')
parser.add_argument('--norm', type=str, default='linf', help='Norm for adversarial perturbation')
parser.add_argument('--eps', type=float, default=4, help='Epsilon for adversarial perturbation')
parser.add_argument('--iterations_adv', type=int, default=10, help='Iterations for adversarial attack')
parser.add_argument('--stepsize_adv', type=float, default=1., help='Step size for adversarial attack (no effect for apgd)')
parser.add_argument('--wandb', type=str2bool, default=True, help='Use Weights & Biases for logging')
parser.add_argument('--experiment_name', type=str, default='')
parser.add_argument('--overwrite', type=str2bool, default=False, help='Overwrite existing directory')
parser.add_argument('--log_freq', type=int, default=1, help='Logging frequency')
parser.add_argument('--eval_freq', type=int, default=50, help='Evaluation frequency')
parser.add_argument('--output_dir', type=str, default='', help='Output directory')
parser.add_argument('--save_checkpoints', type=str2bool, default=True, help='Save 10 training checkpoints')
parser.add_argument('--devices', type=str, default='', help='Device IDs for CUDA')
def main(args):
# setup wandb
if args.wandb:
init_wandb(
project_name='clip-finetune',
model_name=args.finetuned_model_name,
config=vars(args)
)
else:
wandb.init(mode='disabled')
# print args
print(f"Arguments:\n{'-' * 20}")
for arg, value in vars(args).items():
print(f"{arg}: {value}")
print(f"{'-' * 20}")
# setup dirs
if args.overwrite:
shutil.rmtree(args.output_dir, ignore_errors=True)
os.makedirs(os.path.join(args.output_dir, 'checkpoints'), exist_ok=False)
# write args to file
with open(os.path.join(args.output_dir, 'args.txt'), 'w') as f:
f.write(str(args))
main_device = 0
# get models
model_orig, _, image_processor = open_clip.create_model_and_transforms(
args.clip_model_name, pretrained='openai' # 可选 output_tokens=True,返回token + patches
)
if args.optimizer_state != '':
assert args.start_step > 0
assert str(args.start_step) in args.optimizer_state
assert args.pretrained in ['', 'none']
args.pretrained = args.optimizer_state.replace('_opt', '')
model, _, _ = load_clip_model(args.clip_model_name, args.pretrained)
# Remove the Normalize transform by creating a new Compose object
preprocessor_without_normalize = transforms.Compose(image_processor.transforms[:-1])
normalize = image_processor.transforms[-1]
del image_processor
print(f'[preprocessor_without_normalize] {preprocessor_without_normalize}')
print(f'[normalize] {normalize}')
# preprocessor_without_normalize contains following transforms:
# - Resize(size=224, interpolation=bicubic, max_size=None, antialias=warn)
# - CenterCrop(size=(224, 224))
# - ToTensor()
# normalize:
# Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711))
# get data
if args.dataset == 'imagenet':
dataset = ImageNetDataset(
root=args.imagenet_root + '/train',
transform=preprocessor_without_normalize,
)
elif args.dataset == 'segment_anything':
dataset = SamData('/data/naman_deep_singh/datasets/newSAM', transform=preprocessor_without_normalize)
print(dataset.__len__())
elif args.dataset == 'coco':
if os.path.exists('/mnt/datasets/coco'):
image_dir_path = '/mnt/datasets/coco/train2017'
annotations_path = '/mnt/datasets/coco/annotations/captions_train2017.json'
elif os.path.exists('/mnt/lustre'):
image_dir_path = '/mnt/lustre/hein/cschlarmann37/datasets/coco/train2017'
annotations_path = '/mnt/lustre/hein/cschlarmann37/datasets/coco/annotations/captions_train2017.json'
else:
raise ValueError('COCO dataset not found')
dataset = COCOFlickrDataset(
image_dir_path=image_dir_path,
annotations_path=annotations_path,
transform=preprocessor_without_normalize
)
dataset_eval = ImageNetDataset(
root=args.imagenet_root + '/val',
transform=preprocessor_without_normalize,
)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=8, drop_last=True)
dataloader_eval = DataLoader(dataset_eval, batch_size=args.batch_size, shuffle=True, num_workers=8, drop_last=True)
# Get text label embeddings of all ImageNet classes
if args.template == 'std':
template = 'This is a photo of a {}'
elif args.template == 'blurry':
template = 'This is a blurry photo of a {}'
else:
raise ValueError(f'Unknown template: {args.template}')
print(f'template: {template}')
texts = [template.format(c) for c in IMAGENET_1K_CLASS_ID_TO_LABEL.values()]
text_tokens = open_clip.tokenize(texts)
model_orig.to(main_device)
with torch.no_grad():
embedding_text_labels_norm = []
for el in (text_tokens[:500], text_tokens[500:]):
# we need to split the text tokens into two batches because otherwise we run out of memory
# note that we are accessing the model directly here, not the CustomModel wrapper
# thus its always normalizing the text embeddings
embedding_text_labels_norm.append(
model_orig.encode_text(el.to(main_device), normalize=True).detach().cpu()
)
embedding_text_labels_norm = torch.cat(embedding_text_labels_norm).T.to(main_device)
assert torch.allclose(
F.normalize(embedding_text_labels_norm, dim=0),
embedding_text_labels_norm
)
if args.clip_model_name == 'ViT-B-32':
assert embedding_text_labels_norm.shape == (512, 1000), embedding_text_labels_norm.shape
elif args.clip_model_name in ('ViT-L-14', 'ViT-L-14-336'):
assert embedding_text_labels_norm.shape == (768, 1000), embedding_text_labels_norm.shape
else:
raise ValueError(f'Unknown model: {args.clip_model_name}')
model_orig.cpu()
model_orig = ClipVisionModel(model=model_orig.visual, args=args, normalize=normalize)
if num_gpus > 1:
model_orig = torch.nn.DataParallel(model_orig)
model_orig.cuda()
model = ClipVisionModel(model=model.visual, args=args, normalize=normalize)
if num_gpus > 1:
model = torch.nn.DataParallel(model)
model.cuda()
# set optimizer (all params have requires_grad=True)
params = unwrap_model(model).model.parameters()
if args.opt == 'adamw':
optimizer = torch.optim.AdamW(params, lr=args.lr, weight_decay=args.wd)
elif args.opt == 'sgd':
optimizer = torch.optim.SGD(
params,
lr=args.lr,
momentum=args.momentum_sgd,
weight_decay=args.wd
)
else:
raise ValueError(f'Optimizer {args.optimizer} not supported.')
if args.optimizer_state != '':
optimizer.load_state_dict(torch.load(args.optimizer_state))
# set scheduler
scheduler = cosine_lr(optimizer, args.lr, args.warmup, args.steps)
# compute amount of epochs
total_epochs = args.steps / len(dataloader)
print(f'train for {total_epochs} epochs')
args.total_epochs = total_epochs
# finetune
step_total = args.start_step
epoch = 0
while step_total < args.steps:
step_total = train_one_epoch(
step_total,
model=model,
model_orig=model_orig,
dataloader=dataloader,
dataloader_eval=dataloader_eval,
optimizer=optimizer,
scheduler=scheduler,
embedding_text_labels_norm=embedding_text_labels_norm,
normalize=normalize,
args=args,
epoch=epoch
)
print(f'Epoch {epoch} done.')
epoch += 1
# save final model
torch.save(unwrap_model(model).model.state_dict(), f'{args.output_dir}/checkpoints/final.pt')
torch.save(optimizer.state_dict(), f'{args.output_dir}/checkpoints/final_opt.pt')
if args.output_dir.endswith('_temp'):
# rename temp dir to final dir
os.rename(args.output_dir, args.output_dir[:-5])
class ClipVisionModel(torch.nn.Module):
def __init__(self, model, args, normalize):
super().__init__()
self.model = model
self.args = args
self.normalize = normalize
def forward(self, vision, output_normalize):
vision = self.normalize(vision)
embedding = self.model(vision)
if output_normalize:
embedding = F.normalize(embedding, dim=-1)
return embedding
class ComputeLossWrapper:
def __init__(self, embedding_orig, embedding_text_labels_norm, reduction='mean', loss=None,
logit_scale=100.):
self.embedding_orig = embedding_orig
self.embedding_text_labels_norm = embedding_text_labels_norm
self.reduction = reduction
self.loss_str = loss
self.logit_scale = logit_scale
def __call__(self, embedding, targets):
return compute_loss(
loss_str=self.loss_str, embedding=embedding, targets=targets,
embedding_orig=self.embedding_orig, logit_scale=self.logit_scale,
embedding_text_labels_norm=self.embedding_text_labels_norm, reduction=self.reduction
)
def train_one_epoch(
step_total, model, model_orig, dataloader, optimizer, scheduler, normalize,
embedding_text_labels_norm, args, epoch, dataloader_eval=None
):
model_orig.eval()
model.train()
loss_meter = AverageMeter('loss')
cos_sim_meter = AverageMeter('cos-sim')
acc_meter = AverageMeter('acc')
racc_meter = AverageMeter('racc')
epoch_start_time = time.time()
for i, (data, targets) in enumerate(dataloader):
is_classification = isinstance(targets, torch.Tensor)
data = data.cuda()
n_samples = data.shape[0]
if is_classification:
targets = targets.cuda()
with torch.no_grad():
embedding_orig = model_orig(vision=data, output_normalize=args.output_normalize)
# loss for the attack
loss_inner_wrapper = ComputeLossWrapper(
embedding_orig, embedding_text_labels_norm,
reduction='none' if args.attack == 'apgd' else 'mean', loss=args.inner_loss,
logit_scale=100.
)
model.eval()
if args.attack == 'pgd':
data_adv = pgd(
forward=model,
loss_fn=loss_inner_wrapper,
data_clean=data,
targets=targets,
norm=args.norm,
eps=args.eps,
iterations=args.iterations_adv,
stepsize=args.stepsize_adv,
output_normalize=args.output_normalize,
perturbation=torch.zeros_like(data).uniform_(-args.eps, args.eps).requires_grad_(True),
mode='max',
verbose=False
)
elif args.attack == 'apgd':
# apgd currently always applies output normalization
data_adv = apgd(
model=model,
loss_fn=loss_inner_wrapper,
x=data,
y=targets,
norm=args.norm,
eps=args.eps,
n_iter=args.iterations_adv,
verbose=True
)
elif args.attack == 'none':
data_adv = data
del loss_inner_wrapper
model.train()
embedding_clean = model(data, output_normalize=args.output_normalize)
if args.clean_weight > 0.:
loss_clean = compute_loss(
loss_str=args.loss_clean, embedding=embedding_clean, targets=targets,
embedding_orig=embedding_orig, logit_scale=100., embedding_text_labels_norm=None
)
else:
loss_clean = 0.
embedding_adv = model(data_adv, output_normalize=args.output_normalize)
del data, data_adv
if args.trades:
embedding_clean_no_grad = embedding_clean.detach().clone()
embedding_orig.cpu()
loss = compute_loss(
loss_str=args.loss, embedding=embedding_adv, targets=targets,
embedding_orig=embedding_orig if not args.trades else embedding_clean_no_grad,
logit_scale=100., embedding_text_labels_norm=embedding_text_labels_norm
)
loss_total = args.clean_weight * loss_clean + (1 - args.clean_weight) * loss
loss_total.backward()
optimizer.step()
optimizer.zero_grad()
step_total += 1
scheduler(step_total)
with torch.no_grad():
# only for logging
embedding_orig.cuda()
cos_sim_clean = F.cosine_similarity(embedding_clean, embedding_orig, dim=1).mean()
cos_sim = F.cosine_similarity(embedding_adv, embedding_orig, dim=1).mean()
if is_classification:
logits_adv = embedding_adv @ embedding_text_labels_norm
racc = compute_acc(logits_adv, targets)
embedding_clean_norm = F.normalize(embedding_clean, dim=1)
logits_clean = embedding_clean_norm @ embedding_text_labels_norm
acc = compute_acc(logits_clean, targets)
acc_meter.update(acc, n_samples)
racc_meter.update(racc, n_samples)
del embedding_clean_norm, embedding_clean
else:
acc = None
racc = None
loss_meter.update(loss.item(), n_samples)
cos_sim_meter.update(cos_sim.item(), n_samples)
eval_logs = dict()
if (step_total-1) % args.eval_freq == 0:
# we compute acc and racc (against supervised apgd) on validation data
model.eval()
data_eval, targets_eval = next(iter(dataloader_eval))
data_eval, targets_eval = data_eval.cuda(), targets_eval.cuda()
loss_eval_wrapper = ComputeLossWrapper(
embedding_orig=None, embedding_text_labels_norm=embedding_text_labels_norm,
reduction='none', loss='ce', logit_scale=100.
)
data_eval_adv = apgd(
model=model,
loss_fn=loss_eval_wrapper,
x=data_eval,
y=targets_eval,
norm=args.norm,
eps=args.eps,
n_iter=50,
initial_stepsize=0.05 * args.eps if args.clean_weight > 0 else None,
verbose=False
)
with torch.no_grad():
embedding_adv_eval_norm = model(data_eval_adv, output_normalize=True) # we set output_normalize to True
logits_eval_adv = embedding_adv_eval_norm @ embedding_text_labels_norm
racc_eval = compute_acc(logits_eval_adv, targets_eval)
embedding_eval_norm = model(data_eval, output_normalize=True)
logits_eval = embedding_eval_norm @ embedding_text_labels_norm
acc_eval = compute_acc(logits_eval, targets_eval)
# note we compute the cosine sim between clean and adv embedding,
# not between orig and adv embedding as for training
cos_sim_eval = F.cosine_similarity(embedding_adv_eval_norm, embedding_eval_norm, dim=1).mean()
eval_logs['eval/racc'] = racc_eval
eval_logs['eval/acc'] = acc_eval
eval_logs['eval/cos-sim'] = cos_sim_eval
print(f'[eval-acc] {acc_eval:.2f} [eval-racc] {racc_eval:.2f} [eval-cos-sim] {cos_sim_eval:.3f}')
model.train()
del data_eval_adv, data_eval, targets_eval, embedding_adv_eval_norm, logits_eval_adv, embedding_eval_norm, logits_eval
lr_ = optimizer.param_groups[0].get('lr')
if (step_total-1) % args.log_freq == 0:
log_str = f'[step] {step_total} [lr] {lr_:.6f} [loss] {loss.item():.6f} [cos-sim] {cos_sim.item():.3f}'
if is_classification:
log_str += f' [acc] {acc:.2f} [racc] {racc:.2f}'
print(log_str)
log_data = {
'step': step_total,
'lr': lr_,
'loss': loss.item(),
'loss-total': loss_total.item(),
'cos-sim-clean': cos_sim_clean.item(),
'cos-sim': cos_sim.item(),
'acc': acc,
'racc': racc,
'avg/loss': loss_meter.avg,
'avg/cos-sim': cos_sim_meter.avg,
'avg/acc': acc_meter.avg,
'avg/racc': racc_meter.avg,
}
log_data.update(eval_logs)
if (step_total-1) % (args.log_freq * 10) == 0:
# compute expected average epoch time in hours
batch_average_time = (time.time() - epoch_start_time) / (i + 1) / (60**2)
epoch_average_time = batch_average_time * len(dataloader)
this_epoch_remaining = epoch_average_time - \
(time.time() - epoch_start_time) / 60**2
total_remaining = epoch_average_time * (args.total_epochs - epoch - i / len(dataloader))
print(f'[epoch average time] {epoch_average_time:.2f} [this epoch remaining] '
f'{this_epoch_remaining:.2f} [total remaining] {total_remaining:.2f}')
log_data.update({
'time/total-remaining': total_remaining,
'time/this-epoch-remaining': this_epoch_remaining,
'time/epoch-average-time': epoch_average_time,
'time/batch-average-time': batch_average_time,
'other/epoch': epoch + i / len(dataloader),
})
wandb.log(log_data)
# save 10 models over the course of training
if args.save_checkpoints and (step_total % (args.steps // 10) == 0):
# save model and optimizer state_dict
torch.save(unwrap_model(model).model.state_dict(), f'{args.output_dir}/checkpoints/step_{step_total}.pt')
torch.save(optimizer.state_dict(), f'{args.output_dir}/checkpoints/step_{step_total}_opt.pt')
# every 200 steps, save a fallback model, which gets overwritten
if step_total % 200 == 0:
torch.save(unwrap_model(model).model.state_dict(), f'{args.output_dir}/checkpoints/fallback_{step_total}.pt')
torch.save(optimizer.state_dict(), f'{args.output_dir}/checkpoints/fallback_{step_total}_opt.pt')
# remove old fallback models
for file in os.listdir(f'{args.output_dir}/checkpoints'):
if file.startswith('fallback') and not str(step_total) in file:
os.remove(f'{args.output_dir}/checkpoints/{file}')
if step_total >= args.steps:
break
torch.cuda.empty_cache()
return step_total
@torch.no_grad()
def compute_acc(logits, targets):
preds_clean = logits.max(dim=1)[1].detach()
acc = (preds_clean.eq(targets).sum() / targets.shape[0]).item() * 100
return acc
def compute_loss(loss_str, embedding, targets, embedding_orig, logit_scale,
embedding_text_labels_norm=None, reduction='mean'):
if loss_str == 'l2':
loss = l2(out=embedding, targets=embedding_orig, reduction=reduction)
elif loss_str == 'ce':
loss = ce(
out=embedding @ (logit_scale * embedding_text_labels_norm),
targets=targets,
reduction=reduction
)
else:
raise ValueError(f'loss {loss_str} not supported')
return loss
def l2(out, targets, reduction='none'):
# squared l2 - it does not divide by the latent dimension
# should have shape (batch_size, embedding_size)
assert out.shape == targets.shape, f'{out.shape} != {targets.shape}'
assert out.shape[0] > 1
# Compute the element-wise squared error
squared_error_batch = F.mse_loss(out, targets, reduction='none')
if reduction == 'mean':
squared_error_batch = torch.mean(squared_error_batch.sum(dim=1))
else:
squared_error_batch = squared_error_batch.sum(dim=1)
assert squared_error_batch.shape == (out.shape[0],), f'{squared_error_batch.shape} != {(out.shape[0],)}'
return squared_error_batch
def ce(out, targets, reduction='mean'):
# out = logits
assert out.shape[0] == targets.shape[0], (out.shape, targets.shape)
assert out.shape[0] > 1
return F.cross_entropy(out, targets, reduction=reduction)
if __name__ == '__main__':
# set seeds
torch.manual_seed(0)
np.random.seed(0)
# Parse command-line arguments
args = parser.parse_args()
args.eps /= 255
args.stepsize_adv /= 255
# make sure there is no string in args that should be a bool
assert not any([isinstance(x, str) and x in ['True', 'False'] for x in args.__dict__.values()]), f'args contains a string that should be a bool: {args}'
assert args.eval_freq % args.log_freq == 0, 'eval_freq must be a multiple of log_freq'
if args.devices != '':
# set cuda visible devices
os.environ['CUDA_VISIBLE_DEVICES'] = args.devices
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
print(f'Number of GPUs available: {num_gpus}')
else:
print('No multiple GPUs available.')
# set model name and output dir
random_str = ''.join(random.choices(string.ascii_letters + string.digits, k=5))
args.finetuned_model_name = f'{args.clip_model_name}_{args.pretrained}_{args.dataset}_{args.loss}_{args.dataset}_{args.experiment_name}_{random_str}'
args.finetuned_model_name = args.finetuned_model_name.replace('/', '_')
args.output_dir = os.path.join(args.output_dir, args.finetuned_model_name)
# run
main(args) |