Upload 294 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +1 -0
- .idea/.gitignore +8 -0
- .idea/RobustVLM.iml +12 -0
- .idea/deployment.xml +309 -0
- .idea/inspectionProfiles/Project_Default.xml +105 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/workspace.xml +162 -0
- CLIP_benchmark/LICENSE +22 -0
- CLIP_benchmark/README.md +2 -0
- CLIP_benchmark/bash/build.sh +12 -0
- CLIP_benchmark/bash/run_benchmark_adv.sh +19 -0
- CLIP_benchmark/bash/run_benchmark_clean.sh +21 -0
- CLIP_benchmark/benchmark/README.md +0 -0
- CLIP_benchmark/benchmark/benchmark.csv +508 -0
- CLIP_benchmark/benchmark/dataset_type.csv +42 -0
- CLIP_benchmark/benchmark/datasets.txt +13 -0
- CLIP_benchmark/benchmark/datasets_multilingual.txt +13 -0
- CLIP_benchmark/benchmark/models.txt +2 -0
- CLIP_benchmark/benchmark/webdatasets.txt +41 -0
- CLIP_benchmark/clip_benchmark/__init__.py +5 -0
- CLIP_benchmark/clip_benchmark/cli.py +404 -0
- CLIP_benchmark/clip_benchmark/datasets/__init__.py +0 -0
- CLIP_benchmark/clip_benchmark/datasets/ar_classnames.json +1004 -0
- CLIP_benchmark/clip_benchmark/datasets/ar_zeroshot_classification_templates.json +59 -0
- CLIP_benchmark/clip_benchmark/datasets/babel_imagenet.json +0 -0
- CLIP_benchmark/clip_benchmark/datasets/babel_imagenet.py +20 -0
- CLIP_benchmark/clip_benchmark/datasets/builder.py +817 -0
- CLIP_benchmark/clip_benchmark/datasets/caltech101.py +243 -0
- CLIP_benchmark/clip_benchmark/datasets/cn_classnames.json +1004 -0
- CLIP_benchmark/clip_benchmark/datasets/cn_zeroshot_classification_templates.json +84 -0
- CLIP_benchmark/clip_benchmark/datasets/cupl_prompts.json +0 -0
- CLIP_benchmark/clip_benchmark/datasets/en_classnames.json +1701 -0
- CLIP_benchmark/clip_benchmark/datasets/en_zeroshot_classification_templates.json +295 -0
- CLIP_benchmark/clip_benchmark/datasets/flickr.py +62 -0
- CLIP_benchmark/clip_benchmark/datasets/imagenetv2.py +98 -0
- CLIP_benchmark/clip_benchmark/datasets/it_classnames.json +1004 -0
- CLIP_benchmark/clip_benchmark/datasets/it_zeroshot_classification_templates.json +53 -0
- CLIP_benchmark/clip_benchmark/datasets/jp_classnames.json +1004 -0
- CLIP_benchmark/clip_benchmark/datasets/jp_zeroshot_classification_templates.json +41 -0
- CLIP_benchmark/clip_benchmark/datasets/kitti.py +209 -0
- CLIP_benchmark/clip_benchmark/datasets/multilingual_mscoco.py +91 -0
- CLIP_benchmark/clip_benchmark/datasets/nllb_dist13b_prompts.json +0 -0
- CLIP_benchmark/clip_benchmark/datasets/objectnet.py +76 -0
- CLIP_benchmark/clip_benchmark/datasets/sugar_crepe.py +22 -0
- CLIP_benchmark/clip_benchmark/datasets/tfds.py +48 -0
- CLIP_benchmark/clip_benchmark/datasets/voc2007.py +248 -0
- CLIP_benchmark/clip_benchmark/metrics/__init__.py +0 -0
- CLIP_benchmark/clip_benchmark/metrics/captioning.py +99 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
scienceqa_eval/problems.json filter=lfs diff=lfs merge=lfs -text
|
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
.idea/RobustVLM.iml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="jdk" jdkName="Remote Python 3.11.0 (sftp://[email protected]:2122/home/tly/anaconda3/envs/robustclip/bin/python)" jdkType="Python SDK" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
<component name="PyDocumentationSettings">
|
9 |
+
<option name="format" value="PLAIN" />
|
10 |
+
<option name="myDocStringFormat" value="Plain" />
|
11 |
+
</component>
|
12 |
+
</module>
|
.idea/deployment.xml
ADDED
@@ -0,0 +1,309 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="PublishConfigData" autoUpload="Always" serverName="[email protected]:2122 key (7)" remoteFilesAllowedToDisappearOnAutoupload="false">
|
4 |
+
<serverData>
|
5 |
+
<paths name="[email protected]:22 password">
|
6 |
+
<serverdata>
|
7 |
+
<mappings>
|
8 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
9 |
+
</mappings>
|
10 |
+
</serverdata>
|
11 |
+
</paths>
|
12 |
+
<paths name="[email protected]:22 password (2)">
|
13 |
+
<serverdata>
|
14 |
+
<mappings>
|
15 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
16 |
+
</mappings>
|
17 |
+
</serverdata>
|
18 |
+
</paths>
|
19 |
+
<paths name="[email protected]:1122 key">
|
20 |
+
<serverdata>
|
21 |
+
<mappings>
|
22 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
23 |
+
</mappings>
|
24 |
+
</serverdata>
|
25 |
+
</paths>
|
26 |
+
<paths name="[email protected]:8001 password">
|
27 |
+
<serverdata>
|
28 |
+
<mappings>
|
29 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
30 |
+
</mappings>
|
31 |
+
</serverdata>
|
32 |
+
</paths>
|
33 |
+
<paths name="[email protected]:8001 password (2)">
|
34 |
+
<serverdata>
|
35 |
+
<mappings>
|
36 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
37 |
+
</mappings>
|
38 |
+
</serverdata>
|
39 |
+
</paths>
|
40 |
+
<paths name="[email protected]:8001 password (3)">
|
41 |
+
<serverdata>
|
42 |
+
<mappings>
|
43 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
44 |
+
</mappings>
|
45 |
+
</serverdata>
|
46 |
+
</paths>
|
47 |
+
<paths name="[email protected]:8001 password (4)">
|
48 |
+
<serverdata>
|
49 |
+
<mappings>
|
50 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
51 |
+
</mappings>
|
52 |
+
</serverdata>
|
53 |
+
</paths>
|
54 |
+
<paths name="[email protected]:8001 password (5)">
|
55 |
+
<serverdata>
|
56 |
+
<mappings>
|
57 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
58 |
+
</mappings>
|
59 |
+
</serverdata>
|
60 |
+
</paths>
|
61 |
+
<paths name="[email protected]:8001 password (6)">
|
62 |
+
<serverdata>
|
63 |
+
<mappings>
|
64 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
65 |
+
</mappings>
|
66 |
+
</serverdata>
|
67 |
+
</paths>
|
68 |
+
<paths name="[email protected]:8001 password">
|
69 |
+
<serverdata>
|
70 |
+
<mappings>
|
71 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
72 |
+
</mappings>
|
73 |
+
</serverdata>
|
74 |
+
</paths>
|
75 |
+
<paths name="[email protected]:22 password">
|
76 |
+
<serverdata>
|
77 |
+
<mappings>
|
78 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
79 |
+
</mappings>
|
80 |
+
</serverdata>
|
81 |
+
</paths>
|
82 |
+
<paths name="[email protected]:1622 key">
|
83 |
+
<serverdata>
|
84 |
+
<mappings>
|
85 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
86 |
+
</mappings>
|
87 |
+
</serverdata>
|
88 |
+
</paths>
|
89 |
+
<paths name="[email protected]:1622 key (2)">
|
90 |
+
<serverdata>
|
91 |
+
<mappings>
|
92 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
93 |
+
</mappings>
|
94 |
+
</serverdata>
|
95 |
+
</paths>
|
96 |
+
<paths name="[email protected]:1622 key (3)">
|
97 |
+
<serverdata>
|
98 |
+
<mappings>
|
99 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
100 |
+
</mappings>
|
101 |
+
</serverdata>
|
102 |
+
</paths>
|
103 |
+
<paths name="[email protected]:1622 key (4)">
|
104 |
+
<serverdata>
|
105 |
+
<mappings>
|
106 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
107 |
+
</mappings>
|
108 |
+
</serverdata>
|
109 |
+
</paths>
|
110 |
+
<paths name="[email protected]:22 password">
|
111 |
+
<serverdata>
|
112 |
+
<mappings>
|
113 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
114 |
+
</mappings>
|
115 |
+
</serverdata>
|
116 |
+
</paths>
|
117 |
+
<paths name="[email protected]:22 password (2)">
|
118 |
+
<serverdata>
|
119 |
+
<mappings>
|
120 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
121 |
+
</mappings>
|
122 |
+
</serverdata>
|
123 |
+
</paths>
|
124 |
+
<paths name="[email protected]:22 password (3)">
|
125 |
+
<serverdata>
|
126 |
+
<mappings>
|
127 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
128 |
+
</mappings>
|
129 |
+
</serverdata>
|
130 |
+
</paths>
|
131 |
+
<paths name="[email protected]:22 password (4)">
|
132 |
+
<serverdata>
|
133 |
+
<mappings>
|
134 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
135 |
+
</mappings>
|
136 |
+
</serverdata>
|
137 |
+
</paths>
|
138 |
+
<paths name="[email protected]:22 password (5)">
|
139 |
+
<serverdata>
|
140 |
+
<mappings>
|
141 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
142 |
+
</mappings>
|
143 |
+
</serverdata>
|
144 |
+
</paths>
|
145 |
+
<paths name="[email protected]:22 password (6)">
|
146 |
+
<serverdata>
|
147 |
+
<mappings>
|
148 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
149 |
+
</mappings>
|
150 |
+
</serverdata>
|
151 |
+
</paths>
|
152 |
+
<paths name="[email protected]:22 password (7)">
|
153 |
+
<serverdata>
|
154 |
+
<mappings>
|
155 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
156 |
+
</mappings>
|
157 |
+
</serverdata>
|
158 |
+
</paths>
|
159 |
+
<paths name="[email protected]:22 password (8)">
|
160 |
+
<serverdata>
|
161 |
+
<mappings>
|
162 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
163 |
+
</mappings>
|
164 |
+
</serverdata>
|
165 |
+
</paths>
|
166 |
+
<paths name="[email protected]:10003 key">
|
167 |
+
<serverdata>
|
168 |
+
<mappings>
|
169 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
170 |
+
</mappings>
|
171 |
+
</serverdata>
|
172 |
+
</paths>
|
173 |
+
<paths name="[email protected]:77 key">
|
174 |
+
<serverdata>
|
175 |
+
<mappings>
|
176 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
177 |
+
</mappings>
|
178 |
+
</serverdata>
|
179 |
+
</paths>
|
180 |
+
<paths name="[email protected]:22 key">
|
181 |
+
<serverdata>
|
182 |
+
<mappings>
|
183 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
184 |
+
</mappings>
|
185 |
+
</serverdata>
|
186 |
+
</paths>
|
187 |
+
<paths name="[email protected]:22 key (2)">
|
188 |
+
<serverdata>
|
189 |
+
<mappings>
|
190 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
191 |
+
</mappings>
|
192 |
+
</serverdata>
|
193 |
+
</paths>
|
194 |
+
<paths name="[email protected]:1322 key">
|
195 |
+
<serverdata>
|
196 |
+
<mappings>
|
197 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
198 |
+
</mappings>
|
199 |
+
</serverdata>
|
200 |
+
</paths>
|
201 |
+
<paths name="[email protected]:1822 key">
|
202 |
+
<serverdata>
|
203 |
+
<mappings>
|
204 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
205 |
+
</mappings>
|
206 |
+
</serverdata>
|
207 |
+
</paths>
|
208 |
+
<paths name="[email protected]:1822 key (2)">
|
209 |
+
<serverdata>
|
210 |
+
<mappings>
|
211 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
212 |
+
</mappings>
|
213 |
+
</serverdata>
|
214 |
+
</paths>
|
215 |
+
<paths name="[email protected]:1822 key (3)">
|
216 |
+
<serverdata>
|
217 |
+
<mappings>
|
218 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
219 |
+
</mappings>
|
220 |
+
</serverdata>
|
221 |
+
</paths>
|
222 |
+
<paths name="[email protected]:2122 key">
|
223 |
+
<serverdata>
|
224 |
+
<mappings>
|
225 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
226 |
+
</mappings>
|
227 |
+
</serverdata>
|
228 |
+
</paths>
|
229 |
+
<paths name="[email protected]:2122 key (2)">
|
230 |
+
<serverdata>
|
231 |
+
<mappings>
|
232 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
233 |
+
</mappings>
|
234 |
+
</serverdata>
|
235 |
+
</paths>
|
236 |
+
<paths name="[email protected]:2122 key (3)">
|
237 |
+
<serverdata>
|
238 |
+
<mappings>
|
239 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
240 |
+
</mappings>
|
241 |
+
</serverdata>
|
242 |
+
</paths>
|
243 |
+
<paths name="[email protected]:2122 key (4)">
|
244 |
+
<serverdata>
|
245 |
+
<mappings>
|
246 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
247 |
+
</mappings>
|
248 |
+
</serverdata>
|
249 |
+
</paths>
|
250 |
+
<paths name="[email protected]:2122 key (5)">
|
251 |
+
<serverdata>
|
252 |
+
<mappings>
|
253 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
254 |
+
</mappings>
|
255 |
+
</serverdata>
|
256 |
+
</paths>
|
257 |
+
<paths name="[email protected]:2122 key (6)">
|
258 |
+
<serverdata>
|
259 |
+
<mappings>
|
260 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
261 |
+
</mappings>
|
262 |
+
</serverdata>
|
263 |
+
</paths>
|
264 |
+
<paths name="[email protected]:2122 key (7)">
|
265 |
+
<serverdata>
|
266 |
+
<mappings>
|
267 |
+
<mapping deploy="/RobustVLM" local="$PROJECT_DIR$" />
|
268 |
+
</mappings>
|
269 |
+
</serverdata>
|
270 |
+
</paths>
|
271 |
+
<paths name="tongkang">
|
272 |
+
<serverdata>
|
273 |
+
<mappings>
|
274 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
275 |
+
</mappings>
|
276 |
+
</serverdata>
|
277 |
+
</paths>
|
278 |
+
<paths name="[email protected]:44152 password">
|
279 |
+
<serverdata>
|
280 |
+
<mappings>
|
281 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
282 |
+
</mappings>
|
283 |
+
</serverdata>
|
284 |
+
</paths>
|
285 |
+
<paths name="[email protected]:8001 password">
|
286 |
+
<serverdata>
|
287 |
+
<mappings>
|
288 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
289 |
+
</mappings>
|
290 |
+
</serverdata>
|
291 |
+
</paths>
|
292 |
+
<paths name="[email protected]:8001 password">
|
293 |
+
<serverdata>
|
294 |
+
<mappings>
|
295 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
296 |
+
</mappings>
|
297 |
+
</serverdata>
|
298 |
+
</paths>
|
299 |
+
<paths name="[email protected]:1922 key">
|
300 |
+
<serverdata>
|
301 |
+
<mappings>
|
302 |
+
<mapping local="$PROJECT_DIR$" web="/" />
|
303 |
+
</mappings>
|
304 |
+
</serverdata>
|
305 |
+
</paths>
|
306 |
+
</serverData>
|
307 |
+
<option name="myAutoUpload" value="ALWAYS" />
|
308 |
+
</component>
|
309 |
+
</project>
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<profile version="1.0">
|
3 |
+
<option name="myName" value="Project Default" />
|
4 |
+
<inspection_tool class="PyPackageRequirementsInspection" enabled="true" level="WARNING" enabled_by_default="true">
|
5 |
+
<option name="ignoredPackages">
|
6 |
+
<value>
|
7 |
+
<list size="92">
|
8 |
+
<item index="0" class="java.lang.String" itemvalue="pandas" />
|
9 |
+
<item index="1" class="java.lang.String" itemvalue="numba" />
|
10 |
+
<item index="2" class="java.lang.String" itemvalue="timm" />
|
11 |
+
<item index="3" class="java.lang.String" itemvalue="matplotlib" />
|
12 |
+
<item index="4" class="java.lang.String" itemvalue="einops" />
|
13 |
+
<item index="5" class="java.lang.String" itemvalue="protobuf" />
|
14 |
+
<item index="6" class="java.lang.String" itemvalue="scipy" />
|
15 |
+
<item index="7" class="java.lang.String" itemvalue="thop" />
|
16 |
+
<item index="8" class="java.lang.String" itemvalue="PyYAML" />
|
17 |
+
<item index="9" class="java.lang.String" itemvalue="setuptools" />
|
18 |
+
<item index="10" class="java.lang.String" itemvalue="torch" />
|
19 |
+
<item index="11" class="java.lang.String" itemvalue="numpy" />
|
20 |
+
<item index="12" class="java.lang.String" itemvalue="requests" />
|
21 |
+
<item index="13" class="java.lang.String" itemvalue="torchvision" />
|
22 |
+
<item index="14" class="java.lang.String" itemvalue="tqdm" />
|
23 |
+
<item index="15" class="java.lang.String" itemvalue="seaborn" />
|
24 |
+
<item index="16" class="java.lang.String" itemvalue="Pillow" />
|
25 |
+
<item index="17" class="java.lang.String" itemvalue="yacs" />
|
26 |
+
<item index="18" class="java.lang.String" itemvalue="gdown" />
|
27 |
+
<item index="19" class="java.lang.String" itemvalue="tensorboard" />
|
28 |
+
<item index="20" class="java.lang.String" itemvalue="yapf" />
|
29 |
+
<item index="21" class="java.lang.String" itemvalue="future" />
|
30 |
+
<item index="22" class="java.lang.String" itemvalue="isort" />
|
31 |
+
<item index="23" class="java.lang.String" itemvalue="flake8" />
|
32 |
+
<item index="24" class="java.lang.String" itemvalue="tb-nightly" />
|
33 |
+
<item index="25" class="java.lang.String" itemvalue="easydict" />
|
34 |
+
<item index="26" class="java.lang.String" itemvalue="scikit_learn" />
|
35 |
+
<item index="27" class="java.lang.String" itemvalue="tensorboardX" />
|
36 |
+
<item index="28" class="java.lang.String" itemvalue="mxnet" />
|
37 |
+
<item index="29" class="java.lang.String" itemvalue="mxnet_cu90" />
|
38 |
+
<item index="30" class="java.lang.String" itemvalue="bcolz" />
|
39 |
+
<item index="31" class="java.lang.String" itemvalue="opencv_python" />
|
40 |
+
<item index="32" class="java.lang.String" itemvalue="opencv-python" />
|
41 |
+
<item index="33" class="java.lang.String" itemvalue="pretty_midi" />
|
42 |
+
<item index="34" class="java.lang.String" itemvalue="pytest-runner" />
|
43 |
+
<item index="35" class="java.lang.String" itemvalue="interrogate" />
|
44 |
+
<item index="36" class="java.lang.String" itemvalue="parameterized" />
|
45 |
+
<item index="37" class="java.lang.String" itemvalue="pytest-cov" />
|
46 |
+
<item index="38" class="java.lang.String" itemvalue="waymo-open-dataset-tf-2-6-0" />
|
47 |
+
<item index="39" class="java.lang.String" itemvalue="black" />
|
48 |
+
<item index="40" class="java.lang.String" itemvalue="kwarray" />
|
49 |
+
<item index="41" class="java.lang.String" itemvalue="xdoctest" />
|
50 |
+
<item index="42" class="java.lang.String" itemvalue="codecov" />
|
51 |
+
<item index="43" class="java.lang.String" itemvalue="ubelt" />
|
52 |
+
<item index="44" class="java.lang.String" itemvalue="scikit-image" />
|
53 |
+
<item index="45" class="java.lang.String" itemvalue="sklearn" />
|
54 |
+
<item index="46" class="java.lang.String" itemvalue="sktime" />
|
55 |
+
<item index="47" class="java.lang.String" itemvalue="patool" />
|
56 |
+
<item index="48" class="java.lang.String" itemvalue="scikit-learn" />
|
57 |
+
<item index="49" class="java.lang.String" itemvalue="reformer-pytorch" />
|
58 |
+
<item index="50" class="java.lang.String" itemvalue="sympy" />
|
59 |
+
<item index="51" class="java.lang.String" itemvalue="absl-py" />
|
60 |
+
<item index="52" class="java.lang.String" itemvalue="joblib" />
|
61 |
+
<item index="53" class="java.lang.String" itemvalue="threadpoolctl" />
|
62 |
+
<item index="54" class="java.lang.String" itemvalue="smmap" />
|
63 |
+
<item index="55" class="java.lang.String" itemvalue="python-dateutil" />
|
64 |
+
<item index="56" class="java.lang.String" itemvalue="cycler" />
|
65 |
+
<item index="57" class="java.lang.String" itemvalue="MarkupSafe" />
|
66 |
+
<item index="58" class="java.lang.String" itemvalue="mkl-random" />
|
67 |
+
<item index="59" class="java.lang.String" itemvalue="gitdb" />
|
68 |
+
<item index="60" class="java.lang.String" itemvalue="mkl-fft" />
|
69 |
+
<item index="61" class="java.lang.String" itemvalue="appdirs" />
|
70 |
+
<item index="62" class="java.lang.String" itemvalue="sentry-sdk" />
|
71 |
+
<item index="63" class="java.lang.String" itemvalue="pip" />
|
72 |
+
<item index="64" class="java.lang.String" itemvalue="certifi" />
|
73 |
+
<item index="65" class="java.lang.String" itemvalue="wandb" />
|
74 |
+
<item index="66" class="java.lang.String" itemvalue="urllib3" />
|
75 |
+
<item index="67" class="java.lang.String" itemvalue="pyparsing" />
|
76 |
+
<item index="68" class="java.lang.String" itemvalue="Markdown" />
|
77 |
+
<item index="69" class="java.lang.String" itemvalue="GitPython" />
|
78 |
+
<item index="70" class="java.lang.String" itemvalue="six" />
|
79 |
+
<item index="71" class="java.lang.String" itemvalue="Werkzeug" />
|
80 |
+
<item index="72" class="java.lang.String" itemvalue="wheel" />
|
81 |
+
<item index="73" class="java.lang.String" itemvalue="tensorboard-data-server" />
|
82 |
+
<item index="74" class="java.lang.String" itemvalue="tzdata" />
|
83 |
+
<item index="75" class="java.lang.String" itemvalue="kiwisolver" />
|
84 |
+
<item index="76" class="java.lang.String" itemvalue="packaging" />
|
85 |
+
<item index="77" class="java.lang.String" itemvalue="click" />
|
86 |
+
<item index="78" class="java.lang.String" itemvalue="contourpy" />
|
87 |
+
<item index="79" class="java.lang.String" itemvalue="docker-pycreds" />
|
88 |
+
<item index="80" class="java.lang.String" itemvalue="psutil" />
|
89 |
+
<item index="81" class="java.lang.String" itemvalue="chardet" />
|
90 |
+
<item index="82" class="java.lang.String" itemvalue="fonttools" />
|
91 |
+
<item index="83" class="java.lang.String" itemvalue="typing_extensions" />
|
92 |
+
<item index="84" class="java.lang.String" itemvalue="charset-normalizer" />
|
93 |
+
<item index="85" class="java.lang.String" itemvalue="pillow" />
|
94 |
+
<item index="86" class="java.lang.String" itemvalue="grpcio" />
|
95 |
+
<item index="87" class="java.lang.String" itemvalue="pytz" />
|
96 |
+
<item index="88" class="java.lang.String" itemvalue="setproctitle" />
|
97 |
+
<item index="89" class="java.lang.String" itemvalue="idna" />
|
98 |
+
<item index="90" class="java.lang.String" itemvalue="mkl-service" />
|
99 |
+
<item index="91" class="java.lang.String" itemvalue="torchaudio" />
|
100 |
+
</list>
|
101 |
+
</value>
|
102 |
+
</option>
|
103 |
+
</inspection_tool>
|
104 |
+
</profile>
|
105 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Remote Python 3.11.0 (sftp://[email protected]:2122/home/tly/anaconda3/envs/robustclip/bin/python)" project-jdk-type="Python SDK" />
|
4 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/RobustVLM.iml" filepath="$PROJECT_DIR$/.idea/RobustVLM.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/workspace.xml
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="AutoImportSettings">
|
4 |
+
<option name="autoReloadType" value="SELECTIVE" />
|
5 |
+
</component>
|
6 |
+
<component name="ChangeListManager">
|
7 |
+
<list default="true" id="ba57d845-ced9-46fc-a8d3-426558963497" name="Changes" comment="" />
|
8 |
+
<option name="SHOW_DIALOG" value="false" />
|
9 |
+
<option name="HIGHLIGHT_CONFLICTS" value="true" />
|
10 |
+
<option name="HIGHLIGHT_NON_ACTIVE_CHANGELIST" value="false" />
|
11 |
+
<option name="LAST_RESOLUTION" value="IGNORE" />
|
12 |
+
</component>
|
13 |
+
<component name="MarkdownSettingsMigration">
|
14 |
+
<option name="stateVersion" value="1" />
|
15 |
+
</component>
|
16 |
+
<component name="ProjectId" id="2nSLSQiWX77cv8fcU5XA3n96QkM" />
|
17 |
+
<component name="ProjectViewState">
|
18 |
+
<option name="hideEmptyMiddlePackages" value="true" />
|
19 |
+
<option name="showLibraryContents" value="true" />
|
20 |
+
</component>
|
21 |
+
<component name="PropertiesComponent">{
|
22 |
+
"keyToString": {
|
23 |
+
"RunOnceActivity.OpenProjectViewOnStart": "true",
|
24 |
+
"RunOnceActivity.ShowReadmeOnStart": "true",
|
25 |
+
"WebServerToolWindowFactoryState": "true",
|
26 |
+
"last_opened_file_path": "D:/AI/Mine/Codes/RobustVLM",
|
27 |
+
"node.js.detected.package.eslint": "true",
|
28 |
+
"node.js.detected.package.tslint": "true",
|
29 |
+
"node.js.selected.package.eslint": "(autodetect)",
|
30 |
+
"node.js.selected.package.tslint": "(autodetect)",
|
31 |
+
"nodejs_package_manager_path": "npm",
|
32 |
+
"settings.editor.selected.configurable": "reference.idesettings.debugger.python",
|
33 |
+
"vue.rearranger.settings.migration": "true"
|
34 |
+
}
|
35 |
+
}</component>
|
36 |
+
<component name="PyDebuggerOptionsProvider">
|
37 |
+
<option name="mySupportGeventDebugging" value="true" />
|
38 |
+
</component>
|
39 |
+
<component name="RecentsManager">
|
40 |
+
<key name="CopyFile.RECENT_KEYS">
|
41 |
+
<recent name="D:\AI\Mine\Codes\RobustVLM" />
|
42 |
+
<recent name="D:\AI\Mine\Codes\RobustVLM\train" />
|
43 |
+
<recent name="D:\AI\Mine\Codes\RobustVLM\slots" />
|
44 |
+
</key>
|
45 |
+
</component>
|
46 |
+
<component name="RunManager" selected="Python.training_clip_slots">
|
47 |
+
<configuration name="adversarial_training_clip" type="PythonConfigurationType" factoryName="Python" nameIsGenerated="true">
|
48 |
+
<module name="RobustVLM" />
|
49 |
+
<option name="INTERPRETER_OPTIONS" value="" />
|
50 |
+
<option name="PARENT_ENVS" value="true" />
|
51 |
+
<envs>
|
52 |
+
<env name="PYTHONUNBUFFERED" value="1" />
|
53 |
+
<env name="CUDA_VISIBLE_DEVICES" value="2" />
|
54 |
+
</envs>
|
55 |
+
<option name="SDK_HOME" value="/home/tly/anaconda3/envs/robustclip/bin/python" />
|
56 |
+
<option name="SDK_NAME" value="Remote Python 3.11.0 (sftp://[email protected]:2122/home/tly/anaconda3/envs/robustclip/bin/python)" />
|
57 |
+
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
58 |
+
<option name="IS_MODULE_SDK" value="false" />
|
59 |
+
<option name="ADD_CONTENT_ROOTS" value="true" />
|
60 |
+
<option name="ADD_SOURCE_ROOTS" value="true" />
|
61 |
+
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
62 |
+
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/train/adversarial_training_clip.py" />
|
63 |
+
<option name="PARAMETERS" value="--clip_model_name ViT-L-14 --pretrained openai --dataset imagenet --imagenet_root /home/hkz/Datasets/ForGCD/imagenet --template std --output_normalize False --steps 160000 --warmup 11200 --batch_size 12 --loss l2 --opt adamw --lr 1e-6 --wd 1e-4 --attack pgd --inner_loss l2 --norm linf --eps 4 --iterations_adv 10 --stepsize_adv 1 --wandb False --output_dir ./output --experiment_name FARE4 --log_freq 1000 --eval_freq 1000" />
|
64 |
+
<option name="SHOW_COMMAND_LINE" value="false" />
|
65 |
+
<option name="EMULATE_TERMINAL" value="false" />
|
66 |
+
<option name="MODULE_MODE" value="false" />
|
67 |
+
<option name="REDIRECT_INPUT" value="false" />
|
68 |
+
<option name="INPUT_FILE" value="" />
|
69 |
+
<method v="2" />
|
70 |
+
</configuration>
|
71 |
+
<configuration name="training_clip_get_features" type="PythonConfigurationType" factoryName="Python" nameIsGenerated="true">
|
72 |
+
<module name="RobustVLM" />
|
73 |
+
<option name="INTERPRETER_OPTIONS" value="" />
|
74 |
+
<option name="PARENT_ENVS" value="true" />
|
75 |
+
<envs>
|
76 |
+
<env name="PYTHONUNBUFFERED" value="1" />
|
77 |
+
<env name="CUDA_VISIBLE_DEVICES" value="2" />
|
78 |
+
</envs>
|
79 |
+
<option name="SDK_HOME" value="/home/tly/anaconda3/envs/robustclip/bin/python" />
|
80 |
+
<option name="SDK_NAME" value="Remote Python 3.11.0 (sftp://[email protected]:2122/home/tly/anaconda3/envs/robustclip/bin/python)" />
|
81 |
+
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
82 |
+
<option name="IS_MODULE_SDK" value="false" />
|
83 |
+
<option name="ADD_CONTENT_ROOTS" value="true" />
|
84 |
+
<option name="ADD_SOURCE_ROOTS" value="true" />
|
85 |
+
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
86 |
+
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/train/training_clip_get_features.py" />
|
87 |
+
<option name="PARAMETERS" value="--clip_model_name ViT-L-14 --pretrained openai --dataset imagenet --imagenet_root /home/hkz/Datasets/ForGCD/imagenet --template std --output_normalize False --steps 150000 --warmup 1500 --batch_size 64 --loss l2 --opt adamw --lr 1e-5 --wd 1e-4 --attack pgd --inner_loss l2 --norm linf --eps 4 --iterations_adv 10 --stepsize_adv 1 --wandb False --output_dir ./output_slots --experiment_name SLOTS --log_freq 1000 --eval_freq 1000" />
|
88 |
+
<option name="SHOW_COMMAND_LINE" value="false" />
|
89 |
+
<option name="EMULATE_TERMINAL" value="false" />
|
90 |
+
<option name="MODULE_MODE" value="false" />
|
91 |
+
<option name="REDIRECT_INPUT" value="false" />
|
92 |
+
<option name="INPUT_FILE" value="" />
|
93 |
+
<method v="2" />
|
94 |
+
</configuration>
|
95 |
+
<configuration name="training_clip_slots" type="PythonConfigurationType" factoryName="Python" nameIsGenerated="true">
|
96 |
+
<module name="RobustVLM" />
|
97 |
+
<option name="INTERPRETER_OPTIONS" value="" />
|
98 |
+
<option name="PARENT_ENVS" value="true" />
|
99 |
+
<envs>
|
100 |
+
<env name="PYTHONUNBUFFERED" value="1" />
|
101 |
+
<env name="CUDA_VISIBLE_DEVICES" value="0,1" />
|
102 |
+
</envs>
|
103 |
+
<option name="SDK_HOME" value="/home/tly/anaconda3/envs/robustclip/bin/python" />
|
104 |
+
<option name="SDK_NAME" value="Remote Python 3.11.0 (sftp://[email protected]:2122/home/tly/anaconda3/envs/robustclip/bin/python)" />
|
105 |
+
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
|
106 |
+
<option name="IS_MODULE_SDK" value="false" />
|
107 |
+
<option name="ADD_CONTENT_ROOTS" value="true" />
|
108 |
+
<option name="ADD_SOURCE_ROOTS" value="true" />
|
109 |
+
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
|
110 |
+
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/train/training_clip_slots.py" />
|
111 |
+
<option name="PARAMETERS" value="--clip_model_name ViT-L-14 --pretrained openai --dataset imagenet --imagenet_root /home/hkz/Datasets/ForGCD/imagenet --template std --output_normalize False --steps 1500000 --warmup 15000 --batch_size 64 --loss l2 --opt adamw --lr 5e-5 --wd 1e-4 --attack pgd --inner_loss l2 --norm linf --eps 4 --iterations_adv 10 --stepsize_adv 1 --wandb False --output_dir ./output_slots --experiment_name SLOTS --log_freq 1000 --eval_freq 1000" />
|
112 |
+
<option name="SHOW_COMMAND_LINE" value="false" />
|
113 |
+
<option name="EMULATE_TERMINAL" value="false" />
|
114 |
+
<option name="MODULE_MODE" value="false" />
|
115 |
+
<option name="REDIRECT_INPUT" value="false" />
|
116 |
+
<option name="INPUT_FILE" value="" />
|
117 |
+
<method v="2" />
|
118 |
+
</configuration>
|
119 |
+
<list>
|
120 |
+
<item itemvalue="Python.adversarial_training_clip" />
|
121 |
+
<item itemvalue="Python.training_clip_slots" />
|
122 |
+
<item itemvalue="Python.training_clip_get_features" />
|
123 |
+
</list>
|
124 |
+
</component>
|
125 |
+
<component name="SpellCheckerSettings" RuntimeDictionaries="0" Folders="0" CustomDictionaries="0" DefaultDictionary="application-level" UseSingleDictionary="true" transferred="true" />
|
126 |
+
<component name="TaskManager">
|
127 |
+
<task active="true" id="Default" summary="Default task">
|
128 |
+
<changelist id="ba57d845-ced9-46fc-a8d3-426558963497" name="Changes" comment="" />
|
129 |
+
<created>1728961530244</created>
|
130 |
+
<option name="number" value="Default" />
|
131 |
+
<option name="presentableId" value="Default" />
|
132 |
+
<updated>1728961530244</updated>
|
133 |
+
<workItem from="1728961535817" duration="22428000" />
|
134 |
+
<workItem from="1729131617455" duration="11209000" />
|
135 |
+
</task>
|
136 |
+
<servers />
|
137 |
+
</component>
|
138 |
+
<component name="TypeScriptGeneratedFilesManager">
|
139 |
+
<option name="version" value="3" />
|
140 |
+
</component>
|
141 |
+
<component name="XDebuggerManager">
|
142 |
+
<breakpoint-manager>
|
143 |
+
<breakpoints>
|
144 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
145 |
+
<url>file://$PROJECT_DIR$/train/training_clip_slots.py</url>
|
146 |
+
<line>306</line>
|
147 |
+
<option name="timeStamp" value="19" />
|
148 |
+
</line-breakpoint>
|
149 |
+
<line-breakpoint enabled="true" suspend="THREAD" type="python-line">
|
150 |
+
<url>file://$PROJECT_DIR$/train/training_clip_get_features.py</url>
|
151 |
+
<line>299</line>
|
152 |
+
<option name="timeStamp" value="20" />
|
153 |
+
</line-breakpoint>
|
154 |
+
</breakpoints>
|
155 |
+
</breakpoint-manager>
|
156 |
+
</component>
|
157 |
+
<component name="com.intellij.coverage.CoverageDataManagerImpl">
|
158 |
+
<SUITE FILE_PATH="coverage/RobustVLM$training_clip_slots.coverage" NAME="training_clip_slots Coverage Results" MODIFIED="1729131753552" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
159 |
+
<SUITE FILE_PATH="coverage/RobustVLM$adversarial_training_clip.coverage" NAME="adversarial_training_clip Coverage Results" MODIFIED="1729061917005" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
160 |
+
<SUITE FILE_PATH="coverage/RobustVLM$training_clip_get_features.coverage" NAME="training_clip_get_features Coverage Results" MODIFIED="1729077166280" SOURCE_PROVIDER="com.intellij.coverage.DefaultCoverageFileProvider" RUNNER="coverage.py" COVERAGE_BY_TEST_ENABLED="true" COVERAGE_TRACING_ENABLED="false" WORKING_DIRECTORY="$PROJECT_DIR$" />
|
161 |
+
</component>
|
162 |
+
</project>
|
CLIP_benchmark/LICENSE
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022, Mehdi Cherti
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
22 |
+
|
CLIP_benchmark/README.md
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# CLIP Benchmark
|
2 |
+
- Forked from [CLIP Benchmark](https://github.com/LAION-AI/CLIP_benchmark)
|
CLIP_benchmark/bash/build.sh
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# gathers results from a results directory and builds a csv
|
3 |
+
# enter results dir in format /path/to/results/*
|
4 |
+
export PYTHONPATH="../":"${PYTHONPATH}"
|
5 |
+
set -e
|
6 |
+
echo "Enter path to results directory: "
|
7 |
+
read RES_DIR
|
8 |
+
echo "building results csv... ${RES_DIR}"
|
9 |
+
RND=${RANDOM}${RANDOM}
|
10 |
+
python -m clip_benchmark.cli build ${RES_DIR} --output "res${RND}.csv"
|
11 |
+
echo "reformatting csv..."
|
12 |
+
python reformat_csv.py res${RND}.csv
|
CLIP_benchmark/bash/run_benchmark_adv.sh
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
set -e # stop on error
|
3 |
+
SECONDS=0
|
4 |
+
# add parent dir to python path
|
5 |
+
export PYTHONPATH="../":"${PYTHONPATH}"
|
6 |
+
EPS=2 # TODO
|
7 |
+
|
8 |
+
SAMPLES=1000
|
9 |
+
SAVE_DIR=/path/to/out/dir # TODO
|
10 |
+
mkdir -p "$SAVE_DIR"
|
11 |
+
python -m clip_benchmark.cli eval --dataset_root "https://huggingface.co/datasets/clip-benchmark/wds_{dataset_cleaned}/tree/main" --dataset benchmark/datasets.txt \
|
12 |
+
--pretrained_model benchmark/models.txt \
|
13 |
+
--output "${SAVE_DIR}/adv_{model}_{pretrained}_{dataset}_{n_samples}_bs{bs}_{attack}_{eps}_{iterations}.json" \
|
14 |
+
--attack aa --eps $EPS \
|
15 |
+
--batch_size 50 --n_samples $SAMPLES
|
16 |
+
|
17 |
+
hours=$((SECONDS / 3600))
|
18 |
+
minutes=$(( (SECONDS % 3600) / 60 ))
|
19 |
+
echo "[Runtime] $hours h $minutes min"
|
CLIP_benchmark/bash/run_benchmark_clean.sh
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
set -e # stop on error
|
3 |
+
# add parent to python path
|
4 |
+
export PYTHONPATH="../":"${PYTHONPATH}"
|
5 |
+
|
6 |
+
SECONDS=0
|
7 |
+
SAMPLES=-1
|
8 |
+
BS=1000
|
9 |
+
|
10 |
+
SAVE_DIR=/path/to/out/dir # TODO
|
11 |
+
mkdir -p "$SAVE_DIR"
|
12 |
+
python -m clip_benchmark.cli eval --dataset_root "https://huggingface.co/datasets/clip-benchmark/wds_{dataset_cleaned}/tree/main" --dataset benchmark/datasets.txt \
|
13 |
+
--pretrained_model benchmark/models.txt \
|
14 |
+
--output "${SAVE_DIR}/clean_{model}_{pretrained}_beta{beta}_{dataset}_{n_samples}_bs{bs}_{attack}_{eps}_{iterations}.json" \
|
15 |
+
--attack none --eps 1 \
|
16 |
+
--batch_size $BS --n_samples $SAMPLES \
|
17 |
+
|
18 |
+
|
19 |
+
hours=$((SECONDS / 3600))
|
20 |
+
minutes=$(( (SECONDS % 3600) / 60 ))
|
21 |
+
echo "[Runtime] $hours h $minutes min"
|
CLIP_benchmark/benchmark/README.md
ADDED
File without changes
|
CLIP_benchmark/benchmark/benchmark.csv
ADDED
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
acc1,acc5,mean_per_class_recall,dataset,model,pretrained,task,mean_average_precision,image_retrieval_recall@5,text_retrieval_recall@5,model_fullname
|
2 |
+
0.0232340494791666,0.1152615017361111,0.0242046402834269,vtab/dsprites_label_orientation,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
3 |
+
0.4460852605182502,0.9469211479520758,0.3940612716631316,fer2013,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
4 |
+
0.7738666666666667,0.9362666666666668,0.7345750490593081,imagenet-a,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
5 |
+
0.4457446808510638,0.7585106382978724,0.449468085106383,vtab/dtd,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
6 |
+
0.7521562425290105,0.9608106368501388,0.7512820500659019,sun397,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
7 |
+
,,,voc2007_multilabel,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,0.796263575553894,,,ViT-B-32 laion2b_s34b_b79k
|
8 |
+
0.7557,0.9386,0.7554000000000001,vtab/cifar100,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
9 |
+
0.665,0.89844,0.66506,imagenet1k,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
10 |
+
0.1889597536837475,0.819793270288102,0.1681683759314615,vtab/dmlab,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
11 |
+
0.4955,0.8497,0.5259367109048434,mnist,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
12 |
+
0.5175536361103371,0.9651713569239344,0.5055924943171644,fer2013,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
13 |
+
0.6246666789267521,0.91313422954558,0.6346910684418603,sun397,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
14 |
+
0.9070591441809758,0.995366584900518,0.9070894162634328,vtab/pets,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
15 |
+
0.5609659540775931,0.8069675376088677,0.5169427663206733,gtsrb,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
16 |
+
0.0313720703125,0.1469997829861111,0.0320098582855241,vtab/dsprites_label_x_position,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
17 |
+
0.3628226797787339,0.6565765212046711,0.4033487053539641,vtab/svhn,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
18 |
+
0.4362628661916072,0.7091844813935075,0.370358797280688,gtsrb,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
19 |
+
0.5535494775660725,0.9136447449293178,0.5591738787984386,vtab/svhn,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
20 |
+
0.4417465274038979,0.7008721869279638,0.4272611771980346,objectnet,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
21 |
+
0.7174074074074074,0.9561111111111112,0.7202760268647987,vtab/eurosat,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
22 |
+
0.501821060965954,0.7586698337292161,0.4394378810250903,gtsrb,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
23 |
+
0.9321340964840557,0.9978195693649496,0.9313974108097984,vtab/pets,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
24 |
+
0.4934283452098179,0.7430720506730008,0.4353727539920664,gtsrb,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
25 |
+
0.8522353714661407,0.963346482577252,0.944284654839904,vtab/caltech101,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
26 |
+
,,,flickr30k,ViT-B-32-quickgelu,laion400m_e32,zeroshot_retrieval,,0.8546000123023987,0.9409999847412108,ViT-B-32-quickgelu laion400m_e32
|
27 |
+
0.1178600823045267,0.5817283950617284,0.1208963734895024,vtab/smallnorb_label_elevation,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
28 |
+
0.76664,0.9485,0.76656,imagenet1k,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
29 |
+
0.7679,0.9386,0.7581398074696393,mnist,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
30 |
+
0.2883263009845288,,0.3645688070267072,vtab/kitti_closest_vehicle_distance,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
31 |
+
0.1854185418541854,0.4452445244524452,0.1875846702317291,fgvc_aircraft,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
32 |
+
0.0197618272569444,0.1133355034722222,0.0176459217575104,vtab/dsprites_label_orientation,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
33 |
+
,,,flickr8k,ViT-B-16-plus-240,laion400m_e32,zeroshot_retrieval,,0.873199999332428,0.9549999833106995,ViT-B-16-plus-240 laion400m_e32
|
34 |
+
0.551063829787234,0.8356382978723405,0.5499999999999999,vtab/dtd,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
35 |
+
0.8391,0.9729,0.8388,vtab/cifar100,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
36 |
+
0.482037037037037,0.935,0.493913656654034,vtab/eurosat,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
37 |
+
0.6828752642706131,0.8578630671653927,0.6628139602370955,vtab/flowers,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
38 |
+
0.5844813935075218,0.820744259699129,0.5442606899522975,gtsrb,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
39 |
+
0.50628662109375,,0.5062329426609509,vtab/pcam,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
40 |
+
0.6932,0.8887,0.6785851251044699,imagenet-r,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
41 |
+
0.2304230423042304,0.5295529552955296,0.2319696969696969,fgvc_aircraft,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
42 |
+
0.605010986328125,,0.605165824864527,vtab/pcam,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
43 |
+
,,,flickr8k,ViT-B-16,laion400m_e32,zeroshot_retrieval,,0.8575999736785889,0.9409999847412109,ViT-B-16 laion400m_e32
|
44 |
+
0.7835420393559929,0.9242153195641568,0.7862863094545812,vtab/flowers,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
45 |
+
0.9467,0.999,0.9466,vtab/cifar10,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
46 |
+
0.6961,0.9086,0.6957000000000001,imagenetv2,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
47 |
+
0.4345209817893903,0.707680126682502,0.400638686800972,gtsrb,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
48 |
+
0.0317789713541666,0.147705078125,0.0324921668671336,vtab/dsprites_label_x_position,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
49 |
+
0.7871,0.9505,0.7775130720394369,mnist,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
50 |
+
0.63334,0.88778,0.63284,imagenet1k,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
51 |
+
0.6031914893617021,0.8867021276595745,0.6042553191489363,vtab/dtd,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
52 |
+
0.985875,0.99975,0.9864999999999998,stl10,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
53 |
+
0.2636018957345971,0.5149289099526067,0.2629857819905213,country211,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
54 |
+
0.5132978723404256,0.7787234042553192,0.5095744680851063,vtab/dtd,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
55 |
+
0.4342160768689946,1.0,0.2167811161586062,vtab/diabetic_retinopathy,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
56 |
+
0.5512,0.8156,0.5509,imagenetv2,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
57 |
+
0.7105220361034315,0.8590014636526264,0.6857234783638442,vtab/flowers,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
58 |
+
0.6867793368519779,0.9372344925244128,0.6845985471139586,sun397,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
59 |
+
0.5016666666666667,0.959074074074074,0.511474800858698,vtab/eurosat,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
60 |
+
0.8468,0.9733,0.8471000000000001,vtab/cifar100,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
61 |
+
,,,voc2007_multilabel,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,0.801436722278595,,,ViT-H-14 laion2b_s32b_b79k
|
62 |
+
0.9172,0.9975,0.9172,vtab/cifar10,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
63 |
+
0.6981352410026298,0.9398183055335896,0.6849982147927691,sun397,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
64 |
+
0.77972,0.95216,0.77952,imagenet1k,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
65 |
+
0.029541015625,0.1558973524305555,0.0292117961574083,vtab/dsprites_label_x_position,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
66 |
+
0.5,0.7502771179730799,0.4499584478173962,gtsrb,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
67 |
+
0.7590333333333333,0.9128666666666668,0.7444515544684158,imagenet-r,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
68 |
+
0.4690721649484536,0.931178601281694,0.4334946917742944,fer2013,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
69 |
+
0.485626220703125,,0.4856418903784925,vtab/pcam,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
70 |
+
0.9438539111474517,0.9986372308530936,0.9434557685576204,vtab/pets,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
71 |
+
,,,flickr8k,ViT-L-14,laion400m_e32,zeroshot_retrieval,,0.8984000086784363,0.9649999737739563,ViT-L-14 laion400m_e32
|
72 |
+
0.0972839506172839,0.5397530864197531,0.0973286727349915,vtab/smallnorb_label_elevation,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
73 |
+
0.5159912109375,,0.5157975788193991,vtab/pcam,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
74 |
+
0.7824519230769231,0.9688835470085472,0.8629106820310023,voc2007,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
75 |
+
0.0293918185763888,0.150390625,0.0306791200330755,vtab/dsprites_label_x_position,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
76 |
+
0.5710666666666666,0.8348,0.5639196371233688,imagenet-a,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
77 |
+
0.6408566721581549,,0.6410094956864107,renderedsst2,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
78 |
+
0.1134156378600823,0.5579423868312757,0.1146512139135114,vtab/smallnorb_label_elevation,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
79 |
+
0.1590499230261711,0.8403782713877281,0.1701282125753662,vtab/dmlab,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
80 |
+
,,,voc2007_multilabel,ViT-B-32,laion2b_e16,zeroshot_classification,0.7927550077438354,,,ViT-B-32 laion2b_e16
|
81 |
+
,,,mscoco_captions,ViT-B-16,laion400m_e32,zeroshot_retrieval,,0.6364254355430603,0.7961999773979187,ViT-B-16 laion400m_e32
|
82 |
+
0.758985200845666,0.8894129126687266,0.7455642498757189,vtab/flowers,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
83 |
+
,,,voc2007_multilabel,ViT-B-32,openai,zeroshot_classification,0.7601363658905029,,,ViT-B-32 openai
|
84 |
+
0.6968,0.9081,0.6974,imagenetv2,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
85 |
+
0.8893431452711911,0.9940038157536112,0.884512216368383,vtab/pets,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
86 |
+
0.7021,0.9244,0.703,vtab/cifar100,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
87 |
+
0.5072222222222222,0.9255555555555556,0.489609055911575,vtab/eurosat,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
88 |
+
0.7067545304777595,,0.7068315384169996,renderedsst2,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
89 |
+
0.665743087897188,0.8816640138340309,0.6655023529411764,imagenet_sketch,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
90 |
+
0.5155555555555555,0.9201851851851852,0.526225901185735,vtab/eurosat,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
91 |
+
,,,flickr30k,ViT-B-32,openai,zeroshot_retrieval,,0.8338000178337097,0.9490000009536744,ViT-B-32 openai
|
92 |
+
0.1593333333333333,0.9299333333333332,0.1673057808855792,vtab/clevr_closest_object_distance,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
93 |
+
0.7464,0.9285,0.7471,vtab/cifar100,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
94 |
+
,,,mscoco_captions,ViT-L-14,laion400m_e32,zeroshot_retrieval,,0.6805678009986877,0.8216000199317932,ViT-L-14 laion400m_e32
|
95 |
+
0.9307713273371492,0.9980921231943308,0.9330900923082088,vtab/pets,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
96 |
+
0.6188,0.8745,0.6202000000000001,imagenetv2,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
97 |
+
0.4230383776454636,0.7030792509186661,0.4230898039215686,imagenet_sketch,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
98 |
+
0.7910657051282052,0.9600026709401708,0.8052125971178338,voc2007,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
99 |
+
0.1674950516824279,0.8040906091928745,0.1782001238774596,vtab/dmlab,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
100 |
+
0.8310322156476002,0.9529914529914528,0.903296243135675,vtab/caltech101,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
101 |
+
0.1094650205761317,0.5571193415637861,0.1098932195729559,vtab/smallnorb_label_elevation,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
102 |
+
0.5716,0.8386,0.5721,imagenetv2,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
103 |
+
0.1080658436213991,0.5204115226337449,0.108510287776451,vtab/smallnorb_label_elevation,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
104 |
+
0.8982,0.9963,0.8995000000000001,vtab/cifar10,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
105 |
+
0.9381302807304442,0.9986372308530936,0.9372081115891412,vtab/pets,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
106 |
+
0.5819,0.8386,0.5815,imagenetv2,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
107 |
+
0.6666666666666666,0.941904761904762,0.6759805529181834,vtab/resisc45,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
108 |
+
,,,voc2007_multilabel,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,0.7846916913986206,,,ViT-B-16-plus-240 laion400m_e32
|
109 |
+
0.5363831083338246,0.7926467409459804,0.53684,imagenet_sketch,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
110 |
+
0.7930605646063923,0.986693197363512,0.79277195221544,cars,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
111 |
+
0.6457990115321252,,0.6459400874297956,renderedsst2,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
112 |
+
0.6445715707001617,0.9434149981345604,0.6469166001999892,cars,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
113 |
+
0.503753662109375,,0.5035515136049098,vtab/pcam,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
114 |
+
0.5706822372464659,0.9138752304855562,0.5886888789913961,vtab/svhn,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
115 |
+
0.7761084401709402,0.9418402777777778,0.8508423918048074,voc2007,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
116 |
+
0.1884360189573459,0.4163507109004739,0.1883412322274882,country211,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
117 |
+
0.97075,0.999375,0.971875,stl10,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
118 |
+
0.1508247195953375,0.8088849791071036,0.1720986035113953,vtab/dmlab,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
119 |
+
0.2629716428404031,1.0,0.2194476579174435,vtab/diabetic_retinopathy,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
120 |
+
0.4630454824830977,0.817340196681008,0.4869931863892911,vtab/svhn,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
121 |
+
,,,mscoco_captions,ViT-B-32,laion2b_e16,zeroshot_retrieval,,0.6467413306236267,0.7950000166893005,ViT-B-32 laion2b_e16
|
122 |
+
0.270042194092827,,0.3517916468296155,vtab/kitti_closest_vehicle_distance,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
123 |
+
0.7082,0.9169,0.709,imagenetv2,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
124 |
+
0.6352380952380953,0.9225396825396824,0.6419889996880412,vtab/resisc45,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
125 |
+
0.5404255319148936,0.8398936170212766,0.5367021276595745,vtab/dtd,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
126 |
+
0.2236286919831223,,0.3717030717825018,vtab/kitti_closest_vehicle_distance,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
127 |
+
0.5850793650793651,0.910952380952381,0.5919202546199539,vtab/resisc45,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
128 |
+
0.7567441239316239,0.9461805555555556,0.7914514618991711,voc2007,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
129 |
+
0.3319333333333333,0.9534,0.3193231509666999,vtab/clevr_count_all,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
130 |
+
0.5661724327292696,,0.5658672775172254,renderedsst2,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
131 |
+
0.2686357243319268,,0.3735376764204429,vtab/kitti_closest_vehicle_distance,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
132 |
+
0.1856168902573125,0.82608313173521,0.1925396140565279,vtab/dmlab,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
133 |
+
0.8504273504273504,0.9681130834976988,0.9394300669046936,vtab/caltech101,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
134 |
+
0.7768934212162666,0.983957219251337,0.777448930592225,cars,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
135 |
+
0.3048171481253841,0.7613706207744315,0.3503741918499782,vtab/svhn,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
136 |
+
0.96575,0.999375,0.966625,stl10,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
137 |
+
0.6219482421875,,0.6220625731388706,vtab/pcam,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
138 |
+
,,,flickr30k,ViT-L-14,laion400m_e32,zeroshot_retrieval,,0.9082000255584716,0.977999985218048,ViT-L-14 laion400m_e32
|
139 |
+
0.72734,0.9293,0.72694,imagenet1k,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
140 |
+
0.7766666666666666,0.9304333333333332,0.7605432098970494,imagenet-r,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
141 |
+
0.6137,0.8644,0.6146999999999999,imagenetv2,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
142 |
+
0.2877333333333333,0.9075333333333332,0.2821869879006831,vtab/clevr_count_all,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
143 |
+
0.6190740740740741,0.962037037037037,0.6309344676440423,vtab/eurosat,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
144 |
+
0.0313313802083333,0.1560872395833333,0.031335128135504,vtab/dsprites_label_x_position,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
145 |
+
0.1149794238683127,0.5761316872427984,0.115904554765943,vtab/smallnorb_label_elevation,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
146 |
+
0.7760611481541714,0.9046999512115792,0.7813275676765017,vtab/flowers,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
147 |
+
0.8865,0.9695666666666668,0.8748158307459671,imagenet-r,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
148 |
+
,,,mscoco_captions,ViT-H-14,laion2b_s32b_b79k,zeroshot_retrieval,,0.734306275844574,0.8604000210762024,ViT-H-14 laion2b_s32b_b79k
|
149 |
+
0.7524,0.9418,0.7528999999999999,vtab/cifar100,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
150 |
+
0.2618666666666667,0.5721333333333334,0.2839019082932269,imagenet-a,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
151 |
+
0.9345852505907224,0.9988807362268376,0.9351484667320789,cars,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
152 |
+
0.4286709389802173,0.898300362217888,0.392124222029496,fer2013,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
153 |
+
0.68352,0.91864,0.68396,imagenet1k,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
154 |
+
0.1123456790123456,0.5467489711934156,0.1133381228564946,vtab/smallnorb_label_elevation,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
155 |
+
0.4932893159621922,0.7566861207726621,0.4940521568627451,imagenet_sketch,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
156 |
+
0.5009752020061299,0.932153803287824,0.449919123283142,fer2013,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
157 |
+
0.7549,0.946,0.7545,imagenet1k,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
158 |
+
0.0346001519097222,0.1698269314236111,0.0339338982697889,vtab/dsprites_label_x_position,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
159 |
+
0.71777753849467,0.9007214385700442,0.7007187288769688,objectnet,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
160 |
+
0.7294,0.9415,0.7332910901261492,mnist,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
161 |
+
0.0342746310763888,0.1416965060763889,0.034365141983162,vtab/dsprites_label_orientation,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
162 |
+
0.210639793766112,1.0,0.2335698910327324,vtab/diabetic_retinopathy,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
163 |
+
0.8392504930966469,0.9510190664036818,0.9090841082001052,vtab/caltech101,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
164 |
+
0.2841068917018284,,0.4076831334000694,vtab/kitti_closest_vehicle_distance,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
165 |
+
0.6813829787234043,0.925531914893617,0.6829787234042553,vtab/dtd,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
166 |
+
0.6909,0.91432,0.69156,imagenet1k,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
167 |
+
0.2424666666666666,0.7876,0.2312503165591237,vtab/clevr_count_all,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
168 |
+
0.67002,0.90424,0.67026,imagenet1k,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
169 |
+
,,,flickr30k,ViT-B-16,laion400m_e32,zeroshot_retrieval,,0.881600022315979,0.9679999947547911,ViT-B-16 laion400m_e32
|
170 |
+
0.8787,0.9709333333333332,0.8651131734542029,imagenet-r,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
171 |
+
0.62918,0.87652,0.6289,imagenet1k,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
172 |
+
0.5469522240527183,,0.5464163192635053,renderedsst2,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
173 |
+
0.4425531914893617,0.7638297872340426,0.4430851063829787,vtab/dtd,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
174 |
+
0.5149133196941962,0.7512652094325402,0.5017005288059357,objectnet,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
175 |
+
0.4855,0.8418,0.4575381785680641,mnist,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
176 |
+
0.6550016151609777,0.8503284160654678,0.6433184742666794,objectnet,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
177 |
+
0.7744,0.9471,0.7737999999999998,vtab/cifar100,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
178 |
+
0.7920656634746922,0.9787339883099117,0.7926165075935756,cars,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
179 |
+
0.2081575246132208,,0.1791674645508319,vtab/kitti_closest_vehicle_distance,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
180 |
+
0.0260687934027777,0.1259223090277778,0.0268337475785376,vtab/dsprites_label_orientation,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
181 |
+
0.6922,0.9403,0.6883700135057857,mnist,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
182 |
+
0.1143209876543209,0.5373662551440329,0.1138628810502107,vtab/smallnorb_label_elevation,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
183 |
+
0.6769,0.9012,0.6781,imagenetv2,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
184 |
+
0.7683627136752137,0.952590811965812,0.8035754023986389,voc2007,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
185 |
+
0.8504273504273504,0.953155818540434,0.9440706929933655,vtab/caltech101,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
186 |
+
0.6434889751181566,0.9243614027989776,0.6527406670624641,sun397,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
187 |
+
0.3311163895486936,0.7250989707046714,0.3196447660118034,gtsrb,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
188 |
+
0.6521841655367565,0.8748649020416986,0.6524090196078433,imagenet_sketch,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
189 |
+
0.1469194312796208,0.3500473933649289,0.1470142180094787,country211,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
190 |
+
0.96875,0.99975,0.9695,stl10,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
191 |
+
0.6908043501669,0.8805319263486594,0.6736647184602601,objectnet,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
192 |
+
0.984375,0.999875,0.9849999999999998,stl10,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
193 |
+
0.5544309249488533,0.7926671691611931,0.5363732822578842,objectnet,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
194 |
+
0.7555422008547008,0.9489182692307692,0.830992972154603,voc2007,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
195 |
+
0.5293285385839769,0.78944369117098,0.5286741176470588,imagenet_sketch,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
196 |
+
0.7889957264957265,0.9573317307692308,0.8054447759101763,voc2007,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
197 |
+
0.675285506739982,0.9369310554094562,0.6824513086557495,sun397,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
198 |
+
0.111275720164609,0.5548971193415638,0.1102182875784799,vtab/smallnorb_label_elevation,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
199 |
+
,,,flickr8k,ViT-B-32,laion2b_e16,zeroshot_retrieval,,0.8574000000953674,0.9319999814033508,ViT-B-32 laion2b_e16
|
200 |
+
0.5989555292344136,0.8103262625174976,0.586320244179702,objectnet,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
201 |
+
,,,mscoco_captions,ViT-g-14,laion2b_s12b_b42k,zeroshot_retrieval,,0.7239903807640076,0.853600025177002,ViT-g-14 laion2b_s12b_b42k
|
202 |
+
0.7101,0.9209,0.7106999999999999,vtab/cifar100,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
203 |
+
0.189873417721519,,0.2568338943834677,vtab/kitti_closest_vehicle_distance,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
204 |
+
,,,mscoco_captions,ViT-B-32,laion2b_s34b_b79k,zeroshot_retrieval,,0.654218316078186,0.7982000112533569,ViT-B-32 laion2b_s34b_b79k
|
205 |
+
0.1186008230452674,0.560082304526749,0.1176434679315522,vtab/smallnorb_label_elevation,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
206 |
+
0.5634266886326195,,0.5635892536622082,renderedsst2,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
207 |
+
,,,flickr8k,ViT-L-14,laion2b_s32b_b82k,zeroshot_retrieval,,0.9147999882698059,0.9670000076293945,ViT-L-14 laion2b_s32b_b82k
|
208 |
+
0.0237358940972222,0.1186116536458333,0.0218059467808842,vtab/dsprites_label_orientation,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
209 |
+
0.1316147176001874,1.0,0.230780955782727,vtab/diabetic_retinopathy,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
210 |
+
0.8599676657132197,0.9912946150976246,0.8615494787047302,cars,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
211 |
+
0.5569148936170213,0.8361702127659575,0.5563829787234043,vtab/dtd,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
212 |
+
,,,flickr30k,ViT-B-32,laion2b_s34b_b79k,zeroshot_retrieval,,0.8835999965667725,0.9629999995231628,ViT-B-32 laion2b_s34b_b79k
|
213 |
+
0.0715256620576517,1.0,0.2196341124982623,vtab/diabetic_retinopathy,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
214 |
+
0.5699,0.8279,0.5675693520579019,mnist,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
215 |
+
0.5940803382663847,0.917174480785972,0.5967107342155968,cars,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
216 |
+
0.98275,1.0,0.982875,stl10,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
217 |
+
0.4199524940617577,0.6838479809976247,0.393417229364651,gtsrb,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
218 |
+
0.0633231778767283,1.0,0.2107285863733837,vtab/diabetic_retinopathy,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
219 |
+
0.9497,0.9963,0.9497,vtab/cifar10,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
220 |
+
0.76548,0.95168,0.7656000000000001,imagenet1k,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
221 |
+
0.2742616033755274,,0.405770386325608,vtab/kitti_closest_vehicle_distance,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
222 |
+
0.2380126552613077,1.0,0.233320813717688,vtab/diabetic_retinopathy,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
223 |
+
0.2307582938388625,0.4708056872037914,0.2308530805687204,country211,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
224 |
+
0.2633333333333333,0.574,0.2790514196577626,imagenet-a,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
225 |
+
,,,voc2007_multilabel,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,0.7621888518333435,,,ViT-B-32-quickgelu laion400m_e32
|
226 |
+
0.199,0.7285333333333334,0.1948019376127608,vtab/clevr_count_all,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
227 |
+
0.5376190476190477,0.8671428571428571,0.5417275836816031,vtab/resisc45,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
228 |
+
0.0302191840277777,0.1466335720486111,0.0300817149220147,vtab/dsprites_label_x_position,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
229 |
+
,,,flickr8k,ViT-g-14,laion2b_s12b_b42k,zeroshot_retrieval,,0.9175999760627747,0.9739999771118164,ViT-g-14 laion2b_s12b_b42k
|
230 |
+
0.157994281944139,0.8222564328128437,0.1661260800820199,vtab/dmlab,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
231 |
+
0.1812322274881516,0.4011374407582938,0.181563981042654,country211,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
232 |
+
0.9272,0.9988,0.9272000000000002,vtab/cifar10,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
233 |
+
0.9401,0.9992,0.9405,vtab/cifar10,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
234 |
+
0.7331380360909304,1.0,0.206266837915639,vtab/diabetic_retinopathy,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
235 |
+
0.2587904360056259,,0.3397102822066769,vtab/kitti_closest_vehicle_distance,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
236 |
+
0.2166666666666666,0.5310666666666667,0.2348332752565157,imagenet-a,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
237 |
+
0.99375,1.0,0.993625,stl10,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
238 |
+
0.087368174361378,1.0,0.2520359622114083,vtab/diabetic_retinopathy,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
239 |
+
0.1236939151813153,0.6480485556238476,0.1332639799678708,vtab/svhn,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
240 |
+
0.5782537067545305,,0.5785203520352036,renderedsst2,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
241 |
+
0.0588477366255144,0.268395061728395,0.0601925439678357,vtab/smallnorb_label_azimuth,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
242 |
+
0.6367,0.9218,0.6276012948452819,mnist,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
243 |
+
0.0313856336805555,0.1553955078125,0.0307666564982354,vtab/dsprites_label_x_position,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
244 |
+
0.9569,0.9963,0.9572,vtab/cifar10,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
245 |
+
0.4973871733966746,0.7704671417260491,0.4655936453259506,gtsrb,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
246 |
+
0.5853968253968254,0.896984126984127,0.5932699170625959,vtab/resisc45,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
247 |
+
0.1419837255333186,0.8292060699362217,0.16573619863836,vtab/dmlab,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
248 |
+
0.612762451171875,,0.6128028129314551,vtab/pcam,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
249 |
+
0.1945898394545854,0.8513305476138113,0.1635130198328585,vtab/dmlab,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
250 |
+
0.7259778950659286,0.9500616069294004,0.7127784763377728,sun397,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
251 |
+
0.4661333333333333,0.7688,0.4728184257301568,imagenet-a,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
252 |
+
0.6371428571428571,0.9277777777777778,0.6463008933552572,vtab/resisc45,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
253 |
+
0.1111111111111111,,0.2722929936305732,vtab/kitti_closest_vehicle_distance,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
254 |
+
0.6105248678496336,0.8503998899565721,0.6103113725490197,imagenet_sketch,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
255 |
+
0.8732624693376942,0.9926410466067048,0.8695864391489154,vtab/pets,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
256 |
+
0.1486,0.9095333333333332,0.1443124682607226,vtab/clevr_closest_object_distance,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
257 |
+
0.0243462456597222,0.1128879123263889,0.0249444752915047,vtab/dsprites_label_orientation,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
258 |
+
0.596238872840889,0.8439741397944546,0.5964254901960785,imagenet_sketch,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
259 |
+
0.6276595744680851,0.9069148936170212,0.6324468085106383,vtab/dtd,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
260 |
+
,,,voc2007_multilabel,ViT-B-16,openai,zeroshot_classification,0.788827121257782,,,ViT-B-16 openai
|
261 |
+
,,,flickr30k,ViT-L-14,openai,zeroshot_retrieval,,0.8715999722480774,0.9739999771118164,ViT-L-14 openai
|
262 |
+
0.2505250525052505,0.6012601260126013,0.2483244206773618,fgvc_aircraft,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
263 |
+
0.5559259259259259,0.8868518518518519,0.5469811732579133,vtab/eurosat,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
264 |
+
0.9427636958299264,0.9983646770237122,0.9434000102313552,vtab/pets,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
265 |
+
0.1746174617461746,0.45004500450045,0.1753386809269162,fgvc_aircraft,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
266 |
+
,,,flickr30k,ViT-B-16,openai,zeroshot_retrieval,,0.855400025844574,0.9629999995231628,ViT-B-16 openai
|
267 |
+
0.8934314527119106,0.9956391387298992,0.8906060208128682,vtab/pets,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
268 |
+
0.6266666666666667,0.9611111111111112,0.6380077170682305,vtab/eurosat,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
269 |
+
0.5596,0.8341,0.5602,imagenetv2,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
270 |
+
0.481439996855902,0.763229774607479,0.4822572549019607,imagenet_sketch,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
271 |
+
0.2450666666666666,0.8254,0.1666666666666666,vtab/clevr_closest_object_distance,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
272 |
+
,,,flickr30k,ViT-H-14,laion2b_s32b_b79k,zeroshot_retrieval,,0.9409999847412108,0.9929999709129332,ViT-H-14 laion2b_s32b_b79k
|
273 |
+
,,,voc2007_multilabel,ViT-L-14,openai,zeroshot_classification,0.7903817892074585,,,ViT-L-14 openai
|
274 |
+
0.4267205349679576,0.9361939258846476,0.3989364402674789,fer2013,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
275 |
+
0.6960663515824705,0.9390183349577946,0.6804128851625355,sun397,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
276 |
+
0.3318666666666666,0.6664,0.3409181030776702,imagenet-a,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
277 |
+
0.9083,0.9944,0.9082,vtab/cifar10,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
278 |
+
,,,voc2007_multilabel,ViT-L-14-336,openai,zeroshot_classification,0.8035513162612915,,,ViT-L-14-336 openai
|
279 |
+
0.5922666666666667,0.8565333333333334,0.5810468077571583,imagenet-a,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
280 |
+
0.6730158730158731,0.938095238095238,0.6781338184038964,vtab/resisc45,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
281 |
+
0.7354112959925005,1.0,0.1999235670840696,vtab/diabetic_retinopathy,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
282 |
+
,,,flickr30k,ViT-B-16-plus-240,laion400m_e32,zeroshot_retrieval,,0.8894000053405762,0.9710000157356262,ViT-B-16-plus-240 laion400m_e32
|
283 |
+
,,,flickr8k,ViT-B-32,openai,zeroshot_retrieval,,0.805400013923645,0.9139999747276306,ViT-B-32 openai
|
284 |
+
0.5897858319604613,,0.5895015488390944,renderedsst2,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
285 |
+
0.5388,0.8212,0.5362716338708938,imagenet-a,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
286 |
+
,,,mscoco_captions,ViT-B-16,openai,zeroshot_retrieval,,0.5836865305900574,0.7681999802589417,ViT-B-16 openai
|
287 |
+
,,,flickr8k,ViT-B-32,laion2b_s34b_b79k,zeroshot_retrieval,,0.8629999756813049,0.9409999847412109,ViT-B-32 laion2b_s34b_b79k
|
288 |
+
0.99425,0.999875,0.9945,stl10,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
289 |
+
0.5612707437000615,0.8849492931776275,0.5565312569182044,vtab/svhn,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
290 |
+
0.1097119341563786,0.5409053497942387,0.1081320376350696,vtab/smallnorb_label_elevation,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
291 |
+
0.805221688034188,0.9551282051282052,0.8491537874687232,voc2007,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
292 |
+
,,,flickr8k,ViT-L-14-336,openai,zeroshot_retrieval,,0.8795999884605408,0.9390000104904175,ViT-L-14-336 openai
|
293 |
+
0.1716,0.9095333333333332,0.1619443104834767,vtab/clevr_closest_object_distance,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
294 |
+
0.1573333333333333,0.6964666666666667,0.1495026928557915,vtab/clevr_count_all,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
295 |
+
,,,mscoco_captions,ViT-B-16-plus-240,laion400m_e32,zeroshot_retrieval,,0.6620951890945435,0.8101999759674072,ViT-B-16-plus-240 laion400m_e32
|
296 |
+
0.8336,0.9666,0.8325000000000001,vtab/cifar100,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
297 |
+
0.0984362139917695,0.5293827160493827,0.0977694426163014,vtab/smallnorb_label_elevation,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
298 |
+
,,,voc2007_multilabel,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,0.8066232800483704,,,ViT-g-14 laion2b_s12b_b42k
|
299 |
+
0.6087301587301587,0.9147619047619048,0.6152225643499313,vtab/resisc45,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
300 |
+
0.0550617283950617,0.2645267489711934,0.055379474051494,vtab/smallnorb_label_azimuth,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
301 |
+
0.1676666666666666,0.8819333333333333,0.1954414937508546,vtab/clevr_closest_object_distance,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
302 |
+
0.0200330946180555,0.1053195529513889,0.0222572574909185,vtab/dsprites_label_orientation,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
303 |
+
0.5526123046875,,0.5526478181769814,vtab/pcam,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
304 |
+
,,,mscoco_captions,ViT-L-14,openai,zeroshot_retrieval,,0.6108356714248657,0.7918000221252441,ViT-L-14 openai
|
305 |
+
,,,mscoco_captions,ViT-B-32-quickgelu,laion400m_e32,zeroshot_retrieval,,0.6084766387939453,0.7675999999046326,ViT-B-32-quickgelu laion400m_e32
|
306 |
+
0.7537811026183119,0.8923402179216132,0.7256696912813558,vtab/flowers,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
307 |
+
0.1659634317862166,,0.3247233185334074,vtab/kitti_closest_vehicle_distance,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
308 |
+
0.0193684895833333,0.1180826822916666,0.0197744129948227,vtab/dsprites_label_orientation,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
309 |
+
0.9037884982284,0.9970019078768056,0.9039815014388496,vtab/pets,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
310 |
+
0.3742,0.7294,0.3706020613065869,mnist,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
311 |
+
0.6746527403897922,0.8668030580381177,0.6650572756513145,objectnet,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
312 |
+
0.765625,0.959869123931624,0.8071517771314477,voc2007,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
313 |
+
0.546031746031746,0.902063492063492,0.5542849348347576,vtab/resisc45,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
314 |
+
0.0427924262152777,0.1601019965277778,0.0430371102717507,vtab/dsprites_label_x_position,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
315 |
+
0.6957142857142857,0.9571428571428572,0.706242238089474,vtab/resisc45,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
316 |
+
0.6514814814814814,0.9551851851851852,0.6638062361650154,vtab/eurosat,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
317 |
+
0.8475333333333334,0.9550666666666666,0.8331685531673508,imagenet-r,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
318 |
+
0.1902,0.9085333333333332,0.1387289271305892,vtab/clevr_closest_object_distance,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
319 |
+
0.3852181929932391,0.7822295636140135,0.379296565517112,vtab/svhn,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
320 |
+
0.3182464454976303,0.5937914691943128,0.3175829383886256,country211,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
321 |
+
0.6659,0.9224,0.6665327286676481,mnist,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
322 |
+
0.6327693607655879,0.8639588123170037,0.6325447058823529,imagenet_sketch,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
323 |
+
0.2279620853080568,0.486303317535545,0.2282938388625592,country211,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
324 |
+
0.764,0.9231,0.7589335620721703,mnist,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
325 |
+
0.0268283420138888,0.1092258029513889,0.025387675404758,vtab/dsprites_label_orientation,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
326 |
+
0.3693369336933693,0.744974497449745,0.3649286987522281,fgvc_aircraft,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
327 |
+
0.4102258758451137,0.8022818070067609,0.4216815643098484,vtab/svhn,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
328 |
+
0.743319785938908,0.9583279695459478,0.7348385903018446,sun397,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
329 |
+
,,,flickr8k,ViT-H-14,laion2b_s32b_b79k,zeroshot_retrieval,,0.9277999997138977,0.9729999899864197,ViT-H-14 laion2b_s32b_b79k
|
330 |
+
0.5487,0.8411,0.5430718178404617,mnist,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
331 |
+
0.7171428571428572,0.958095238095238,0.7258469461953507,vtab/resisc45,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
332 |
+
0.3454976303317535,0.6221800947867299,0.3445971563981042,country211,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
333 |
+
0.9645,0.999375,0.965125,stl10,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
334 |
+
0.779,0.9289333333333334,0.7643246651538985,imagenet-r,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
335 |
+
0.1633333333333333,0.7125333333333334,0.1575975877364315,vtab/clevr_count_all,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
336 |
+
0.8683565004088307,0.9934587080948488,0.8661667839491306,vtab/pets,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
337 |
+
0.647962962962963,0.9805555555555556,0.6445566610022502,vtab/eurosat,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
338 |
+
0.6929582045861116,0.8668076109936576,0.6668176645957112,vtab/flowers,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
339 |
+
0.6630346397788258,0.8573751829565783,0.6645264657992297,vtab/flowers,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
340 |
+
0.1772666666666666,0.7803333333333333,0.2270014558851883,vtab/clevr_closest_object_distance,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
341 |
+
0.2784,0.8929333333333334,0.2563239722391655,vtab/clevr_count_all,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
342 |
+
0.8328402366863905,0.94543063773833,0.9085289082247568,vtab/caltech101,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
343 |
+
0.2786954517516902,0.7308312845728334,0.2795999671407248,vtab/svhn,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
344 |
+
0.035400390625,0.1624348958333333,0.0364155761076967,vtab/dsprites_label_x_position,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
345 |
+
0.2699554722287321,1.0,0.2211405088000341,vtab/diabetic_retinopathy,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
346 |
+
0.0259874131944444,0.1214463975694444,0.0262399607702056,vtab/dsprites_label_orientation,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
347 |
+
0.819197896120973,0.9465811965811964,0.8786521640800292,vtab/caltech101,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
348 |
+
0.4896907216494845,0.9721370855391472,0.4887152232577444,fer2013,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
349 |
+
,,,voc2007_multilabel,ViT-L-14,laion400m_e32,zeroshot_classification,0.7847012877464294,,,ViT-L-14 laion400m_e32
|
350 |
+
0.8020816392909416,0.9253537160513904,0.7985485908748879,vtab/flowers,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
351 |
+
0.5163895486935867,0.7605700712589074,0.4472134621454642,gtsrb,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
352 |
+
0.5255354200988468,,0.5258471570841294,renderedsst2,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
353 |
+
0.2242797448867385,0.8738508906971629,0.1816019549723685,vtab/dmlab,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
354 |
+
0.5442040519562185,0.8052231327005837,0.5451807843137254,imagenet_sketch,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
355 |
+
0.545867919921875,,0.5459467330999297,vtab/pcam,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
356 |
+
0.697049639280715,0.877516959190266,0.6846202591899297,objectnet,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
357 |
+
0.0558847736625514,0.2832098765432099,0.0522661133926831,vtab/smallnorb_label_azimuth,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
358 |
+
0.2352,0.7871333333333334,0.2199570643185355,vtab/clevr_count_all,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
359 |
+
0.8039,0.9392333333333334,0.7907448605291261,imagenet-r,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
360 |
+
0.2292545710267229,,0.3081761474014508,vtab/kitti_closest_vehicle_distance,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
361 |
+
0.04559670781893,0.274320987654321,0.0456436809466583,vtab/smallnorb_label_azimuth,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
362 |
+
0.585723876953125,,0.5857677281000415,vtab/pcam,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
363 |
+
0.8932,0.9735333333333334,0.8804663010091829,imagenet-r,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
364 |
+
0.3677333333333333,0.7024,0.3814206048810433,imagenet-a,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
365 |
+
0.378037803780378,0.8028802880288028,0.3781639928698752,fgvc_aircraft,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
366 |
+
0.5430851063829787,0.8356382978723405,0.5473404255319149,vtab/dtd,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
367 |
+
0.9261285909712722,0.9976371098122124,0.9261518670531818,cars,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
368 |
+
0.6904,0.9518,0.6833555055021581,mnist,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
369 |
+
0.6174603174603175,0.921904761904762,0.624279367877562,vtab/resisc45,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
370 |
+
0.537057676232934,0.9492894956812482,0.5338791359180816,fer2013,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
371 |
+
,,,voc2007_multilabel,ViT-B-16,laion400m_e32,zeroshot_classification,0.7843208312988281,,,ViT-B-16 laion400m_e32
|
372 |
+
0.4582056283087211,0.9531903037057676,0.4167779537443768,fer2013,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
373 |
+
0.1594666666666666,0.8705333333333334,0.1702024394180443,vtab/clevr_closest_object_distance,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
374 |
+
0.955,0.9995,0.955375,stl10,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
375 |
+
0.7640666666666667,0.9159,0.7521727338627011,imagenet-r,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
376 |
+
0.8328402366863905,0.952827087442472,0.9177765781998192,vtab/caltech101,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
377 |
+
0.53631591796875,,0.53614377703907,vtab/pcam,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
378 |
+
0.0517695473251028,0.2697942386831276,0.0537673960190341,vtab/smallnorb_label_azimuth,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
379 |
+
0.6453,0.888,0.6451,vtab/cifar100,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
380 |
+
,,,flickr30k,ViT-B-32,laion2b_e16,zeroshot_retrieval,,0.8812000155448914,0.9639999866485596,ViT-B-32 laion2b_e16
|
381 |
+
0.4393776246365888,0.684612899752342,0.4268760394558317,objectnet,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
382 |
+
,,,flickr30k,ViT-g-14,laion2b_s12b_b42k,zeroshot_retrieval,,0.9348000288009644,0.99099999666214,ViT-g-14 laion2b_s12b_b42k
|
383 |
+
0.381760909649662,0.7632913337430854,0.4057750407393451,vtab/svhn,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
384 |
+
0.5006666666666667,0.8033333333333333,0.4832835476168289,imagenet-a,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
385 |
+
0.9705,0.9994,0.9711,vtab/cifar10,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
386 |
+
0.4800780161604904,0.9711618835330176,0.4909158276198425,fer2013,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
387 |
+
,,,mscoco_captions,ViT-L-14-336,openai,zeroshot_retrieval,,0.615513801574707,0.8101999759674072,ViT-L-14-336 openai
|
388 |
+
0.7068,0.9062666666666668,0.6753602288814418,imagenet-a,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
389 |
+
0.9078,0.9977,0.9083,vtab/cifar10,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
390 |
+
0.3860633066994468,0.8061232329440688,0.3685311302620919,vtab/svhn,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
391 |
+
0.7160513904699951,0.8744511302650837,0.6998995164388323,vtab/flowers,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
392 |
+
0.1971197119711971,0.5022502250225023,0.197344028520499,fgvc_aircraft,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
393 |
+
0.6033343577135832,0.8973570989551322,0.5683458085959752,vtab/svhn,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
394 |
+
0.4899860019381932,0.7341983417680629,0.4820376550831692,objectnet,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
395 |
+
0.7626201923076923,0.9526575854700856,0.815718996924191,voc2007,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
396 |
+
0.1462728551336146,,0.1818997858588953,vtab/kitti_closest_vehicle_distance,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
397 |
+
0.6787234042553192,0.923936170212766,0.6813829787234043,vtab/dtd,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
398 |
+
0.1721574664614031,0.8585001099626127,0.1577427840925754,vtab/dmlab,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
399 |
+
0.7916734428362335,0.9193364774760124,0.7931691849985836,vtab/flowers,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
400 |
+
0.0549794238683127,0.2670781893004115,0.0559609415916413,vtab/smallnorb_label_azimuth,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
401 |
+
0.7843883547008547,0.9570646367521368,0.835061321772101,voc2007,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
402 |
+
0.6177777777777778,0.957037037037037,0.6299267597724122,vtab/eurosat,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
403 |
+
0.543701171875,,0.5435553179465629,vtab/pcam,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
404 |
+
0.0315348307291666,0.1596544053819444,0.0323590170008084,vtab/dsprites_label_x_position,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
405 |
+
0.5796296296296296,0.9525925925925924,0.5888803943202612,vtab/eurosat,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
406 |
+
0.9185064050149904,0.9956391387298992,0.9161666963118203,vtab/pets,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
407 |
+
0.5381177990739744,0.7715085603531818,0.5274232792623416,objectnet,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
408 |
+
,,,flickr30k,ViT-L-14,laion2b_s32b_b82k,zeroshot_retrieval,,0.929199993610382,0.9869999885559082,ViT-L-14 laion2b_s32b_b82k
|
409 |
+
0.8368362144011939,0.987439373212287,0.8375394945435981,cars,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
410 |
+
,,,flickr8k,ViT-B-32-quickgelu,laion400m_e32,zeroshot_retrieval,,0.8303999900817871,0.9169999957084656,ViT-B-32-quickgelu laion400m_e32
|
411 |
+
0.9742,0.9994,0.9742999999999998,vtab/cifar10,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
412 |
+
0.613015873015873,0.91,0.6150226494017114,vtab/resisc45,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
413 |
+
0.1901913349461183,0.8472839234660215,0.1733383864929211,vtab/dmlab,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
414 |
+
0.1979333333333333,0.8076,0.1820160989597282,vtab/clevr_count_all,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
415 |
+
,,,voc2007_multilabel,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,0.8199208974838257,,,ViT-L-14 laion2b_s32b_b82k
|
416 |
+
0.1674,0.8695333333333334,0.1827530663763387,vtab/clevr_closest_object_distance,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
417 |
+
0.1715165876777251,0.4024170616113744,0.1707582938388625,country211,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
418 |
+
0.75202,0.94252,0.7526400000000001,imagenet1k,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
419 |
+
0.8923412373943854,0.9967293540474244,0.8919759072052595,vtab/pets,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
420 |
+
0.487670937870141,0.7249919241951115,0.4750858280106649,objectnet,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
421 |
+
0.8959084690958836,0.9960203954732,0.8961635505798664,cars,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
422 |
+
0.7832532051282052,0.9692174145299144,0.864352156405908,voc2007,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
423 |
+
0.5031481481481481,0.92,0.5110567650187513,vtab/eurosat,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
424 |
+
0.161,0.9128666666666668,0.1739135544326629,vtab/clevr_closest_object_distance,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
425 |
+
0.8441736102474816,0.9912946150976246,0.8456794155511405,cars,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
426 |
+
0.7372,0.9338,0.7372000000000001,vtab/cifar100,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
427 |
+
0.7136119694259229,0.8591640917222313,0.691284904068223,vtab/flowers,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
428 |
+
0.1485814822960193,0.8129316032548933,0.1482313831309264,vtab/dmlab,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
429 |
+
0.6112026359143328,,0.6113264286955011,renderedsst2,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
430 |
+
0.5370675453047776,,0.5373060332349024,renderedsst2,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
431 |
+
,,,mscoco_captions,ViT-B-32,openai,zeroshot_retrieval,,0.5584565997123718,0.748199999332428,ViT-B-32 openai
|
432 |
+
,,,flickr8k,ViT-B-16,openai,zeroshot_retrieval,,0.8285999894142151,0.9139999747276306,ViT-B-16 openai
|
433 |
+
0.8379355687047995,0.9518408941485864,0.9328934325841473,vtab/caltech101,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
434 |
+
0.0307752821180555,0.1437852647569444,0.0304426618193977,vtab/dsprites_label_orientation,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
435 |
+
0.841715976331361,0.940828402366864,0.9341112975275198,vtab/caltech101,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
436 |
+
0.0311008029513888,0.1568060980902778,0.0321637232587243,vtab/dsprites_label_x_position,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
437 |
+
,,,flickr30k,ViT-L-14-336,openai,zeroshot_retrieval,,0.8889999985694885,0.9810000061988832,ViT-L-14-336 openai
|
438 |
+
0.5961406197803062,0.8388060288077973,0.5956784313725489,imagenet_sketch,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
439 |
+
0.4657286152131513,0.9445528002229032,0.4812190866355833,fer2013,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
440 |
+
0.0562962962962962,0.274156378600823,0.0567608380809354,vtab/smallnorb_label_azimuth,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
441 |
+
0.1583333333333333,0.8006,0.1676244908434004,vtab/clevr_closest_object_distance,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
442 |
+
0.7326224513709867,1.0,0.2068672210509669,vtab/diabetic_retinopathy,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
443 |
+
0.8911666666666667,0.9757333333333332,0.8776131879598171,imagenet-r,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
444 |
+
0.988625,0.999875,0.988625,stl10,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
445 |
+
0.6865218750574692,0.9403608143148756,0.6921311150610732,sun397,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
446 |
+
0.5509033203125,,0.5508520491113902,vtab/pcam,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
447 |
+
0.1606666666666666,0.9079333333333334,0.1772310296867651,vtab/clevr_closest_object_distance,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
448 |
+
0.5574468085106383,0.8648936170212767,0.5622340425531915,vtab/dtd,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
449 |
+
0.2315333333333333,0.805,0.2332901934437162,vtab/clevr_count_all,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
450 |
+
0.0298394097222222,0.1414794921875,0.0308127750442299,vtab/dsprites_label_x_position,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
451 |
+
0.0623868312757201,0.2708641975308642,0.0631906837062103,vtab/smallnorb_label_azimuth,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
452 |
+
0.4774310392867094,0.9402340484814712,0.4649079545536754,fer2013,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
453 |
+
0.5230010414824422,0.7913694511584036,0.5233670588235293,imagenet_sketch,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
454 |
+
0.7341666666666666,0.9035,0.7214778957504825,imagenet-r,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
455 |
+
0.8353057199211046,0.9546351084812624,0.9005042720791782,vtab/caltech101,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
456 |
+
0.3109333333333333,0.8006,0.3066391557930237,vtab/clevr_count_all,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
457 |
+
0.6985172981878089,,0.6986603265589717,renderedsst2,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
458 |
+
0.1087242798353909,0.540164609053498,0.1086253991970707,vtab/smallnorb_label_elevation,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
459 |
+
0.9351,0.998,0.936,vtab/cifar10,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
460 |
+
,,,flickr8k,ViT-L-14,openai,zeroshot_retrieval,,0.8633999824523926,0.9409999847412109,ViT-L-14 openai
|
461 |
+
0.65528,0.894,0.6563199999999999,imagenet1k,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
462 |
+
0.5930807248764415,,0.5925413265010712,renderedsst2,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
463 |
+
0.1650710900473933,0.3788625592417061,0.164218009478673,country211,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
464 |
+
0.168016801680168,0.4119411941194119,0.1658110516934046,fgvc_aircraft,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
465 |
+
0.0303819444444444,0.1311170789930555,0.0332405586865836,vtab/dsprites_label_orientation,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
466 |
+
0.3171317131713171,0.7827782778277828,0.3170053475935828,fgvc_aircraft,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
467 |
+
0.6691,0.8925,0.6685000000000001,vtab/cifar100,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
468 |
+
0.0516872427983539,0.2725925925925926,0.0526600212836742,vtab/smallnorb_label_azimuth,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
469 |
+
0.6559,0.8854,0.6541,imagenetv2,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
470 |
+
0.5569148936170213,0.8558510638297873,0.5542553191489361,vtab/dtd,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
471 |
+
0.1663981042654028,0.3825118483412322,0.1670142180094786,country211,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
472 |
+
0.7074,0.9179,0.7075,imagenetv2,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
473 |
+
0.3137333333333333,0.6410666666666667,0.3236449813371542,imagenet-a,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
474 |
+
0.0454320987654321,0.2672427983539094,0.0450240211431134,vtab/smallnorb_label_azimuth,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
475 |
+
0.8741,0.9655666666666668,0.8599962924086103,imagenet-r,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
476 |
+
0.4275427542754275,0.8361836183618362,0.4260962566844919,fgvc_aircraft,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
477 |
+
,,,mscoco_captions,ViT-L-14,laion2b_s32b_b82k,zeroshot_retrieval,,0.7107957005500793,0.8399999737739563,ViT-L-14 laion2b_s32b_b82k
|
478 |
+
0.5958,0.8547,0.5955999999999999,imagenetv2,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
479 |
+
0.7540228405391985,0.9617025580668296,0.7523924485563404,sun397,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
480 |
+
0.2418241824182418,0.6054605460546054,0.2405525846702317,fgvc_aircraft,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
481 |
+
0.0590123456790123,0.279835390946502,0.0603763349553147,vtab/smallnorb_label_azimuth,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
482 |
+
0.7613,0.9289,0.7611,vtab/cifar100,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
483 |
+
0.9277453053102848,0.9983832856609874,0.9288577913034778,cars,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
484 |
+
0.0257297092013888,0.1208224826388889,0.0259727501505128,vtab/dsprites_label_orientation,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
485 |
+
0.8254437869822485,0.954963839579224,0.908884143116176,vtab/caltech101,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
486 |
+
0.980125,0.999875,0.980875,stl10,ViT-L-14,laion400m_e32,zeroshot_classification,,,,ViT-L-14 laion400m_e32
|
487 |
+
0.2463246324632463,0.5724572457245725,0.2460249554367201,fgvc_aircraft,ViT-B-32,laion2b_s34b_b79k,zeroshot_classification,,,,ViT-B-32 laion2b_s34b_b79k
|
488 |
+
0.8102964743589743,0.9655448717948718,0.8579252085748035,voc2007,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
489 |
+
0.2044,0.7866666666666666,0.2151124081246672,vtab/clevr_count_all,ViT-B-16,openai,zeroshot_classification,,,,ViT-B-16 openai
|
490 |
+
0.2872511848341232,0.542085308056872,0.2880094786729857,country211,ViT-g-14,laion2b_s12b_b42k,zeroshot_classification,,,,ViT-g-14 laion2b_s12b_b42k
|
491 |
+
0.06,0.288312757201646,0.0630119225348046,vtab/smallnorb_label_azimuth,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
492 |
+
0.9664,0.9987,0.9665,vtab/cifar10,ViT-L-14,laion2b_s32b_b82k,zeroshot_classification,,,,ViT-L-14 laion2b_s32b_b82k
|
493 |
+
0.1895333333333333,0.7248666666666667,0.1870254885776544,vtab/clevr_count_all,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
494 |
+
0.8415619947767691,0.9900509886829996,0.8435641961196442,cars,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
495 |
+
0.337965783923131,1.0,0.2591163084325771,vtab/diabetic_retinopathy,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
496 |
+
0.1582,0.8814666666666666,0.1812267071156741,vtab/clevr_closest_object_distance,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
497 |
+
0.0475720164609053,0.2691358024691358,0.0457953163680852,vtab/smallnorb_label_azimuth,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
498 |
+
0.3651623119556611,0.7007917656373713,0.3512103003164681,gtsrb,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
499 |
+
0.1592258632065097,0.8009676709918627,0.1713416703583154,vtab/dmlab,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
500 |
+
0.4948535233570863,0.7578780680918448,0.4319824074083427,gtsrb,ViT-B-16-plus-240,laion400m_e32,zeroshot_classification,,,,ViT-B-16-plus-240 laion400m_e32
|
501 |
+
0.3294329432943294,0.7836783678367837,0.3317290552584671,fgvc_aircraft,ViT-L-14-336,openai,zeroshot_classification,,,,ViT-L-14-336 openai
|
502 |
+
0.684701252367729,0.9328576420177648,0.6783238400960281,sun397,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
503 |
+
0.6885672467067816,0.8466417303626605,0.6732279033655394,vtab/flowers,ViT-B-32,laion2b_e16,zeroshot_classification,,,,ViT-B-32 laion2b_e16
|
504 |
+
0.8385930309007232,0.9539776462853384,0.9334530557615972,vtab/caltech101,ViT-L-14,openai,zeroshot_classification,,,,ViT-L-14 openai
|
505 |
+
0.6696489324530592,0.9273222134358275,0.6609448269493161,sun397,ViT-B-32-quickgelu,laion400m_e32,zeroshot_classification,,,,ViT-B-32-quickgelu laion400m_e32
|
506 |
+
0.3000947867298578,0.556872037914692,0.2994312796208531,country211,ViT-H-14,laion2b_s32b_b79k,zeroshot_classification,,,,ViT-H-14 laion2b_s32b_b79k
|
507 |
+
0.409445528002229,0.9413485650599052,0.3587300457745208,fer2013,ViT-B-32,openai,zeroshot_classification,,,,ViT-B-32 openai
|
508 |
+
0.96975,0.999875,0.96975,stl10,ViT-B-16,laion400m_e32,zeroshot_classification,,,,ViT-B-16 laion400m_e32
|
CLIP_benchmark/benchmark/dataset_type.csv
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dataset,type
|
2 |
+
imagenet1k,natural
|
3 |
+
imagenetv2,natural
|
4 |
+
imagenet-r,natural
|
5 |
+
imagenet_sketch,specialized
|
6 |
+
objectnet,natural
|
7 |
+
imagenet-a,natural
|
8 |
+
imagenet-o,natural
|
9 |
+
vtab/cifar10,natural
|
10 |
+
vtab/cifar100,natural
|
11 |
+
mnist,specialized
|
12 |
+
vtab/flowers,natural
|
13 |
+
cars,natural
|
14 |
+
vtab/svhn,natural
|
15 |
+
fer2013,natural
|
16 |
+
renderedsst2,specialized
|
17 |
+
vtab/pets,natural
|
18 |
+
vtab/caltech101,natural
|
19 |
+
voc2007_multilabel,natural
|
20 |
+
voc2007,natural
|
21 |
+
sun397,natural
|
22 |
+
fgvc_aircraft,natural
|
23 |
+
country211,natural
|
24 |
+
vtab/dtd,natural
|
25 |
+
gtsrb,natural
|
26 |
+
stl10,natural
|
27 |
+
vtab/diabetic_retinopathy,specialized
|
28 |
+
vtab/eurosat,specialized
|
29 |
+
vtab/resisc45,specialized
|
30 |
+
vtab/pcam,specialized
|
31 |
+
vtab/clevr_count_all,structured
|
32 |
+
vtab/clevr_closest_object_distance,structured
|
33 |
+
vtab/dsprites_label_orientation,structured
|
34 |
+
vtab/dsprites_label_x_position,structured
|
35 |
+
vtab/dsprites_label_y_position,structured
|
36 |
+
vtab/smallnorb_label_elevation,structured
|
37 |
+
vtab/smallnorb_label_azimuth,structured
|
38 |
+
vtab/dmlab,structured
|
39 |
+
vtab/kitti_closest_vehicle_distance,structured
|
40 |
+
mscoco_captions,retrieval
|
41 |
+
flickr8k,retrieval
|
42 |
+
flickr30k,retrieval
|
CLIP_benchmark/benchmark/datasets.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wds/vtab/cifar10
|
2 |
+
wds/stl10
|
3 |
+
wds/vtab/cifar100
|
4 |
+
wds/cars
|
5 |
+
wds/vtab/caltech101
|
6 |
+
wds/vtab/pets
|
7 |
+
wds/vtab/flowers
|
8 |
+
wds/vtab/dtd
|
9 |
+
wds/vtab/eurosat
|
10 |
+
wds/fgvc_aircraft
|
11 |
+
wds/vtab/pcam
|
12 |
+
wds/imagenet-r
|
13 |
+
wds/imagenet_sketch
|
CLIP_benchmark/benchmark/datasets_multilingual.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
multilingual_mscoco_captions,es
|
2 |
+
multilingual_mscoco_captions,it
|
3 |
+
multilingual_mscoco_captions,ko
|
4 |
+
multilingual_mscoco_captions,pl
|
5 |
+
multilingual_mscoco_captions,ru
|
6 |
+
multilingual_mscoco_captions,tr
|
7 |
+
multilingual_mscoco_captions,zh
|
8 |
+
multilingual_mscoco_captions,en
|
9 |
+
imagenet1k,zh
|
10 |
+
imagenet1k,it
|
11 |
+
imagenet1k,jp
|
12 |
+
imagenet1k,en
|
13 |
+
imagenet1k,ar
|
CLIP_benchmark/benchmark/models.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
ViT-L-14,openai
|
2 |
+
ViT-L-14,/path/to/fare_eps_4.pt
|
CLIP_benchmark/benchmark/webdatasets.txt
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wds/mscoco_captions
|
2 |
+
wds/flickr8k
|
3 |
+
wds/flickr30k
|
4 |
+
wds/imagenet1k
|
5 |
+
wds/imagenetv2
|
6 |
+
wds/imagenet_sketch
|
7 |
+
wds/imagenet-a
|
8 |
+
wds/imagenet-r
|
9 |
+
wds/imagenet-o
|
10 |
+
wds/objectnet
|
11 |
+
wds/fer2013
|
12 |
+
wds/voc2007
|
13 |
+
wds/voc2007_multilabel
|
14 |
+
wds/sun397
|
15 |
+
wds/cars
|
16 |
+
wds/fgvc_aircraft
|
17 |
+
wds/mnist
|
18 |
+
wds/stl10
|
19 |
+
wds/gtsrb
|
20 |
+
wds/country211
|
21 |
+
wds/renderedsst2
|
22 |
+
wds/vtab/caltech101
|
23 |
+
wds/vtab/cifar10
|
24 |
+
wds/vtab/cifar100
|
25 |
+
wds/vtab/clevr_count_all
|
26 |
+
wds/vtab/clevr_closest_object_distance
|
27 |
+
wds/vtab/diabetic_retinopathy
|
28 |
+
wds/vtab/dmlab
|
29 |
+
wds/vtab/dsprites_label_orientation
|
30 |
+
wds/vtab/dsprites_label_x_position
|
31 |
+
wds/vtab/dsprites_label_y_position
|
32 |
+
wds/vtab/dtd
|
33 |
+
wds/vtab/eurosat
|
34 |
+
wds/vtab/kitti_closest_vehicle_distance
|
35 |
+
wds/vtab/flowers
|
36 |
+
wds/vtab/pets
|
37 |
+
wds/vtab/pcam
|
38 |
+
wds/vtab/resisc45
|
39 |
+
wds/vtab/smallnorb_label_azimuth
|
40 |
+
wds/vtab/smallnorb_label_elevation
|
41 |
+
wds/vtab/svhn
|
CLIP_benchmark/clip_benchmark/__init__.py
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Top-level package for CLIP Benchmark."""
|
2 |
+
|
3 |
+
__author__ = """Mehdi Cherti"""
|
4 |
+
__email__ = '[email protected]'
|
5 |
+
__version__ = '0.1.0'
|
CLIP_benchmark/clip_benchmark/cli.py
ADDED
@@ -0,0 +1,404 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Console script for clip_benchmark."""
|
2 |
+
import argparse
|
3 |
+
import random
|
4 |
+
import sys
|
5 |
+
import json
|
6 |
+
from collections import defaultdict
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import csv
|
11 |
+
from copy import copy
|
12 |
+
import os
|
13 |
+
from torchvision import transforms
|
14 |
+
from torchvision.transforms.transforms import Compose, Resize
|
15 |
+
from clip_benchmark.datasets.builder import build_dataset, get_dataset_collate_fn, get_dataset_default_task, dataset_collection, get_dataset_collection_from_file
|
16 |
+
from clip_benchmark.metrics import image_caption_selection, zeroshot_classification, zeroshot_retrieval, linear_probe, captioning
|
17 |
+
from clip_benchmark.model_collection import get_model_collection_from_file, model_collection
|
18 |
+
from clip_benchmark.models import load_clip, MODEL_TYPES
|
19 |
+
|
20 |
+
def get_parser_args():
|
21 |
+
parser = argparse.ArgumentParser()
|
22 |
+
subparsers = parser.add_subparsers()
|
23 |
+
|
24 |
+
parser_eval = subparsers.add_parser('eval', help='Evaluate')
|
25 |
+
parser_eval.add_argument('--dataset', type=str, default="cifar10", nargs="+", help="Dataset(s) to use for the benchmark. Can be the name of a dataset, or a collection name ('vtab', 'vtab+', 'imagenet_robustness', 'retrieval') or path of a text file where each line is a dataset name")
|
26 |
+
parser_eval.add_argument('--dataset_root', default="root", type=str, help="dataset root folder where the datasets are downloaded. Can be in the form of a template depending on dataset name, e.g., --dataset_root='datasets/{dataset}'. This is useful if you evaluate on multiple datasets.")
|
27 |
+
parser_eval.add_argument('--split', type=str, default="test", help="Dataset split to use")
|
28 |
+
parser_eval.add_argument('--model', type=str, default="ViT-B-32-quickgelu", help="Model architecture to use from OpenCLIP")
|
29 |
+
parser_eval.add_argument('--pretrained', type=str, default="laion400m_e32", help="Model checkpoint name to use from OpenCLIP")
|
30 |
+
parser_eval.add_argument('--pretrained_model', type=str, default="", nargs="+", help="Pre-trained model(s) to use. Can be the full model name where `model` and `pretrained` are comma separated (e.g., --pretrained_model='ViT-B-32-quickgelu,laion400m_e32'), a model collection name ('openai' or 'openclip_base' or 'openclip_multilingual' or 'openclip_all'), or path of a text file where each line is a model fullname where model and pretrained are comma separated (e.g., ViT-B-32-quickgelu,laion400m_e32). --model and --pretrained are ignored if --pretrained_model is used.")
|
31 |
+
parser_eval.add_argument('--task', type=str, default="auto", choices=["zeroshot_classification", "zeroshot_retrieval", "linear_probe", "captioning", "image_caption_selection", "auto"], help="Task to evaluate on. With --task=auto, the task is automatically inferred from the dataset.")
|
32 |
+
parser_eval.add_argument('--no_amp', action="store_false", dest="amp", default=False, help="whether to use mixed precision") # we set default to False, as we don't want amp for attacks
|
33 |
+
parser_eval.add_argument('--num_workers', default=4, type=int)
|
34 |
+
parser_eval.add_argument('--recall_k', default=[5], type=int, help="for retrieval, select the k for Recall@K metric. ", nargs="+",)
|
35 |
+
parser_eval.add_argument('--fewshot_k', default=-1, type=int, help="for linear probe, how many shots. -1 = whole dataset.")
|
36 |
+
parser_eval.add_argument('--fewshot_epochs', default=10, type=int, help="for linear probe, how many epochs.")
|
37 |
+
parser_eval.add_argument('--fewshot_lr', default=0.1, type=float, help="for linear probe, what is the learning rate.")
|
38 |
+
parser_eval.add_argument("--skip_load", action="store_true", help="for linear probes, when everything is cached, no need to load model.")
|
39 |
+
parser_eval.add_argument('--seed', default=0, type=int, help="random seed.")
|
40 |
+
parser_eval.add_argument('--batch_size', default=64, type=int)
|
41 |
+
parser_eval.add_argument('--model_cache_dir', default=None, type=str, help="directory to where downloaded models are cached")
|
42 |
+
parser_eval.add_argument('--feature_root', default="features", type=str, help="feature root folder where the features are stored.")
|
43 |
+
parser_eval.add_argument('--annotation_file', default="", type=str, help="text annotation file for retrieval datasets. Only needed for when `--task` is `zeroshot_retrieval`.")
|
44 |
+
parser_eval.add_argument('--custom_classname_file', default=None, type=str, help="use custom json file with classnames for each dataset, where keys are dataset names and values are list of classnames.")
|
45 |
+
parser_eval.add_argument('--custom_template_file', default=None, type=str, help="use custom json file with prompts for each dataset, where keys are dataset names and values are list of prompts. For instance, to use CuPL prompts, use --custom_template_file='cupl_prompts.json'")
|
46 |
+
|
47 |
+
parser_eval.add_argument('--language', default="en", type=str, nargs="+", help="language(s) of classname and prompts to use for zeroshot classification.")
|
48 |
+
parser_eval.add_argument('--output', default="result.json", type=str, help="output file where to dump the metrics. Can be in form of a template, e.g., --output='{dataset}_{pretrained}_{model}_{language}_{task}.json'")
|
49 |
+
parser_eval.add_argument('--quiet', dest='verbose', action="store_false", help="suppress verbose messages")
|
50 |
+
parser_eval.add_argument('--save_clf', default=None, type=str, help="optionally save the classification layer output by the text tower")
|
51 |
+
parser_eval.add_argument('--load_clfs', nargs='+', default=[], type=str, help="optionally load and average mutliple layers output by text towers.")
|
52 |
+
parser_eval.add_argument('--skip_existing', default=False, action="store_true", help="whether to skip an evaluation if the output file exists.")
|
53 |
+
parser_eval.add_argument('--model_type', default="open_clip", type=str, choices=MODEL_TYPES, help="clip model type")
|
54 |
+
parser_eval.add_argument('--wds_cache_dir', default=None, type=str, help="optional cache directory for webdataset only")
|
55 |
+
parser_eval.add_argument('--n_samples', default=-1, type=int, help="number of samples to evaluate on. -1 = whole dataset.", choices=[-1, 11, 1000])
|
56 |
+
|
57 |
+
parser_eval.add_argument('--interpolate', default=False, action="store_true", help="interpolate with clean model")
|
58 |
+
parser_eval.add_argument('--beta', default=0.5, type=float, help="interpolate with clean model, 0=clean")
|
59 |
+
parser_eval.add_argument('--attack', default='none', type=str, help="attack to use", choices=['none', 'aa'])
|
60 |
+
parser_eval.add_argument('--norm', default='Linf', type=str, help="norm to use")
|
61 |
+
parser_eval.add_argument('--eps', default=1., type=float, help="epsilon to use")
|
62 |
+
parser_eval.add_argument('--iterations_adv', default=100, type=int, help="number of attack iterations to use")
|
63 |
+
|
64 |
+
parser_eval.set_defaults(which='eval')
|
65 |
+
parser_build = subparsers.add_parser('build', help='Build CSV from evaluations')
|
66 |
+
parser_build.add_argument('files', type=str, nargs="+", help="path(s) of JSON result files")
|
67 |
+
parser_build.add_argument('--output', type=str, default="benchmark.csv", help="CSV output file")
|
68 |
+
parser_build.set_defaults(which='build')
|
69 |
+
|
70 |
+
args = parser.parse_args()
|
71 |
+
return args
|
72 |
+
|
73 |
+
def main():
|
74 |
+
base = get_parser_args()
|
75 |
+
if base.which == "eval":
|
76 |
+
main_eval(base)
|
77 |
+
elif base.which == "build":
|
78 |
+
main_build(base)
|
79 |
+
|
80 |
+
def main_build(base):
|
81 |
+
# Build a benchmark single CSV file from a set of evaluations (JSON files)
|
82 |
+
rows = []
|
83 |
+
fieldnames = set()
|
84 |
+
for path in base.files:
|
85 |
+
data = json.load(open(path))
|
86 |
+
row = {}
|
87 |
+
row.update(data["metrics"])
|
88 |
+
row.update(data)
|
89 |
+
del row["metrics"]
|
90 |
+
row['model_fullname'] = row['model'] + ' ' + row['pretrained']
|
91 |
+
for field in row.keys():
|
92 |
+
fieldnames.add(field)
|
93 |
+
rows.append(row)
|
94 |
+
with open(base.output, 'w') as csvfile:
|
95 |
+
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
|
96 |
+
writer.writeheader()
|
97 |
+
for row in rows:
|
98 |
+
writer.writerow(row)
|
99 |
+
|
100 |
+
def main_eval(base):
|
101 |
+
# Get list of pre-trained models to evaluate
|
102 |
+
pretrained_model = _as_list(base.pretrained_model)
|
103 |
+
if pretrained_model:
|
104 |
+
models = []
|
105 |
+
for name in pretrained_model:
|
106 |
+
if os.path.isfile(name):
|
107 |
+
# if path, read file, each line is a pre-trained model
|
108 |
+
models.extend(get_model_collection_from_file(name))
|
109 |
+
elif name in model_collection:
|
110 |
+
# if part of `model_collection`, retrieve from it
|
111 |
+
models.extend(model_collection[name])
|
112 |
+
else:
|
113 |
+
# if not, assume it is in the form of `model,pretrained`
|
114 |
+
model, pretrained = name.split(',')
|
115 |
+
models.append((model, pretrained))
|
116 |
+
else:
|
117 |
+
models = [(base.model, base.pretrained)]
|
118 |
+
|
119 |
+
# Ge list of datasets to evaluate on
|
120 |
+
datasets = []
|
121 |
+
for name in _as_list(base.dataset):
|
122 |
+
if os.path.isfile(name):
|
123 |
+
# If path, read file, each line is a dataset name
|
124 |
+
datasets.extend(get_dataset_collection_from_file(name))
|
125 |
+
elif name in dataset_collection:
|
126 |
+
# if part of `dataset_collection`, retrieve from it
|
127 |
+
datasets.extend(dataset_collection[name])
|
128 |
+
else:
|
129 |
+
# if not, assume it is simply the name of the dataset
|
130 |
+
datasets.append(name)
|
131 |
+
|
132 |
+
# Get list of languages to evaluate on
|
133 |
+
languages = _as_list(base.language)
|
134 |
+
|
135 |
+
if base.verbose:
|
136 |
+
print(f"[Models] {models}")
|
137 |
+
print(f"[Datasets] {datasets}")
|
138 |
+
print(f"[Languages] {languages}")
|
139 |
+
|
140 |
+
for model, pretrained in models:
|
141 |
+
for i, dataset in enumerate(datasets):
|
142 |
+
print(f"\n{i+1} / {len(datasets)}")
|
143 |
+
for language in languages:
|
144 |
+
# We iterative over all possible model/dataset/languages
|
145 |
+
# TODO: possibility to parallelize evaluation here
|
146 |
+
args = copy(base)
|
147 |
+
args.model = model
|
148 |
+
args.pretrained = pretrained
|
149 |
+
args.dataset = dataset
|
150 |
+
args.language = language
|
151 |
+
run(args)
|
152 |
+
|
153 |
+
def _as_list(l):
|
154 |
+
if not l:
|
155 |
+
return []
|
156 |
+
return [l] if type(l) != list else l
|
157 |
+
|
158 |
+
def interpolate_state_dict(m1, beta):
|
159 |
+
m = {}
|
160 |
+
|
161 |
+
m2 = torch.load("/path/to/ckpt.pt", map_location='cpu')
|
162 |
+
for k in m1.keys():
|
163 |
+
# print(m1[k].shape, m2[k].shape)
|
164 |
+
m[k] = beta * m1[k] + (1 - beta) * m2[k]
|
165 |
+
return m
|
166 |
+
|
167 |
+
def run(args):
|
168 |
+
print("[args]", args, "\n")
|
169 |
+
"""Console script for clip_benchmark."""
|
170 |
+
args.device = "cuda" if torch.cuda.is_available() else "cpu"
|
171 |
+
# set seed.
|
172 |
+
torch.manual_seed(args.seed)
|
173 |
+
random.seed(args.seed)
|
174 |
+
np.random.seed(args.seed)
|
175 |
+
|
176 |
+
task = args.task
|
177 |
+
if args.dataset.startswith("wds/"):
|
178 |
+
dataset_name = args.dataset.replace("wds/", "", 1)
|
179 |
+
elif args.dataset.startswith("#"):
|
180 |
+
print(f"Skip commented dataset {args.dataset}")
|
181 |
+
return
|
182 |
+
else:
|
183 |
+
dataset_name = args.dataset
|
184 |
+
if task == "auto":
|
185 |
+
task = get_dataset_default_task(dataset_name)
|
186 |
+
pretrained_slug = (
|
187 |
+
args.pretrained.split('/')[-1] if os.path.isfile(args.pretrained) else args.pretrained
|
188 |
+
)
|
189 |
+
if len(pretrained_slug) > 180:
|
190 |
+
pretrained_slug = pretrained_slug[140:]
|
191 |
+
pretrained_slug_full_path = args.pretrained.replace('/', '_') if os.path.isfile(args.pretrained) else args.pretrained
|
192 |
+
dataset_slug = dataset_name.replace('/', '_')
|
193 |
+
output = args.output.format(
|
194 |
+
model=args.model,
|
195 |
+
attack=args.attack,
|
196 |
+
eps=str(int(args.eps)),
|
197 |
+
iterations=args.iterations_adv,
|
198 |
+
pretrained=pretrained_slug,
|
199 |
+
pretrained_full_path=pretrained_slug_full_path,
|
200 |
+
task=task,
|
201 |
+
dataset=dataset_slug,
|
202 |
+
n_samples=args.n_samples,
|
203 |
+
language=args.language,
|
204 |
+
bs=args.batch_size,
|
205 |
+
beta=args.beta if args.interpolate else None,
|
206 |
+
)
|
207 |
+
if os.path.exists(output) and args.skip_existing:
|
208 |
+
if args.verbose:
|
209 |
+
print(f"Skip {output}, exists already.")
|
210 |
+
return
|
211 |
+
if args.verbose:
|
212 |
+
print(f"[Dataset] {args.dataset}")
|
213 |
+
print(f"[Task] {task} [model] {args.pretrained} [language] {args.language}")
|
214 |
+
print(f"[Output] {output}")
|
215 |
+
os.makedirs(os.path.dirname(output), exist_ok=True)
|
216 |
+
dataset_root = args.dataset_root.format(dataset=dataset_name, dataset_cleaned=dataset_name.replace("/", "-"))
|
217 |
+
if args.skip_load:
|
218 |
+
model, transform, collate_fn, dataloader = None, None, None, None
|
219 |
+
else:
|
220 |
+
if args.interpolate:
|
221 |
+
inter_dict = torch.load(args.pretrained, map_location=torch.device('cpu'))
|
222 |
+
inter_dict = interpolate_state_dict(inter_dict, args.beta)
|
223 |
+
|
224 |
+
model, transform, tokenizer = load_clip(
|
225 |
+
model_type=args.model_type,
|
226 |
+
model_name=args.model,
|
227 |
+
pretrained=args.pretrained if not args.interpolate else inter_dict,
|
228 |
+
cache_dir=args.model_cache_dir,
|
229 |
+
device=args.device
|
230 |
+
)
|
231 |
+
if ("cifar10" in args.dataset) or ("cifar100" in args.dataset) or ("stl10" in args.dataset):
|
232 |
+
# compute robustness wrt. original resolution
|
233 |
+
transform_unnorm = transforms.transforms.ToTensor()
|
234 |
+
resize = Resize(size=224, interpolation=transforms.InterpolationMode.BICUBIC, max_size=None, antialias=None)
|
235 |
+
else:
|
236 |
+
transform_unnorm = Compose(transform.transforms[:-1]) # remove normalize
|
237 |
+
resize = None
|
238 |
+
normalize = transform.transforms[-1]
|
239 |
+
del transform # make sure we don't use it by accident
|
240 |
+
print(f"[Transform unnorm] {transform_unnorm}")
|
241 |
+
print(f"[Normalize] {normalize}")
|
242 |
+
|
243 |
+
model.eval()
|
244 |
+
dataset = build_dataset(
|
245 |
+
dataset_name=args.dataset,
|
246 |
+
root=dataset_root,
|
247 |
+
transform=transform_unnorm,
|
248 |
+
split=args.split,
|
249 |
+
annotation_file=args.annotation_file,
|
250 |
+
download=True,
|
251 |
+
language=args.language,
|
252 |
+
task=task,
|
253 |
+
custom_template_file=args.custom_template_file,
|
254 |
+
custom_classname_file=args.custom_classname_file,
|
255 |
+
wds_cache_dir=args.wds_cache_dir,
|
256 |
+
)
|
257 |
+
if args.n_samples > 0:
|
258 |
+
dataset = dataset.shuffle(10000, initial=10000, rng=random.Random(args.seed))
|
259 |
+
collate_fn = get_dataset_collate_fn(args.dataset)
|
260 |
+
if args.verbose:
|
261 |
+
try:
|
262 |
+
print(f"Dataset size: {len(dataset)}")
|
263 |
+
except TypeError:
|
264 |
+
print("IterableDataset has no len()")
|
265 |
+
print(f"Dataset split: {args.split}")
|
266 |
+
if hasattr(dataset, "classes") and dataset.classes:
|
267 |
+
try:
|
268 |
+
print(f"Dataset classes: {dataset.classes[:20]}...")
|
269 |
+
print(f"Dataset number of classes: {len(dataset.classes)}")
|
270 |
+
except AttributeError:
|
271 |
+
print("Dataset has no classes.")
|
272 |
+
|
273 |
+
if args.dataset.startswith("wds/"):
|
274 |
+
if args.n_samples > 0:
|
275 |
+
assert args.batch_size == 50, "Otherwise we get different samples"
|
276 |
+
dataloader = torch.utils.data.DataLoader(
|
277 |
+
dataset.batched(args.batch_size), batch_size=None,
|
278 |
+
shuffle=False, num_workers=args.num_workers,
|
279 |
+
)
|
280 |
+
else:
|
281 |
+
dataloader = torch.utils.data.DataLoader(
|
282 |
+
dataset, batch_size=args.batch_size,
|
283 |
+
shuffle=False, num_workers=args.num_workers,
|
284 |
+
collate_fn=collate_fn
|
285 |
+
)
|
286 |
+
if task == "zeroshot_classification":
|
287 |
+
zeroshot_templates = dataset.templates if hasattr(dataset, "templates") else None
|
288 |
+
if args.verbose:
|
289 |
+
print(f"Zero-shot templates: {zeroshot_templates}")
|
290 |
+
classnames = dataset.classes if hasattr(dataset, "classes") else None
|
291 |
+
assert (zeroshot_templates is not None and classnames is not None), "Dataset does not support classification"
|
292 |
+
if args.attack is None:
|
293 |
+
attack_config = {
|
294 |
+
"attack": "none",
|
295 |
+
"bs": args.batch_size,
|
296 |
+
"n_samples": args.n_samples,
|
297 |
+
}
|
298 |
+
else:
|
299 |
+
attack_config = {
|
300 |
+
"attack": args.attack,
|
301 |
+
"norm": args.norm,
|
302 |
+
"eps": args.eps,
|
303 |
+
"iterations": args.iterations_adv,
|
304 |
+
"bs": args.batch_size,
|
305 |
+
"n_samples": args.n_samples,
|
306 |
+
}
|
307 |
+
print(f"Attack config: {attack_config}")
|
308 |
+
metrics = zeroshot_classification.evaluate(
|
309 |
+
model,
|
310 |
+
dataloader,
|
311 |
+
tokenizer,
|
312 |
+
classnames, zeroshot_templates,
|
313 |
+
normalize=normalize,
|
314 |
+
resize=resize,
|
315 |
+
device=args.device,
|
316 |
+
amp=args.amp,
|
317 |
+
verbose=args.verbose,
|
318 |
+
save_clf=args.save_clf,
|
319 |
+
load_clfs=args.load_clfs,
|
320 |
+
attack_config=attack_config,
|
321 |
+
)
|
322 |
+
elif task == "zeroshot_retrieval":
|
323 |
+
metrics = zeroshot_retrieval.evaluate(
|
324 |
+
model,
|
325 |
+
dataloader,
|
326 |
+
tokenizer,
|
327 |
+
recall_k_list=args.recall_k,
|
328 |
+
device=args.device,
|
329 |
+
amp=args.amp
|
330 |
+
)
|
331 |
+
elif task == "image_caption_selection":
|
332 |
+
metrics = image_caption_selection.evaluate(
|
333 |
+
model,
|
334 |
+
dataloader,
|
335 |
+
tokenizer,
|
336 |
+
device=args.device,
|
337 |
+
amp=args.amp,
|
338 |
+
)
|
339 |
+
elif task == "linear_probe":
|
340 |
+
# we also need the train split for linear probing.
|
341 |
+
train_dataset = build_dataset(
|
342 |
+
dataset_name=args.dataset,
|
343 |
+
root=dataset_root,
|
344 |
+
transform=transform,
|
345 |
+
split='train',
|
346 |
+
annotation_file=args.annotation_file,
|
347 |
+
download=True,
|
348 |
+
)
|
349 |
+
train_dataloader = torch.utils.data.DataLoader(
|
350 |
+
train_dataset, batch_size=args.batch_size,
|
351 |
+
shuffle=False, num_workers=args.num_workers,
|
352 |
+
collate_fn=collate_fn, pin_memory=True,
|
353 |
+
)
|
354 |
+
metrics = linear_probe.evaluate(
|
355 |
+
model,
|
356 |
+
train_dataloader,
|
357 |
+
dataloader,
|
358 |
+
args.fewshot_k,
|
359 |
+
args.batch_size,
|
360 |
+
args.num_workers,
|
361 |
+
args.fewshot_lr,
|
362 |
+
args.fewshot_epochs,
|
363 |
+
(args.model + '-' + args.pretrained + '-' + args.dataset).replace('/', '_'),
|
364 |
+
args.seed,
|
365 |
+
args.feature_root,
|
366 |
+
device=args.device,
|
367 |
+
amp=args.amp,
|
368 |
+
verbose=args.verbose,
|
369 |
+
)
|
370 |
+
elif task == "captioning":
|
371 |
+
metrics = captioning.evaluate(
|
372 |
+
model=model,
|
373 |
+
dataloader=dataloader,
|
374 |
+
batch_size=args.batch_size,
|
375 |
+
num_workers=args.num_workers,
|
376 |
+
device=args.device,
|
377 |
+
amp=args.amp,
|
378 |
+
verbose=args.verbose,
|
379 |
+
transform=transform
|
380 |
+
)
|
381 |
+
else:
|
382 |
+
raise ValueError("Unsupported task: {}. task should be `zeroshot_classification`, `zeroshot_retrieval`, `linear_probe`, or `captioning`".format(task))
|
383 |
+
dump = {
|
384 |
+
"dataset": args.dataset,
|
385 |
+
"model": args.model,
|
386 |
+
"pretrained": args.pretrained,
|
387 |
+
"beta": args.beta if args.interpolate else None,
|
388 |
+
"task": task,
|
389 |
+
"metrics": metrics,
|
390 |
+
"language": args.language,
|
391 |
+
"attack": args.attack,
|
392 |
+
"iterations_adv": args.iterations_adv,
|
393 |
+
"eps": args.eps,
|
394 |
+
"norm": args.norm,
|
395 |
+
}
|
396 |
+
if args.verbose:
|
397 |
+
print(f"Dump results to: {output}")
|
398 |
+
with open(output, "w") as f:
|
399 |
+
json.dump(dump, f)
|
400 |
+
return 0
|
401 |
+
|
402 |
+
|
403 |
+
if __name__ == "__main__":
|
404 |
+
sys.exit(main()) # pragma: no cover
|
CLIP_benchmark/clip_benchmark/datasets/__init__.py
ADDED
File without changes
|
CLIP_benchmark/clip_benchmark/datasets/ar_classnames.json
ADDED
@@ -0,0 +1,1004 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imagenet1k": [
|
3 |
+
"\u0633\u0645\u0643 \u0627\u0644\u062a\u0646\u0634",
|
4 |
+
"\u0627\u0644\u0633\u0645\u0643\u0629 \u0627\u0644\u0630\u0647\u0628\u064a\u0629",
|
5 |
+
"\u0627\u0644\u0642\u0631\u0634 \u0627\u0644\u0623\u0628\u064a\u0636 \u0627\u0644\u0643\u0628\u064a\u0631",
|
6 |
+
"\u0627\u0644\u0642\u0631\u0634 \u0627\u0644\u0628\u0628\u0631\u064a",
|
7 |
+
"\u0627\u0644\u0642\u0631\u0634 \u0627\u0644\u0645\u0637\u0631\u0642\u0629",
|
8 |
+
"\u0633\u0645\u0643 \u0627\u0644\u0631\u0639\u0627\u062f",
|
9 |
+
"\u0633\u0645\u0643 \u0627\u0644\u0631\u0642\u064a\u0637\u0629",
|
10 |
+
"\u062f\u064a\u0643",
|
11 |
+
"\u062f\u062c\u0627\u062c\u0629",
|
12 |
+
"\u0646\u0639\u0627\u0645\u0629",
|
13 |
+
"\u0627\u0644\u0634\u0631\u0634\u0648\u0631 \u0627\u0644\u062c\u0628\u0644\u064a",
|
14 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u062d\u0633\u0648\u0646",
|
15 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u062a\u0641\u0627\u062d\u064a \u0627\u0644\u0627\u0648\u0631\u0648\u0628\u064a",
|
16 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u062c\u0646\u0643 \u062f\u0627\u0643\u0646 \u0627\u0644\u0639\u064a\u0648\u0646",
|
17 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u062f\u0631\u0633\u0629 \u0627\u0644\u0633\u0645\u0627\u0648\u064a",
|
18 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0628\u0648 \u0627\u0644\u062d\u0646\u0627\u0621",
|
19 |
+
"\u0628\u0644\u0628\u0644",
|
20 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0642\u064a\u0642",
|
21 |
+
"\u0639\u0642\u0639\u0642 \u0637\u0627\u0626\u0631 \u0627\u0644\u0630\u064a\u0644 \u0627\u0644\u0637\u0648\u064a\u0644",
|
22 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0642\u0631\u0642\u0641",
|
23 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u063a\u0637\u0627\u0633",
|
24 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u062d\u062f\u0623\u0629",
|
25 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0639\u0642\u0627\u0628 \u0627\u0644\u0631\u062e\u0645\u0629",
|
26 |
+
"\u0646\u0633\u0631",
|
27 |
+
"\u0627\u0644\u0628\u0648\u0645\u0629 \u0627\u0644\u0631\u0645\u0627\u062f\u064a\u0629",
|
28 |
+
"\u0627\u0644\u0633\u0645\u0646\u062f\u0631 \u0627\u0644\u0646\u0627\u0631\u064a",
|
29 |
+
"\u0644\u064a\u0633\u0648\u062a\u0631\u064a\u062a\u0648\u0646 \u0641\u0648\u0644\u062c\u0627\u0631\u064a\u0633",
|
30 |
+
"\u0627\u0644\u0633\u0645\u0646\u062f\u0631 \u0627\u0644\u0645\u0627\u0626\u064a",
|
31 |
+
"\u0627\u0644\u0633\u0645\u0646\u062f\u0631 \u0627\u0644\u0645\u0631\u0642\u0637",
|
32 |
+
"\u0627\u0644\u0633\u0645\u0646\u062f\u0631 \u0627\u0644\u0645\u0643\u0633\u064a\u0643\u064a",
|
33 |
+
"\u0636\u0641\u062f\u0639 \u0627\u0644\u062b\u0648\u0631 \u0627\u0644\u0627\u0645\u0631\u064a\u0643\u064a",
|
34 |
+
"\u0636\u0641\u062f\u0639 \u0627\u0644\u0634\u062c\u0631",
|
35 |
+
"\u0627\u0644\u0636\u0641\u0627\u062f\u0639 \u0630\u0627\u062a \u0627\u0644\u0630\u064a\u0644",
|
36 |
+
"\u0627\u0644\u0633\u0644\u062d\u0641\u0627\u0629 \u0627\u0644\u0628\u062d\u0631\u064a\u0629 \u0636\u062e\u0645\u0629 \u0627\u0644\u0631\u0623\u0633",
|
37 |
+
"\u0633\u0644\u062d\u0641\u0627\u0629 \u0627\u0644\u0645\u062d\u064a\u0637 \u062c\u0644\u062f\u064a\u0629 \u0627\u0644\u0638\u0647\u0631",
|
38 |
+
"\u0633\u0644\u062d\u0641\u0627\u0629 \u0627\u0644\u0637\u064a\u0646",
|
39 |
+
"\u0627\u0644\u0633\u0644\u062d\u0641\u0627\u0629 \u0630\u0627\u062a \u0638\u0647\u0631 \u0627\u0644\u0645\u0639\u064a\u0646",
|
40 |
+
"\u0633\u0644\u062d\u0641\u0627\u0629 \u0635\u0646\u062f\u0648\u0642\u064a\u0629",
|
41 |
+
"\u0627\u0644\u0648\u0632\u063a",
|
42 |
+
"\u0627\u0644\u0625\u063a\u0648\u0627\u0646\u0629",
|
43 |
+
"\u0627\u0644\u062d\u0631\u0628\u0627\u0621 \u0627\u0644\u062e\u0636\u0631\u0627\u0621",
|
44 |
+
"\u0627\u0644\u0633\u062d\u0627\u0644\u064a \u0627\u0644\u0635\u062d\u0631\u0627\u0648\u064a\u0629",
|
45 |
+
"\u0627\u0644\u0639\u064e\u0636\u0652\u0631\u064e\u0641\u064f\u0648\u0637",
|
46 |
+
" \u0633\u062d\u0644\u064a\u0629 \u0647\u062f\u0628 \u0627\u0644\u0639\u0646\u0642",
|
47 |
+
"\u0633\u062d\u0644\u064a\u0629 \u0627\u0644\u062a\u0645\u0633\u0627\u062d",
|
48 |
+
"\u0648\u062d\u0634 \u062c\u064a\u0644\u0627",
|
49 |
+
"\u0633\u062d\u0644\u064a\u0629 \u062e\u0636\u0631\u0627\u0621",
|
50 |
+
"\u062d\u0631\u0628\u0627\u0621 \u0627\u0641\u0631\u064a\u0642\u064a\u0629",
|
51 |
+
"\u062a\u0646\u064a\u0646 \u0643\u0648\u0645\u0648\u062f\u0648",
|
52 |
+
"\u0627\u0644\u062a\u0645\u0633\u0627\u062d \u0627\u0644\u0623\u0641\u0631\u064a\u0642\u064a",
|
53 |
+
"\u062a\u0645\u0633\u0627\u062d \u0627\u0644\u0642\u0627\u0637\u0648\u0631 \u0627\u0644\u0623\u0645\u0631\u064a\u0643\u064a",
|
54 |
+
"\u0627\u0644\u062f\u064a\u0646\u0627\u0635\u0648\u0631 \u062b\u064f\u0644\u0627\u062b\u064a\u064f\u0651 \u0627\u0644\u0642\u064f\u0631\u0648\u0646",
|
55 |
+
"\u0627\u0644\u062b\u0639\u0627\u0628\u064a\u0646 \u0627\u0644\u062f\u0648\u062f\u064a\u0629",
|
56 |
+
"\u0623\u0641\u0639\u0649 \u0627\u0644\u0637\u0648\u0642",
|
57 |
+
"\u0627\u0644\u0623\u0641\u0639\u0649 \u0627\u0644\u0646\u0641\u0627\u062b\u0629 ",
|
58 |
+
"\u0627\u0644\u0623\u0641\u0639\u0649 \u0627\u0644\u062e\u0636\u0631\u0627\u0621",
|
59 |
+
"\u0627\u0644\u062b\u0639\u0628\u0627\u0646 \u0627\u0644\u0645\u0644\u0643",
|
60 |
+
"\u0623\u0641\u0639\u0649 \u0627\u0644\u0631\u0628\u0627\u0637",
|
61 |
+
"\u0627\u0641\u0639\u0649 \u0627\u0644\u0645\u0627\u0621",
|
62 |
+
"\u062b\u0639\u0628\u0627\u0646 \u0646\u0628\u0627\u062a \u0643\u0631\u0645\u0629",
|
63 |
+
"\u0627\u0644\u062b\u0639\u0628\u0627\u0646 \u0627\u0644\u0644\u064a\u0644\u064a ",
|
64 |
+
"\u062b\u0639\u0628\u0627\u0646 \u0627\u0644\u0623\u0635\u0644\u0629 \u0627\u0644\u0639\u0627\u0635\u0631\u0629",
|
65 |
+
"\u0627\u0644\u062b\u0639\u0628\u0627\u0646 \u0627\u0644\u0635\u062e\u0631\u064a",
|
66 |
+
"\u0643\u0648\u0628\u0631\u0627 \u0647\u0646\u062f\u064a\u0629",
|
67 |
+
"\u0645\u0627\u0645\u0628\u0627 \u062e\u0636\u0631\u0627\u0621",
|
68 |
+
"\u0627\u0644\u063a\u064a\u062f\u0642\u0627\u0648\u0627\u062a",
|
69 |
+
"\u0627\u0644\u0623\u0641\u0639\u0649 \u0627\u0644\u0645\u0642\u0631\u0646\u0629",
|
70 |
+
"\u0627\u0644\u0623\u0641\u0639\u0649 \u0627\u0644\u062c\u0631\u0633\u064a\u0629 \u0630\u0627\u062a \u0627\u0644\u0635\u062f\u0631 \u0627\u0644\u0645\u0627\u0633\u064a",
|
71 |
+
"\u0627\u0641\u0639\u0649 \u0644\u0627\u0641\u0651\u0629 \u0627\u0644\u062c\u0646\u0628",
|
72 |
+
"\u0645\u0641\u0635\u0644\u064a\u0627\u062a \u062b\u0644\u0627\u062b\u064a\u0629 \u0627\u0644\u0641\u0635\u0648\u0635",
|
73 |
+
"\u062d\u0634\u0631\u0629 \u0627\u0644\u0639\u0646\u0643\u0628\u0648\u062a \u0630\u0627\u062a \u0627\u0644\u0642\u0648\u0627\u0626\u0645 \u0627\u0644\u0637\u0648\u064a\u0644\u0629",
|
74 |
+
"\u0639\u0642\u0631\u0628",
|
75 |
+
"\u0639\u0646\u0643\u0628\u0648\u062a \u0627\u0644\u062d\u062f\u064a\u0642\u0629 \u0630\u0627 \u0627\u0644\u0644\u0648\u0646 \u0627\u0644\u0623\u0633\u0648\u062f \u0648\u0627\u0644\u0623\u0635\u0641\u0631 ",
|
76 |
+
"\u0639\u0646\u0643\u0628\u0648\u062a \u0627\u0644\u062d\u0638\u064a\u0631\u0629",
|
77 |
+
"\u0639\u0646\u0643\u0628\u0648\u062a \u0627\u0644\u062d\u062f\u064a\u0642\u0629 \u0627\u0644\u0623\u0648\u0631\u0628\u064a",
|
78 |
+
"\u0639\u0646\u0643\u0628\u0648\u062a \u0627\u0644\u0623\u0631\u0645\u0644\u0629 \u0627\u0644\u0633\u0648\u062f\u0627\u0621",
|
79 |
+
"\u0639\u0646\u0643\u0628\u0648\u062a \u0631\u062a\u064a\u0644\u0627\u0621 \u0630\u0627\u062a \u0623\u0631\u062c\u0644 \u062d\u0645\u0631\u0627\u0621",
|
80 |
+
"\u0627\u0644\u0639\u0646\u0643\u0628\u0648\u062a \u0627\u0644\u0630\u0626\u0628\u064a",
|
81 |
+
"\u0639\u0646\u0643\u0628\u0648\u062a \u0627\u0644\u0642\u064f\u0631\u064e\u0627\u062f",
|
82 |
+
"\u062d\u0634\u0631\u0629 \u0623\u0645 \u0623\u0631\u0628\u0639\u0629 \u0648\u0623\u0631\u0628\u0639\u064a\u0646",
|
83 |
+
"\u062f\u062c\u0627\u062c\u0629 \u0627\u0644\u0637\u0647\u064a\u0648\u062c \u0627\u0644\u0623\u0633\u0648\u062f",
|
84 |
+
"\u062f\u062c\u0627\u062c\u0629 \u062a\u0631\u0645\u062c\u0627\u0646",
|
85 |
+
"\u062f\u062c\u0627\u062c\u0629 \u0637\u064a\u0647\u0648\u062c \u0645\u0637\u0648\u0642",
|
86 |
+
"\u062f\u062c\u0627\u062c\u0629 \u0627\u0644\u0637\u0647\u0628\u0648\u062c",
|
87 |
+
"\u0627\u0644\u0637\u0627\u0648\u0648\u0633",
|
88 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0633\u0645\u0627\u0646",
|
89 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u062d\u062c\u0644",
|
90 |
+
"\u0627\u0644\u0628\u0628\u063a\u0627\u0621 \u0627\u0644\u0631\u0645\u0627\u062f\u064a",
|
91 |
+
"\u0628\u0628\u063a\u0627\u0621 \u0645\u0643\u0627\u0648",
|
92 |
+
"\u0628\u0628\u063a\u0627\u0621 \u0643\u0648\u0643\u0627\u062a\u0648 \u0643\u0628\u0631\u064a\u062a\u064a \u0627\u0644\u0639\u0631\u0641",
|
93 |
+
"\u0628\u0628\u063a\u0627\u0621 \u0642\u0648\u0633 \u0642\u0632\u062d",
|
94 |
+
"\u0637\u064a\u0631 \u0627\u0644\u0648\u0642\u0648\u0627\u0642 \u0643\u0648\u0643\u0627\u0644",
|
95 |
+
"\u0637\u064a\u0631 \u0648\u0631\u0648\u0627\u0631 ",
|
96 |
+
"\u0637\u064a\u0631 \u0623\u0628\u0648 \u0642\u0631\u0646",
|
97 |
+
"\u0627\u0644\u0637\u0627\u0626\u0631 \u0627\u0644\u0637\u0646\u0627\u0646",
|
98 |
+
"\u0637\u064a\u0648\u0631 \u0627\u0644\u064a\u0642\u0645\u064e\u0631",
|
99 |
+
"\u0637\u0627\u0626\u0631 \u0645\u0637\u0648\u0642",
|
100 |
+
"\u0630\u0643\u0631 \u0627\u0644\u0628\u0637",
|
101 |
+
"\u0627\u0644\u0628\u0637\u0629 \u0627\u0644\u063a\u0648\u0627\u0635\u0629 \u062d\u0645\u0631\u0627\u0621 \u0627\u0644\u0635\u062f\u0631",
|
102 |
+
"\u0625\u0648\u0632\u0629",
|
103 |
+
"\u0627\u0644\u0625\u0648\u0632\u0629 \u0633\u0648\u062f\u0627\u0621",
|
104 |
+
"\u0627\u0644\u0641\u064a\u0644",
|
105 |
+
" \u0622\u0643\u0644 \u0627\u0644\u0646\u0645\u0644 \u0627\u0644\u0634\u0648\u0643\u064a",
|
106 |
+
"\u062e\u0644\u062f \u0627\u0644\u0645\u0627\u0621",
|
107 |
+
"\u0648\u0644\u0628",
|
108 |
+
"\u0643\u0648\u0627\u0644\u0627",
|
109 |
+
"\u0627\u0644\u0648\u0645\u0628\u062a\u064a\u0627\u062a",
|
110 |
+
"\u0642\u0646\u062f\u064a\u0644 \u0628\u062d\u0631",
|
111 |
+
"\u0634\u0642\u0627\u0626\u0642 \u0646\u0639\u0645\u0627\u0646 \u0627\u0644\u0628\u062d\u0631",
|
112 |
+
"\u0645\u0631\u062c\u0627\u0646 \u0627\u0644\u062f\u0645\u0627\u063a",
|
113 |
+
"\u062f\u064a\u062f\u0627\u0646 \u0645\u0633\u0637\u062d\u0629",
|
114 |
+
"\u062f\u064a\u062f\u0627\u0646 \u0623\u0633\u0637\u0648\u0627\u0646\u064a\u0629",
|
115 |
+
"\u0645\u062d\u0627\u0631\u0629",
|
116 |
+
"\u062d\u0644\u0632\u0648\u0646",
|
117 |
+
"\u0628\u0632\u0627\u0642",
|
118 |
+
"\u062d\u0644\u0632\u0648\u0646 \u0645\u0627\u0626\u064a",
|
119 |
+
"\u0631\u062e\u0648\u064a\u0627\u062a \u0628\u062d\u0631\u064a\u0647 \u062a\u0633\u0645\u0649 \u0627\u0644\u062e\u064a\u062a\u0648\u0646",
|
120 |
+
"\u0646\u0648\u062a\u064a\u0644\u0648\u0633 \u0627\u0644\u062d\u062c\u0631\u064a",
|
121 |
+
"\u0633\u0631\u0637\u0627\u0646 \u0627\u0644\u0628\u062d\u0631",
|
122 |
+
"\u0633\u0631\u0637\u0627\u0646 \u0627\u0644\u0628\u062d\u0631 \u0627\u0644\u0623\u0637\u0644\u0633\u064a",
|
123 |
+
"\u0627\u0644\u0633\u0631\u0637\u0627\u0646 \u0627\u0644\u0639\u0627\u0632\u0641",
|
124 |
+
"\u0645\u0644\u0643 \u0627\u0644\u0633\u0644\u0637\u0639\u0648\u0646",
|
125 |
+
"\u062c\u0631\u0627\u062f \u0627\u0644\u0628\u062d\u0631 \u0627\u0644\u0623\u0645\u0631\u064a\u0643\u064a",
|
126 |
+
"\u0643\u0631\u0643\u0646\u062f \u0634\u0627\u0626\u0643",
|
127 |
+
"\u062c\u0631\u0627\u062f \u0627\u0644\u0645\u064a\u0627\u0647 \u0627\u0644\u0639\u0630\u0628\u0629",
|
128 |
+
"\u0627\u0644\u0633\u0631\u0637\u0627\u0646 \u0627\u0644\u0646\u0627\u0633\u0643",
|
129 |
+
"\u0645\u062a\u0633\u0627\u0648\u064a\u0627\u062a \u0627\u0644\u0623\u0642\u062f\u0627\u0645",
|
130 |
+
"\u0644\u0642\u0644\u0642 \u0623\u0628\u064a\u0636",
|
131 |
+
"\u0644\u0642\u0644\u0642 \u0623\u0633\u0648\u062f",
|
132 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0628\u062c\u0639 \u0627\u0644\u0645\u0633\u0645\u0649 \u0623\u0628\u0648 \u0645\u0644\u0639\u0642\u0629",
|
133 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0641\u0644\u0627\u0645\u064a\u0646\u063a\u0648",
|
134 |
+
"\u0637\u0627\u0626\u0631 \u0628\u0644\u0634\u0648\u0646 \u0627\u0644\u0623\u0632\u0631\u0642 \u0627\u0644\u0635\u063a\u064a\u0631",
|
135 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0628\u0644\u0634\u0648\u0646 \u0627\u0644\u0623\u0628\u064a\u0636 \u0627\u0644\u0643\u0628\u064a\u0631",
|
136 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0639\u062c\u0627\u062c",
|
137 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0643\u0631\u0643\u064a\u0629",
|
138 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0631\u0637\u0627\u0633",
|
139 |
+
"\u062f\u062c\u0627\u062c\u0629 \u0627\u0644\u0645\u0627\u0621 \u0627\u0644\u0623\u0631\u062c\u0648\u0627\u0646\u064a\u0629",
|
140 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u063a\u0631 \u0627\u0644\u0623\u0645\u0631\u064a\u0643\u064a",
|
141 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u062d\u0628\u0627\u0631",
|
142 |
+
"\u0637\u0627\u0626\u0631 \u0642\u0646\u0628\u0631\u0629 \u0627\u0644\u0645\u0627\u0621 \u0627\u0644\u0645\u062a\u0648\u0631\u062f",
|
143 |
+
"\u0637\u0627\u0626\u0631 \u062f\u0631\u064a\u062c\u0629 \u0623\u0644\u0628\u064a\u0629",
|
144 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0637\u064a\u0637\u0648\u064a \u0623\u062d\u0645\u0631 \u0627\u0644\u0633\u0627\u0642",
|
145 |
+
"\u0639\u064e\u062f\u0651\u0627\u0621 \u0627\u0644\u0645\u0633\u062a\u0646\u0642\u0639\u0627\u062a \u0623\u0648 \u0627\u0644\u062f\u0651\u062a\u0634\u0631",
|
146 |
+
"\u0635\u0627\u0626\u062f \u0627\u0644\u0645\u062d\u0627\u0631",
|
147 |
+
"\u0628\u062c\u0639\u0629",
|
148 |
+
"\u0627\u0644\u0628\u0637\u0631\u064a\u0642 \u0627\u0644\u0645\u0644\u0643",
|
149 |
+
"\u0637\u0627\u0626\u0631 \u0627\u0644\u0642\u0637\u0631\u0633",
|
150 |
+
"\u0627\u0644\u062d\u0648\u062a \u0627\u0644\u0631\u0645\u0627\u062f\u064a \u0627\u0644\u0635\u0644\u0628",
|
151 |
+
"\u0627\u0644\u062d\u064f\u0648\u062a\u064f \u0627\u0644\u0642\u0627\u062a\u0650\u0644\u064f",
|
152 |
+
"\u0628\u0642\u0631\u0629 \u0627\u0644\u0628\u062d\u0631",
|
153 |
+
"\u0623\u0633\u062f \u0627\u0644\u0628\u062d\u0631",
|
154 |
+
"\u0643\u0644\u0628 \u0634\u064a\u0648\u0627\u0648\u0627",
|
155 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0630\u0642\u0646 \u0627\u0644\u064a\u0627\u0628\u0627\u0646\u064a",
|
156 |
+
"\u0643\u0644\u0628 \u0645\u0627\u0644\u0637\u064a",
|
157 |
+
"\u0643\u0644\u0628 \u0628\u0643\u064a\u0646\u064a",
|
158 |
+
"\u0643\u0644\u0628 \u062a\u0634\u064a\u0647 \u062a\u0632\u0648 \u0627\u0644\u0635\u064a\u0646\u064a",
|
159 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0645\u0644\u0643 \u062a\u0634\u0627\u0631\u0644\u0632",
|
160 |
+
"\u0643\u0644\u0628 \u0628\u0627\u0628\u064a\u0644\u0648\u0646",
|
161 |
+
"\u0643\u0644\u0628 \u0627\u0644\u062a\u0631\u064a\u0631 \u0627\u0644\u0639\u0631\u0636",
|
162 |
+
"\u0643\u0644\u0627\u0628 \u0631\u064a\u062f\u062c \u0628\u0627\u0643",
|
163 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0635\u064a\u062f \u0627\u0644\u0623\u0641\u063a\u0627\u0646\u064a",
|
164 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0628\u0627\u0633\u0637",
|
165 |
+
"\u0643\u0644\u0628 \u0628\u064a\u063a\u0644",
|
166 |
+
"\u0643\u0644\u0628 \u0627\u0644\u062f\u0645\u0648\u0645",
|
167 |
+
"\u0643\u0644\u0628 \u0628\u0644\u0648\u064a\u062a\u064a\u0643 \u0643\u0648\u0646\u0647\u0648\u0646\u062f",
|
168 |
+
"\u0643\u0644\u0628 \u0643\u0648\u0646\u0647\u0648\u0646\u062f \u0627\u0644\u0628\u0646\u064a \u0648\u0627\u0644\u0623\u0633\u0648\u062f",
|
169 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0648\u0648\u0643\u0631",
|
170 |
+
"\u0643\u0644\u0628 \u0635\u064a\u062f \u0627\u0644\u062b\u0639\u0627\u0644\u0628 \u0627\u0644\u0625\u0646\u062c\u0644\u064a\u0632\u064a",
|
171 |
+
"\u0643\u0644\u0628 \u0631\u064a\u062f\u0628\u0648\u0646 \u0643\u0648\u0646\u0647\u0648\u0646\u062f",
|
172 |
+
"\u0643\u0644\u0628 \u0628\u0648\u0631\u0632\u0648\u064a",
|
173 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0630\u0626\u0628 \u0627\u0644\u0627\u064a\u0631\u0644\u0646\u062f\u064a",
|
174 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0633\u0644\u0648\u0642\u064a \u0627\u0644\u0627\u064a\u0637\u0627\u0644\u064a",
|
175 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0648\u064a\u0628\u062a",
|
176 |
+
"\u0643\u0644\u0628 \u0627\u064a\u0628\u064a\u0632\u0627\u0646 \u0647\u0648\u0646\u062f",
|
177 |
+
"\u0627\u0644\u0643\u0644\u0628 \u0627\u0644\u0646\u0631\u0648\u064a\u062c\u064a",
|
178 |
+
"\u0643\u0644\u0628 \u0623\u0648\u062a\u064a\u0631 \u0647\u0627\u0648\u0646\u062f",
|
179 |
+
"\u0643\u0644\u0628 \u0633\u0644\u0648\u0642\u064a",
|
180 |
+
"\u0643\u0644\u0628 \u062f\u064a\u0631 \u0647\u0627\u0648\u0646\u062f \u0627\u0644\u0627\u0633\u0643\u062a\u0644\u0646\u062f\u064a",
|
181 |
+
"\u0643\u0644\u0628 \u0648\u0627\u064a\u0645\u0631\u064a",
|
182 |
+
"\u0643\u0644\u0628 \u0633\u062a\u0627\u0641\u0648\u0631\u062f\u0634\u0627\u064a\u0631 \u0628\u0648\u0644 \u062a\u0631\u064a\u0631",
|
183 |
+
"\u0643\u0644\u0628 \u0633\u062a\u0627\u0641\u0648\u0631\u062f\u0634\u0627\u064a\u0631 \u0627\u0644\u0623\u0645\u0631\u064a\u0643\u064a",
|
184 |
+
"\u0643\u0644\u0628 \u0628\u064a\u062f\u0644\u064a\u0646\u062c\u062a\u0648\u0646 \u062a\u0631\u064a\u0631",
|
185 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0628\u0648\u0631\u062f\u0631 \u062a\u064a\u0631\u064a\u0631",
|
186 |
+
"\u0643\u0644\u0628 \u0643\u064a\u0631\u064a \u0628\u0644\u0648 \u062a\u0631\u064a\u0631",
|
187 |
+
"\u0643\u0644\u0628 \u0627\u0644\u062a\u0631\u064a\u0631 \u0627\u0644\u0625\u064a\u0631\u0644\u0646\u062f\u064a",
|
188 |
+
"\u0643\u0644\u0628 \u0646\u0648\u0631\u0641\u0648\u0644\u0643 \u062a\u064a\u0631\u064a\u0631",
|
189 |
+
"\u0643\u0644\u0628 \u0646\u0648\u0631\u064a\u062a\u0634 \u062a\u0631\u064a\u0631",
|
190 |
+
"\u0643\u0644\u0628 \u064a\u0648\u0631\u0643 \u0634\u0627\u064a\u0631",
|
191 |
+
"\u0643\u0644\u0628 \u0648\u064a\u0631 \u0641\u0648\u0643\u0633 \u062a\u0631\u064a\u0631",
|
192 |
+
"\u0643\u0644\u0628 \u0644\u064a\u0643\u0644\u0627\u0646\u062f \u062a\u064a\u0631\u064a\u0631",
|
193 |
+
"\u0643\u0644\u0628 \u0633\u064a\u0627\u0644\u064a\u0647\u0627\u0645 \u062a\u064a\u0631\u064a\u0631",
|
194 |
+
"\u0643\u0644\u0627\u0628 \u0627\u0644\u0623\u0631\u062f\u064a\u0644",
|
195 |
+
"\u0643\u0644\u0628 \u0643\u064a\u0631\u0646 \u062a\u0631\u064a\u0631",
|
196 |
+
"\u0643\u0644\u0628 \u062a\u0631\u064a\u0631 \u0627\u0633\u062a\u0631\u0627\u0644\u064a",
|
197 |
+
"\u0643\u0644\u0628 \u062f\u0627\u0646\u062f\u064a \u062f\u064a\u0646\u0645\u0648\u0646\u062a",
|
198 |
+
"\u0643\u0644\u0628 \u0628\u0648\u0633\u0637\u0646 \u062a\u064a\u0631\u064a\u0631",
|
199 |
+
"\u0643\u0644\u0628 \u0634\u0646\u0627\u0648\u062a\u0633\u0631 \u0645\u0646\u0645\u0646\u0645",
|
200 |
+
"\u0643\u0644\u0628 \u0634\u0646\u0627\u0648\u062a\u0633\u0631 \u0627\u0644\u0639\u0645\u0644\u0627\u0642",
|
201 |
+
"\u0643\u0644\u0628 \u0634\u0646\u0627\u0648\u062a\u0633\u0631 \u0627\u0644\u0639\u0627\u062f\u064a",
|
202 |
+
"\u0627\u0644\u0643\u0644\u0628 \u0627\u0644\u0627\u0633\u0643\u062a\u0644\u0646\u062f\u064a",
|
203 |
+
"\u0643\u0644\u0628 \u062a\u0631\u064a\u0631 \u0627\u0644\u062a\u0628\u062a",
|
204 |
+
"\u0643\u0644\u0628 \u0633\u064a\u0644\u0643\u064a \u062a\u064a\u0631\u064a\u0631",
|
205 |
+
"\u0643\u0644\u0628 \u0627\u0644\u062a\u064a\u0631\u064a\u0631 \u0627\u0644\u0642\u0645\u062d\u064a \u0627\u0644\u0646\u0627\u0639\u0645",
|
206 |
+
"\u0643\u0644\u0628 \u0648\u064a\u0633\u062a\u064a",
|
207 |
+
"\u0643\u0644\u0628 \u0644\u0627\u0633\u0627 \u0623\u0628\u0633\u0648",
|
208 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0645\u0633\u062a\u0631\u062f \u0627\u0644\u0630\u0647\u0628\u064a",
|
209 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0645\u0633\u062a\u0631\u062f \u0645\u062c\u0639\u062f \u0627\u0644\u0634\u0639\u0631",
|
210 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0645\u0633\u062a\u0631\u062f \u0627\u0644\u0630\u0647\u0628\u064a",
|
211 |
+
"\u0643\u0644\u0628 \u0644\u0627\u0628\u0631\u0627\u062f\u0648\u0631 \u0631\u064a\u062a\u0631\u064a\u0641\u0631",
|
212 |
+
"\u0643\u0644\u0628 \u0634\u064a\u0633\u0628\u064a\u0643\u0627",
|
213 |
+
"\u0643\u0644\u0628 \u0628\u0648\u064a\u0646\u062a\u0631 \u0627\u0644\u0623\u0644\u0645\u0627\u0646\u064a \u0642\u0635\u064a\u0631 \u0627\u0644\u0634\u0639\u0631",
|
214 |
+
"\u0643\u0644\u0628 \u0641\u064a\u0632\u0644\u0627",
|
215 |
+
"\u0643\u0644\u0628 \u0633\u064a\u062a\u0631 \u0627\u0644\u0625\u0646\u062c\u0644\u064a\u0632\u064a",
|
216 |
+
"\u0643\u0644\u0628 \u0633\u064a\u062a\u0631 \u0627\u0644\u0625\u064a\u0631\u0644\u0646\u062f\u064a",
|
217 |
+
"\u0643\u0644\u0628 \u0633\u064a\u062a\u0631 \u0627\u0644\u062c\u0648\u0631\u062f\u0648\u0646\u064a",
|
218 |
+
"\u0643\u0644\u0628 \u0628\u0631\u064a\u062a\u0627\u0646\u064a \u0633\u0628\u0627\u0646\u064a\u0644",
|
219 |
+
"\u0643\u0644\u0628 \u0642\u0644\u0645\u0628\u0631",
|
220 |
+
"\u0643\u0644\u0628 \u0633\u0628\u0631\u064a\u0646\u063a\u0631 \u0633\u0628\u0627\u0646\u064a\u0644 \u0627\u0644\u0625\u0646\u062c\u0644\u064a\u0632\u064a",
|
221 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0633\u0628\u0631\u064a\u0646\u063a\u0631 \u0627\u0644\u0648\u064a\u0644\u0632\u064a",
|
222 |
+
"\u0643\u0644\u0628 \u062f\u0644\u0644 \u0627\u0644\u0630\u0644\u064a\u0644",
|
223 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0633\u0627\u0643\u0633 \u0627\u0644\u0625\u0633\u0628\u0627\u0646\u064a",
|
224 |
+
"\u0643\u0644\u0628 \u0633\u0628\u0627\u064a\u0646\u0644 \u0627\u0644\u0645\u0627\u0621 \u0627\u0644\u0625\u064a\u0631\u0644\u0646\u062f\u064a",
|
225 |
+
"\u0643\u0644\u0628 \u0643\u0648\u0641\u0627\u0632",
|
226 |
+
"\u0643\u0644\u0628 \u0634\u064a\u0628\u0631\u0643",
|
227 |
+
"\u0643\u0644\u0628 \u062c\u0631\u0648\u0646\u064a\u0646\u062f\u064a\u0644",
|
228 |
+
"\u0643\u0644\u0628 \u0645\u0627\u0644\u064a\u0646\u0648",
|
229 |
+
"\u0643\u0644\u0628 \u0628\u0631\u064a\u0627\u0631",
|
230 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0643\u0644\u064a\u0628\u064a \u0627\u0644\u0625\u0633\u062a\u0631\u0627\u0644\u064a",
|
231 |
+
"\u0643\u0644\u0628 \u0643\u0648\u0645\u0648\u0646\u062f\u0648\u0631",
|
232 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0631\u0627\u0639\u064a \u0627\u0644\u0625\u0646\u062c\u0644\u064a\u0632\u064a \u0627\u0644\u0642\u062f\u064a\u0645",
|
233 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0631\u0627\u0639\u064a \u0627\u0644\u0634\u062a\u0644\u0646\u062f\u0649",
|
234 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0643\u0648\u0644\u064a",
|
235 |
+
"\u0643\u0644\u0628 \u0628\u0648\u0631\u062f\u0631 \u0643\u0648\u0644\u064a",
|
236 |
+
"\u0643\u0644\u0628 \u0628\u0648\u0641\u064a \u062f\u064a \u0641\u0644\u0627\u0646\u062f\u0631",
|
237 |
+
"\u0643\u0644\u0628 \u0631\u0648\u062a \u0648\u0627\u064a\u0644\u0631",
|
238 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0631\u0627\u0639\u064a \u0627\u0644\u0623\u0644\u0645\u0627\u0646\u064a",
|
239 |
+
"\u0643\u0644\u0628 \u0627\u0644\u062f\u0648\u0628\u064a\u0631\u0645\u0627\u0646",
|
240 |
+
"\u0643\u0644\u0628 \u0628\u064a\u0646\u0634\u0631 \u0627\u0644\u0645\u0635\u063a\u0631",
|
241 |
+
"\u0643\u0644\u0628 \u0627\u0644\u062c\u0628\u0644 \u0627\u0644\u0633\u0648\u064a\u0633\u0631\u064a",
|
242 |
+
"\u0643\u0644\u0628 \u062c\u0628\u0644 \u0627\u0644\u0628\u0631\u0646\u064a\u0632",
|
243 |
+
"\u0643\u0644\u0628 \u0627\u067e\u064a\u0646\u0632\u064a\u0644\u064a\u0631 \u0633\u064a\u0646\u064a\u0646\u0647\u0648\u0646\u062f",
|
244 |
+
"\u0643\u0644\u0628 \u0627\u0646\u062a\u0644\u0628\u062a\u0634\u0631",
|
245 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0628\u0648\u0643\u0633\u0631",
|
246 |
+
"\u0643\u0644\u0628 \u0628\u0648\u0644 \u0645\u0627\u0633\u062a\u064a\u0641",
|
247 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0645\u0627\u0633\u062a\u064a\u0641 \u0627\u0644\u062a\u064a\u0628\u062a\u064a",
|
248 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0628\u0648\u0644\u062f\u0648\u063a \u0627\u0644\u0641\u0631\u0646\u0633\u064a",
|
249 |
+
"\u0627\u0644\u0643\u0644\u0628 \u0627\u0644\u062f\u0627\u0646\u0645\u0627\u0631\u0643\u064a \u0627\u0644\u0636\u062e\u0645",
|
250 |
+
"\u0643\u0644\u0628 \u0633\u0627\u0646\u062a \u0628\u0631\u0646\u0627\u0631\u062f",
|
251 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0647\u0627\u0633\u0643\u064a",
|
252 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0645\u0644\u0645\u0648\u062a \u0627\u0644\u0623\u0644\u0627\u0633\u0643\u064a",
|
253 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0647\u0633\u0643\u064a \u0627\u0644\u0633\u064a\u0628\u064a\u0631\u064a",
|
254 |
+
"\u0643\u0644\u0628 \u062f\u0644\u0645\u0627\u0633\u064a \u0627\u0644\u0645\u0631\u0642\u0637",
|
255 |
+
"\u0643\u0644\u0628 \u0623\u0641\u064a\u0646\u0628\u064a\u0646\u0634\u0631",
|
256 |
+
"\u0643\u0644\u0628 \u0628\u0627\u0633\u0646\u062c\u064a",
|
257 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0628\u062c",
|
258 |
+
"\u0643\u0644\u0628 \u0644\u064a\u0648\u0646 \u0628\u064a\u0631\u062c\u0631",
|
259 |
+
"\u0643\u0644\u0628 \u0646\u064a\u0648\u0641\u0627\u0648\u0646\u062f\u0644\u0627\u0646\u062f",
|
260 |
+
"\u0643\u0644\u0640\u0628 \u062c\u0628\u0627\u0644 \u0627\u0644\u0628\u0631\u0627\u0646\u0633",
|
261 |
+
"\u0643\u0644\u0628 \u0633\u0627\u0645\u0648\u062f\u064a",
|
262 |
+
"\u0643\u0644\u0628 \u0628\u0648\u0645\u064a\u0631\u0627\u0646\u064a\u0627\u0646",
|
263 |
+
"\u0643\u0644\u0628 \u0627\u0644\u062a\u0634\u0627\u0648 \u062a\u0634\u0627\u0648",
|
264 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0643\u064a\u0634\u0648\u0646\u062f",
|
265 |
+
"\u0643\u0644\u0628 \u0627\u0644\u062c\u0631\u064a\u0641\u0648\u0646",
|
266 |
+
"\u0643\u0644\u0628\u0628 \u0628\u064a\u0645\u0628\u0631\u0648\u0643 \u0648\u064a\u0644\u0634 \u0643\u0648\u0631\u062c\u0649",
|
267 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0643\u0627\u0631\u062f\u064a\u062c\u0627\u0646",
|
268 |
+
"\u0643\u0644\u0628 \u0627\u0644\u062a\u0648\u064a \u0627\u0644\u0628\u0648\u062f\u0644",
|
269 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0628\u0648\u062f\u0644 \u0627\u0644\u0635\u063a\u064a\u0631",
|
270 |
+
"\u0643\u0644\u0628 \u0627\u0644\u0628\u0648\u062f\u0644 \u0627\u0644\u0642\u064a\u0627\u0633\u064a",
|
271 |
+
"\u0627\u0644\u0643\u0644\u0628 \u0627\u0644\u0645\u0643\u0633\u064a\u0643\u064a \u0628\u0644\u0627 \u0634\u0639\u0631",
|
272 |
+
"\u0627\u0644\u0630\u0626\u0628 \u0627\u0644\u0631\u0645\u0627\u062f\u064a",
|
273 |
+
"\u0627\u0644\u0630\u0626\u0628 \u0627\u0644\u0623\u0628\u064a\u0636",
|
274 |
+
"\u0627\u0644\u0630\u0626\u0628 \u0627\u0644\u0623\u062d\u0645\u0631",
|
275 |
+
"\u0627\u0644\u0642\u064a\u0648\u0637",
|
276 |
+
"\u0627\u0644\u0643\u0644\u0628 \u0627\u0644\u0625\u0633\u062a\u0631\u0627\u0644\u064a",
|
277 |
+
"\u0643\u0644\u0628 \u0627\u0644\u062f\u0648\u0644",
|
278 |
+
"\u0627\u0644\u0643\u0644\u0628 \u0627\u0644\u0628\u0631\u064a \u0627\u0644\u0625\u0641\u0631\u064a\u0642\u064a",
|
279 |
+
"\u0627\u0644\u0636\u0628\u0639",
|
280 |
+
"\u0627\u0644\u062b\u0639\u0644\u0628 \u0627\u0644\u0623\u062d\u0645\u0631",
|
281 |
+
"\u0627\u0644\u062b\u0639\u0644\u0628 \u0627\u0644\u0642\u0632\u0645",
|
282 |
+
"\u0627\u0644\u062b\u0639\u0644\u0628 \u0627\u0644\u0642\u0637\u0628\u064a",
|
283 |
+
"\u0627\u0644\u062b\u0639\u0644\u0628 \u0627\u0644\u0631\u0645\u0627\u062f\u064a",
|
284 |
+
"\u0627\u0644\u0642\u0637\u0637 \u0627\u0644\u0646\u0645\u0631\u064a\u0629",
|
285 |
+
"\u0627\u0644\u0633\u0646\u0648\u0631 \u0627\u0644\u0645\u064f\u0631\u0642\u0637 \u0627\u0644\u0635\u063a\u064a\u0631",
|
286 |
+
"\u0642\u0637 \u0634\u064a\u0631\u0627\u0632\u064a",
|
287 |
+
"\u0627\u0644\u0642\u0637 \u0627\u0644\u0633\u064a\u0627\u0645\u064a",
|
288 |
+
"\u0642\u0637 \u0644\u064a\u0628\u064a",
|
289 |
+
"\u0623\u0633\u062f \u0627\u0644\u062c\u0628\u0627\u0644",
|
290 |
+
"\u0627\u0644\u0648\u064e\u0634\u064e\u0642",
|
291 |
+
"\u0646\u0645\u0631 ",
|
292 |
+
"\u0646\u0645\u0631 \u0627\u0644\u062b\u0644\u0648\u062c",
|
293 |
+
"\u064a\u063a\u0648\u0631",
|
294 |
+
"\u0623\u0633\u062f",
|
295 |
+
"\u0627\u0644\u0628\u0628\u0631",
|
296 |
+
"\u0627\u0644\u0641\u0647\u062f",
|
297 |
+
"\u062f\u0628 \u0628\u0646\u064a",
|
298 |
+
"\u062f\u0628 \u0623\u0633\u0648\u062f \u0623\u0645\u0631\u064a\u0643\u064a",
|
299 |
+
"\u062f\u0628 \u0642\u0637\u0628\u064a",
|
300 |
+
"\u0627\u0644\u062f\u0628 \u0627\u0644\u0643\u0633\u0644\u0627\u0646 ",
|
301 |
+
"\u0627\u0644\u0633\u0645\u0648\u0631\u064a\u0627\u062a",
|
302 |
+
"\u0633\u0631\u0642\u0627\u0637",
|
303 |
+
"\u062e\u0646\u0627\u0641\u0633 \u0646\u0645\u0631\u064a\u0629",
|
304 |
+
"\u062f\u0639\u0633\u0648\u0642\u0629",
|
305 |
+
"\u062e\u0646\u0641\u0633\u0627\u0621 \u0623\u0631\u0636\u064a\u0629",
|
306 |
+
"\u062e\u0646\u0627\u0641\u0633 \u0637\u0648\u064a\u0644\u0629 \u0627\u0644\u0642\u0631\u0648\u0646 ",
|
307 |
+
"\u062e\u0646\u0641\u0633\u0629 \u0627\u0644\u0623\u0648\u0631\u0627\u0642",
|
308 |
+
"\u062e\u0646\u0627\u0641\u0633 \u0627\u0644\u0631\u0648\u062b",
|
309 |
+
"\u062e\u0646\u0641\u0633\u0627\u0621 \u0648\u062d\u064a\u062f \u0627\u0644\u0642\u0631\u0646",
|
310 |
+
"\u0627\u0644\u0633\u064f\u0648\u0633\u064a\u0646\u0627\u062a",
|
311 |
+
"\u062d\u0634\u0631\u0629 \u0630\u0648\u0627\u062a \u0627\u0644\u062c\u0646\u0627\u062d\u064a\u0646",
|
312 |
+
"\u0646\u062d\u0644",
|
313 |
+
"\u0627\u0644\u0646\u0645\u0644",
|
314 |
+
"\u062c\u0646\u062f\u0628",
|
315 |
+
"\u062d\u0634\u0631\u0629 \u0627\u0644\u0643\u0631\u064a\u0643\u064a\u062a",
|
316 |
+
"\u0627\u0644\u062d\u0634\u0631\u0629 \u0627\u0644\u0639\u0635\u0648\u064a\u0629",
|
317 |
+
"\u0635\u0631\u0635\u0648\u0631",
|
318 |
+
"\u0641\u0631\u0633 \u0627\u0644\u0646\u0628\u064a",
|
319 |
+
"\u062d\u0634\u0631\u0629 \u0632\u064a\u0632\u064a\u0627\u062a",
|
320 |
+
"\u0642\u0627\u0641\u0632\u0627\u062a \u0627\u0644\u0623\u0648\u0631\u0627\u0642",
|
321 |
+
"\u0639\u0631\u0642\u064a\u0627\u062a \u0627\u0644\u0623\u062c\u0646\u062d\u0629",
|
322 |
+
"\u0627\u0644\u064a\u0639\u0633\u0648\u0628",
|
323 |
+
"\u0645\u0642\u062a\u0631\u0646\u0627\u062a \u0627\u0644\u0623\u062c\u0646\u062d\u0629",
|
324 |
+
"\u0641\u0631\u0627\u0634\u0629 \u0628\u0634\u0648\u0631\u0629 \u0627\u0644\u0635\u064a\u0641",
|
325 |
+
"\u0641\u0631\u0627\u0634\u0629 \u062d\u0644\u064a\u0642\u0629",
|
326 |
+
"\u0641\u064e\u0631\u064e\u0627\u0634\u0629 \u0627\u0644\u0645\u064e\u0644\u0643",
|
327 |
+
"\u0641\u0631\u0627\u0634\u0629 \u0627\u0644\u0628\u064a\u0636\u0627\u0621 \u0627\u0644\u0635\u063a\u064a\u0631\u0629",
|
328 |
+
"\u0641\u0631\u0627\u0634\u0629 \u0627\u0644\u0643\u0628\u0631\u064a\u062a",
|
329 |
+
"\u0627\u0644\u0641\u0631\u0627\u0634\u0629 \u0627\u0644\u0646\u062d\u0627\u0633\u064a\u0629",
|
330 |
+
"\u0646\u062c\u0645 \u0627\u0644\u0628\u062d\u0631",
|
331 |
+
"\u0642\u0646\u0641\u0630 \u0627\u0644\u0628\u062d\u0631",
|
332 |
+
"\u062e\u064a\u0627\u0631 \u0627\u0644\u0628\u062d\u0631",
|
333 |
+
"\u0623\u0631\u0627\u0646\u0628 \u0642\u0637\u0646\u064a\u0629 \u0627\u0644\u0630\u064a\u0644",
|
334 |
+
"\u0623\u0631\u0646\u0628 \u0628\u0631\u064a",
|
335 |
+
"\u0627\u0644\u0623\u0646\u062c\u0648\u0631\u0627",
|
336 |
+
"\u0623\u0642\u062f\u0627\u062f",
|
337 |
+
"\u0627\u0644\u0646\u064a\u0635",
|
338 |
+
"\u0633\u0646\u062c\u0627\u0628 \u062b\u0639\u0644\u0628\u064a",
|
339 |
+
"\u0627\u0644\u0645\u0631\u0645\u0648\u0637",
|
340 |
+
"\u0627\u0644\u0642\u0646\u062f\u0633",
|
341 |
+
"\u0643\u0627\u0628\u064a\u0627\u0621 \u062e\u0646\u0632\u064a\u0631\u064a\u0629",
|
342 |
+
"\u0627\u0644\u062d\u0635\u0627\u0646 \u0627\u0644\u062d\u0645\u064a\u0636",
|
343 |
+
"\u0627\u0644\u062d\u0645\u0627\u0631 \u0627\u0644\u0645\u062e\u0637\u0637",
|
344 |
+
"\u0627\u0644\u062e\u0646\u0632\u064a\u0631 \u0627\u0644\u0623\u0644\u064a\u0641 \u0623\u0648 \u0627\u0644\u062e\u0646\u0632\u064a\u0631 \u0627\u0644\u0645\u0633\u062a\u0623\u0646\u0633",
|
345 |
+
"\u0627\u0644\u062e\u0646\u0632\u064a\u0631 \u0627\u0644\u0628\u0631\u064a ",
|
346 |
+
"\u062e\u0646\u0627\u0632\u064a\u0631 \u062a\u0624\u0644\u0648\u0644\u064a\u0629",
|
347 |
+
"\u0641\u0631\u0633 \u0627\u0644\u0646\u0647\u0631",
|
348 |
+
"\u0627\u0644\u062b\u0648\u0631",
|
349 |
+
"\u062c\u0627\u0645\u0648\u0633 \u0627\u0644\u0645\u0627\u0621",
|
350 |
+
"\u0627\u0644\u0628\u064a\u0633\u0648\u0646",
|
351 |
+
"\u0630\u0643\u0631 \u0627\u0644\u062e\u0631\u0648\u0641",
|
352 |
+
"\u0643\u0628\u0634 \u0627\u0644\u062c\u0628\u0627\u0644 \u0627\u0644\u0635\u062e\u0631\u064a\u0629",
|
353 |
+
"\u0627\u0644\u0648\u0639\u0644",
|
354 |
+
"\u062b\u064a\u062a\u0644 \u0627\u0644\u0647\u0631\u062a\u0628\u064a\u0633",
|
355 |
+
"\u0625\u0645\u0628\u0627\u0644\u0629",
|
356 |
+
"\u063a\u0632\u0627\u0644",
|
357 |
+
"\u0627\u0644\u062c\u0645\u0644 \u0627\u0644\u0639\u0631\u0628\u064a",
|
358 |
+
"\u0627\u0644\u0644\u0627\u0651\u0645\u0629",
|
359 |
+
"\u0627\u0628\u0646 \u0639\u0631\u0633",
|
360 |
+
"\u0627\u0644\u0645\u0646\u0643",
|
361 |
+
"\u0627\u0644\u0633\u0641\u0634\u0629",
|
362 |
+
"\u0627\u0628\u0646 \u0645\u0642\u0631\u0636 \u0623\u0633\u0648\u062f \u0627\u0644\u0623\u0642\u062f\u0627\u0645",
|
363 |
+
"\u0642\u0636\u0627\u0639\u0629",
|
364 |
+
"\u0638\u0631\u0628\u0627\u0646",
|
365 |
+
"\u0627\u0644\u063a\u0631\u064a\u0631",
|
366 |
+
"\u0627\u0644\u0645\u064f\u062f\u064e\u0631\u064e\u0651\u0639 \u0623\u0648 \u0627\u0644\u0623\u0631\u0645\u0627\u062f\u064a\u0644\u0644\u0648",
|
367 |
+
"\u0643\u0633\u0644\u0627\u0646 \u062b\u0644\u0627\u062b\u064a \u0627\u0644\u0623\u0635\u0627\u0628\u0639",
|
368 |
+
"\u0642\u0631\u062f \u0627\u0644\u0627\u0648\u0631\u0627\u0646\u063a\u0648\u062a\u0627\u0646",
|
369 |
+
"\u0627\u0644\u063a\u0648\u0631\u064a\u0644\u0627 \u0623\u0648 \u0627\u0644\u0642\u064f\u0631\u062f\u0648\u062d",
|
370 |
+
"\u0627\u0644\u0634\u0645\u0628\u0627\u0646\u0632\u064a \u0627\u0644\u0634\u0627\u0626\u0639 \u0623\u0648 \u0627\u0644\u0628\u064e\u0639\u0627\u0645",
|
371 |
+
"\u0642\u0631\u062f \u0627\u0644\u062c\u0628\u0648\u0646",
|
372 |
+
"\u0642\u0631\u062f \u0627\u0644\u0633\u064a\u0627\u0645\u0646\u062c",
|
373 |
+
"\u0633\u0639\u062f\u0627\u0646 \u0627\u0644\u063a\u064a\u0646\u0648\u0646",
|
374 |
+
"\u0633\u0639\u062f\u0627\u0646 \u0627\u0644\u0628\u0627\u062a\u0627\u0633",
|
375 |
+
"\u0627\u0644\u0631\u064f\u0628\u064e\u0651\u0627\u062d",
|
376 |
+
"\u0642\u0631\u062f \u0627\u0644\u0645\u0643\u0627\u0643",
|
377 |
+
"\u0642\u0631\u062f \u0627\u0644\u0643\u0648\u0644\u0628\u0633\u0627\u0648\u0627\u062a",
|
378 |
+
"\u0642\u0631\u062f \u0627\u0644\u0643\u0648\u0644\u0628\u0633",
|
379 |
+
"\u0642\u0631\u062f \u0627\u0644\u0645\u0644\u0645\u0644\u0629",
|
380 |
+
"\u0642\u0631\u0648\u062f \u0627\u0644\u0642\u0634\u0629",
|
381 |
+
"\u0642\u0631\u062f \u0627\u0644\u0643\u0628\u0648\u0634\u0629 \u0623\u0628\u064a\u0636 \u0627\u0644\u0648\u062c\u0647",
|
382 |
+
"\u0633\u0639\u062f\u0627\u0646 \u0627\u0644\u0639\u0648\u0627\u0621",
|
383 |
+
"\u0642\u0631\u062f \u0633\u0639\u062f\u0627\u0646 \u0627\u0644\u062a\u064a\u062a\u064a",
|
384 |
+
"\u0627\u0644\u0633\u064e\u0651\u0639\u062f\u0627\u0646 \u0627\u0644\u0639\u0646\u0643\u0628\u0648\u062a\u064a",
|
385 |
+
"\u0627\u0644\u0633\u0639\u062f\u0627\u0646 \u0627\u0644\u0633\u0646\u062c\u0627\u0628\u064a",
|
386 |
+
"\u0644\u064a\u0645\u0648\u0631 \u062d\u0644\u0642\u064a \u0627\u0644\u0630\u064a\u0644",
|
387 |
+
"\u062d\u064a\u0648\u0627\u0646 \u0627\u0644\u0627\u0646\u062f\u0631\u064a",
|
388 |
+
"\u0641\u064a\u0644 \u0647\u0646\u062f\u064a",
|
389 |
+
"\u0641\u064a\u0644 \u0623\u0641\u0631\u064a\u0642\u064a",
|
390 |
+
"\u0627\u0644\u0628\u0627\u0646\u062f\u0627 \u0627\u0644\u0623\u062d\u0645\u0631",
|
391 |
+
"\u0627\u0644\u0628\u0627\u0646\u062f\u0627 \u0627\u0644\u0639\u0645\u0644\u0627\u0642\u0629",
|
392 |
+
"\u062b\u064a\u0631\u0633\u064a\u062a\u064a\u0627\u062a",
|
393 |
+
"\u0633\u0645\u0643 \u0627\u0644\u0627\u0646\u0642\u0644\u064a\u0633",
|
394 |
+
"\u0633\u0645\u0643 \u0627\u0644\u0643\u0648\u0647\u0648 \u0627\u0644\u0633\u064a\u0644\u0645\u0648\u0646",
|
395 |
+
"\u0633\u0645\u0643 \u0627\u0644\u062c\u0645\u0627\u0644 \u0627\u0644\u0635\u062e\u0631\u064a",
|
396 |
+
"\u0633\u0645\u0643\u0629 \u0627\u0644\u0645\u0647\u0631\u062c",
|
397 |
+
"\u0633\u0645\u0643\u0629 \u0627\u0644\u062d\u0641\u0634\u064a\u0629",
|
398 |
+
"\u0633\u0645\u0643 \u0627\u0644\u0631\u0645\u062d",
|
399 |
+
"\u0633\u0645\u0643\u0629 \u0627\u0644\u062a\u0646\u064a\u0646",
|
400 |
+
"\u0633\u0645\u0643\u0629 \u0627\u0644\u064a\u0646\u0641\u0648\u062e\u064a\u0629",
|
401 |
+
"\u0627\u0644\u0645\u0650\u0639\u0652\u062f\u064e\u0627\u062f",
|
402 |
+
"\u0627\u0644\u0639\u0628\u0627\u0621\u0629",
|
403 |
+
"\u0644\u0628\u0627\u0633 \u062a\u062e\u0631\u062c",
|
404 |
+
"\u0623\u0643\u0648\u0631\u062f\u064a\u0648\u0646",
|
405 |
+
"\u0627\u0644\u0642\u064a\u062b\u0627\u0631\u0629 \u0627\u0644\u0635\u0648\u062a\u064a\u0629",
|
406 |
+
"\u062d\u0627\u0645\u0644\u0629 \u0637\u0627\u0626\u0631\u0627\u062a",
|
407 |
+
"\u0637\u0627\u0626\u0631\u0629 \u0631\u062d\u0644\u0627\u062a",
|
408 |
+
"\u0633\u0641\u064a\u0646\u0629 \u0647\u0648\u0627\u0626\u064a\u0629",
|
409 |
+
"\u0645\u0630\u0628\u062d",
|
410 |
+
"\u0633\u064a\u0627\u0631\u0629 \u0625\u0633\u0639\u0627\u0641",
|
411 |
+
"\u0627\u0644\u0645\u0631\u0643\u0628\u0629 \u0627\u0644\u0628\u0631\u0645\u0627\u0626\u064a\u0629",
|
412 |
+
"\u0627\u0644\u0633\u0627\u0639\u0629 \u0627\u0644\u0645\u062a\u0646\u0627\u0638\u0631\u0629",
|
413 |
+
"\u0627\u0644\u0645\u0646\u062d\u0644 \u0623\u0648 \u0627\u0644\u0645\u064e\u0646\u062d\u064e\u0644\u064e\u0629",
|
414 |
+
"\u0645\u0626\u0632\u0631",
|
415 |
+
"\u062d\u0627\u0648\u064a\u0629 \u0627\u0644\u0646\u0641\u0627\u064a\u0627\u062a",
|
416 |
+
"\u0628\u0646\u062f\u0642\u064a\u0629 \u0627\u0642\u062a\u062d\u0627\u0645",
|
417 |
+
"\u062d\u0642\u064a\u0628\u0629 \u0638\u0647\u0631",
|
418 |
+
"\u0627\u0644\u0645\u062e\u0628\u0632",
|
419 |
+
"\u0639\u0627\u0631\u0636\u0629 \u0627\u0644\u062a\u0648\u0627\u0632\u0646",
|
420 |
+
"\u0627\u0644\u0628\u0627\u0644\u0648\u0646",
|
421 |
+
"\u0642\u0644\u0645 \u062d\u0628\u0631 \u062c\u0627\u0641",
|
422 |
+
"\u0636\u0645\u0627\u062f\u0629 \u0637\u0628\u064a\u0629 \u0644\u0627\u0635\u0642\u0629",
|
423 |
+
"\u0627\u0644\u0628\u0627\u0646\u062c\u0648",
|
424 |
+
"\u062f\u0631\u0627\u0628\u0632\u064a\u0646",
|
425 |
+
"\u062d\u062f\u064a\u062f\u0629 (\u0631\u0641\u0639 \u0623\u062b\u0642\u0627\u0644)",
|
426 |
+
"\u0643\u0631\u0633\u064a \u0627\u0644\u062d\u0644\u0627\u0642\u0629",
|
427 |
+
"\u0645\u062d\u0644 \u0635\u0627\u0644\u0648\u0646 \u0627\u0644\u062d\u0644\u0627\u0642\u0629",
|
428 |
+
"\u062d\u0638\u064a\u0631\u0629",
|
429 |
+
"\u0627\u0644\u0628\u0627\u0631\u0648\u0645\u062a\u0631",
|
430 |
+
"\u0627\u0644\u0628\u0631\u0645\u064a\u0644",
|
431 |
+
"\u0639\u062c\u0644\u0629 \u0627\u0644\u064a\u062f",
|
432 |
+
"\u0643\u0631\u0629 \u0627\u0644\u0642\u0627\u0639\u062f\u0629 \u0623\u0648 \u0627\u0644\u0628\u064a\u0633\u0628\u0648\u0644",
|
433 |
+
"\u0643\u0631\u0629 \u0633\u0644\u0629",
|
434 |
+
"\u0633\u0631\u064a\u0631 \u0627\u0644\u0623\u0637\u0641\u0627\u0644",
|
435 |
+
"\u0645\u0632\u0645\u0627\u0631",
|
436 |
+
"\u0642\u0628\u0639\u0629 \u0633\u0628\u0627\u062d\u0629",
|
437 |
+
"\u0645\u0646\u0634\u0641\u0629",
|
438 |
+
"\u062d\u0648\u0636 \u0627\u0644\u0627\u0633\u062a\u062d\u0645\u0627\u0645",
|
439 |
+
"\u0633\u064a\u0627\u0629 \u0648\u0627\u063a\u0646",
|
440 |
+
"\u0627\u0644\u0645\u0646\u0627\u0631\u0629 \u0623\u0648 \u0627\u0644\u0641\u0646\u0627\u0631",
|
441 |
+
"\u0643\u0648\u0628 \u0632\u062c\u0627\u062c\u064a",
|
442 |
+
"\u0642\u0628\u0639\u0629 \u0627\u0644\u062f\u0628",
|
443 |
+
"\u0632\u062c\u0627\u062c\u0629 \u0627\u0644\u0628\u064a\u0631\u0629",
|
444 |
+
"\u0643\u0623\u0633 \u062c\u0639\u0629",
|
445 |
+
"\u0628\u0631\u062c \u0627\u0644\u0646\u0627\u0642\u0648\u0633",
|
446 |
+
"\u0645\u0631\u0648\u0644\u0629",
|
447 |
+
"\u0627\u0644\u062f\u0631\u0627\u062c\u0629 \u0627\u0644\u062a\u0631\u0627\u062f\u0641\u064a\u0629",
|
448 |
+
"\u0628\u0643\u064a\u0646\u064a",
|
449 |
+
"\u0627\u0644\u0645\u062c\u0644\u062f\u0627\u062a \u0627\u0644\u062d\u0644\u0642\u064a\u0629",
|
450 |
+
"\u0627\u0644\u0645\u0650\u0646\u0652\u0638\u0627\u0631",
|
451 |
+
"\u0635\u0646\u062f\u0648\u0642 \u0627\u0644\u0639\u0634",
|
452 |
+
"\u0627\u0644\u0645\u0631\u0641\u0623",
|
453 |
+
"\u0627\u0644\u0632\u0644\u0627\u062c\u0629 \u0627\u0644\u062c\u0645\u0627\u0639\u064a\u0629",
|
454 |
+
"\u0631\u0628\u0637\u0629 \u0639\u0646\u0642 \u0628\u0648\u0644\u0648",
|
455 |
+
"\u0627\u0644\u0643\u0632\u0629",
|
456 |
+
"\u0631\u0641 \u0627\u0644\u0643\u062a\u0628",
|
457 |
+
"\u0645\u0643\u062a\u0628\u0629",
|
458 |
+
"\u063a\u0637\u0627\u0621 \u0642\u0627\u0631\u0648\u0631\u0629",
|
459 |
+
"\u0627\u0644\u0642\u0648\u0633",
|
460 |
+
"\u0623\u0631\u0628\u0629 \u0641\u0631\u0627\u0634\u064a\u0629",
|
461 |
+
"\u0644\u0627\u0641\u062a\u0629 \u062a\u0627\u0631\u064a\u062e\u064a\u0629 \u0645\u0646 \u0627\u0644\u0646\u062d\u0627\u0633",
|
462 |
+
"\u062d\u0645\u0627\u0644\u0629 \u0627\u0644\u0635\u062f\u0631",
|
463 |
+
"\u062d\u0627\u062c\u0632 \u0627\u0644\u0623\u0645\u0648\u0627\u062c",
|
464 |
+
"\u062f\u0631\u0639 \u0627\u0644\u0635\u062f\u0631",
|
465 |
+
"\u0627\u0644\u0645\u0643\u0646\u0633\u0629",
|
466 |
+
"\u0627\u0644\u062f\u0644\u0648",
|
467 |
+
"\u0645\u0631\u0628\u0637 \u0627\u0644\u062d\u0632\u0627\u0645",
|
468 |
+
"\u0627\u0644\u0633\u062a\u0631\u0629 \u0627\u0644\u0648\u0627\u0642\u064a\u0629 \u0645\u0646 \u0627\u0644\u0631\u0635\u0627\u0635",
|
469 |
+
"\u0642\u0637\u0627\u0631 \u0627\u0644\u0637\u0644\u0642\u0629",
|
470 |
+
"\u0627\u0644\u0645\u062c\u0632\u0631\u0629",
|
471 |
+
"\u0633\u064a\u0627\u0631\u0629 \u0623\u062c\u0631\u0629",
|
472 |
+
"\u062d\u0644\u0629 (\u0622\u0646\u064a\u0629)",
|
473 |
+
"\u0634\u0645\u0639\u0629",
|
474 |
+
"\u0645\u062f\u0641\u0639",
|
475 |
+
"\u0642\u0627\u0631\u0628 \u0627\u0644\u0643\u0627\u0646\u0648",
|
476 |
+
"\u0641\u0627\u062a\u062d\u0629 \u0639\u0644\u0628",
|
477 |
+
"\u0633\u062a\u0631\u0629 \u0645\u062d\u0628\u0648\u0643\u0629",
|
478 |
+
"\u0627\u0644\u0645\u0631\u0622\u0629 \u0627\u0644\u062c\u0627\u0646\u0628\u064a\u0629",
|
479 |
+
"\u062f\u0648\u0627\u0645\u0629 \u0627\u0644\u062e\u064a\u0644",
|
480 |
+
" \u0623\u062f\u0648\u0627\u062a \u0627\u0644\u0635\u064a\u0627\u0646\u0629",
|
481 |
+
"\u0635\u0646\u062f\u0648\u0642 \u0643\u0631\u062a\u0648\u0646",
|
482 |
+
"\u0627\u0644\u0625\u0637\u0627\u0631 \u0627\u0644\u0645\u0637\u0627\u0637",
|
483 |
+
"\u0627\u0644\u0635\u0631\u0627\u0641 \u0627\u0644\u0622\u0644\u064a",
|
484 |
+
"\u0627\u0644\u0634\u0631\u064a\u0637 \u0627\u0644\u0645\u062f\u0645\u062c",
|
485 |
+
"\u0627\u0644\u0645\u0633\u062c\u0644",
|
486 |
+
"\u0627\u0644\u0642\u064e\u0644\u0652\u0639\u064e\u0629",
|
487 |
+
"\u0627\u0644\u0642\u0637\u0645\u0631\u0627\u0646",
|
488 |
+
"\u062c\u0647\u0627\u0632 \u0627\u0644\u0642\u0631\u0635 \u0627\u0644\u0645\u0636\u063a\u0648\u0637",
|
489 |
+
"\u062a\u0634\u064a\u0644\u0648",
|
490 |
+
"\u0647\u0627\u062a\u0641 \u0645\u062d\u0645\u0648\u0644",
|
491 |
+
"\u0633\u0644\u0633\u0644\u0629",
|
492 |
+
"\u0633\u064a\u0627\u062c \u0645\u0634\u0628\u0643",
|
493 |
+
"\u0627\u0644\u0632\u0631\u062f",
|
494 |
+
"\u0645\u0646\u0634\u0627\u0631 \u062c\u0646\u0632\u064a\u0631\u064a",
|
495 |
+
" \u0635\u0646\u062f\u0648\u0642 \u0627\u0644\u062a\u062e\u0632\u064a\u0646",
|
496 |
+
"\u062e\u0632\u0627\u0646\u0629 \u0627\u0644\u0623\u062b\u0627\u062b",
|
497 |
+
"\u0627\u0644\u0622\u0644\u0629 \u0627\u0644\u0625\u064a\u0642\u0627\u0639\u064a\u0629 ",
|
498 |
+
"\u0627\u0644\u062e\u0632\u0627\u0646\u0629 \u0627\u0644\u0635\u064a\u0646\u064a\u0629",
|
499 |
+
"\u062c\u0648\u0631\u0628 \u0639\u064a\u062f \u0627\u0644\u0645\u064a\u0644\u0627\u062f",
|
500 |
+
"\u0643\u0646\u064a\u0633\u0629",
|
501 |
+
"\u0645\u0633\u0631\u062d \u0623\u0641\u0644\u0627\u0645",
|
502 |
+
"\u0627\u0644\u0633\u0627\u0637\u0648\u0631",
|
503 |
+
"\u0645\u0633\u0627\u0643\u0646 \u0627\u0644\u062c\u0631\u0641",
|
504 |
+
"\u0627\u0644\u0645\u0639\u0637\u0641 \u0627\u0644\u0641\u0636\u0641\u0627\u0636",
|
505 |
+
"\u0627\u0644\u0642\u0628\u0642\u0627\u0628",
|
506 |
+
"\u062e\u0627\u0644\u0637 \u0627\u0644\u0645\u0634\u0631\u0648\u0628\u0627\u062a \u0627\u0644\u0643\u062d\u0648\u0644\u064a\u0629",
|
507 |
+
"\u0643\u0648\u0632 (\u0622\u0646\u064a\u0629)",
|
508 |
+
"\u0622\u0644\u0629 \u062a\u062d\u0636\u064a\u0631 \u0627\u0644\u0642\u0647\u0648\u0629",
|
509 |
+
"\u0627\u0644\u0634\u0643\u0644 \u0627\u0644\u062d\u0644\u0632\u0648\u0646\u064a",
|
510 |
+
"\u0627\u0644\u0642\u0641\u0644 \u0627\u0644\u0631\u0645\u0632\u064a",
|
511 |
+
"\u0644\u0648\u062d\u0629 \u0627\u0644\u0645\u0641\u0627\u062a\u064a\u062d",
|
512 |
+
"\u0645\u062a\u062c\u0631 \u0627\u0644\u062d\u0644\u0648\u064a\u0627\u062a",
|
513 |
+
"\u0633\u0641\u064a\u0646\u0629 \u062d\u0627\u0648\u064a\u0627\u062a",
|
514 |
+
"\u0633\u064a\u0627\u0631\u0629 \u0645\u0643\u0634\u0648\u0641\u0629",
|
515 |
+
"\u0628\u0631\u0627\u0645\u0629",
|
516 |
+
"\u0627\u0644\u0634\u064a\u0627\u0639",
|
517 |
+
"\u062c\u0632\u0645\u0629 \u0631\u0627\u0639\u064a \u0627\u0644\u0628\u0642\u0631",
|
518 |
+
"\u0642\u0628\u0639\u0629 \u0631\u0627\u0639\u064a \u0627\u0644\u0628\u0642\u0631",
|
519 |
+
"\u0627\u0644\u0645\u0647\u062f",
|
520 |
+
"\u0631\u0627\u0641\u0639\u0629",
|
521 |
+
"\u0627\u0644\u062e\u0648\u0630\u0629",
|
522 |
+
"\u062d\u0627\u0648\u064a\u0629 \u0634\u062d\u0646 \u0643\u0628\u064a\u0631\u0629",
|
523 |
+
"\u0633\u0631\u064a\u0631 \u0627\u0644\u0631\u0636\u064a\u0639",
|
524 |
+
"\u0642\u062f\u0631 \u0627\u0644\u0637\u0628\u062e \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0626\u064a",
|
525 |
+
"\u0643\u0631\u0648\u0643\u064a\u062a",
|
526 |
+
"\u0627\u0644\u0639\u0643\u0627\u0632",
|
527 |
+
"\u0643\u0648\u064a\u0631\u0633",
|
528 |
+
"\u0627\u0644\u0633\u062f",
|
529 |
+
"\u0627\u0644\u0645\u0643\u062a\u0628",
|
530 |
+
"\u062d\u0627\u0633\u0648\u0628 \u0645\u0643\u062a\u0628\u064a",
|
531 |
+
"\u0627\u0644\u0647\u0627\u062a\u0641 \u0627\u0644\u062f\u0648\u0627\u0631",
|
532 |
+
"\u0627\u0644\u062d\u0641\u0627\u0638\u0629",
|
533 |
+
"\u0627\u0644\u0633\u0627\u0639\u0629 \u0627\u0644\u0631\u0642\u0645\u064a\u0629",
|
534 |
+
"\u0633\u0627\u0639\u0627\u062a \u0627\u0644\u064a\u062f \u0627\u0644\u0631\u0642\u0645\u064a\u0629",
|
535 |
+
"\u0627\u0644\u0645\u0646\u0636\u062f\u0629",
|
536 |
+
"\u0642\u0645\u0627\u0634 \u0627\u0644\u0623\u0637\u0628\u0627\u0642",
|
537 |
+
"\u063a\u0633\u0627\u0644\u0629 \u0635\u062d\u0648\u0646",
|
538 |
+
"\u0645\u0643\u0628\u062d \u0642\u0631\u0635\u064a",
|
539 |
+
"\u0645\u064a\u0646\u0627\u0621",
|
540 |
+
"\u0627\u0644\u0632\u0644\u0627\u062c\u0629 \u0627\u0644\u062a\u064a \u062a\u062c\u0631\u0647\u0627 \u0627\u0644\u0643\u0644\u0627\u0628",
|
541 |
+
"\u0642\u0628\u0629",
|
542 |
+
"\u0627\u0644\u062d\u0635\u064a\u0631\u0629",
|
543 |
+
"\u0645\u0646\u0635\u0629 \u062d\u0641\u0631",
|
544 |
+
"\u0627\u0644\u0637\u0628\u0644",
|
545 |
+
"\u0639\u0635\u0627 \u0627\u0644\u0637\u0628\u0644",
|
546 |
+
"\u062b\u0642\u0627\u0644\u0627\u062a \u062d\u062f\u064a\u062f",
|
547 |
+
"\u0641\u0631\u0646 \u0647\u0648\u0644\u0646\u062f\u064a",
|
548 |
+
"\u0645\u0631\u0648\u062d\u0629",
|
549 |
+
"\u0627\u0644\u062c\u064a\u062a\u0627\u0631 \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0626\u064a",
|
550 |
+
"\u0627\u0644\u0642\u0627\u0637\u0631\u0629 \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0626\u064a\u0629",
|
551 |
+
"\u0645\u0631\u0643\u0632 \u0627\u0644\u062a\u0631\u0641\u064a\u0647",
|
552 |
+
"\u0638\u0631\u0641 \u0628\u0631\u064a\u062f\u064a",
|
553 |
+
"\u0622\u0644\u0629 \u0627\u0644\u0625\u0633\u0628\u0631\u064a\u0633\u0648",
|
554 |
+
"\u0628\u0648\u062f\u0631\u0629 \u0627\u0644\u0648\u062c\u0647",
|
555 |
+
"\u0623\u0635\u0644\u0629 \u0631\u064a\u0634\u064a\u0629",
|
556 |
+
"\u062e\u0632\u0627\u0646\u0629 \u0627\u0644\u0645\u0644\u0641\u0627\u062a",
|
557 |
+
"\u0632\u0648\u0631\u0642 \u0627\u0644\u0625\u0637\u0641\u0627\u0621",
|
558 |
+
"\u0633\u064a\u0627\u0631\u0629 \u0627\u0644\u0625\u0637\u0641\u0627\u0621",
|
559 |
+
"\u0648\u0627\u0642\u064a \u0627\u0644\u0646\u0627\u0631",
|
560 |
+
"\u0633\u0627\u0631\u064a\u0629 \u0627\u0644\u0639\u0644\u0645",
|
561 |
+
"\u0627\u0644\u0641\u0644\u0648\u062a",
|
562 |
+
"\u0643\u0631\u0633\u064a \u0642\u0627\u0628\u0644 \u0644\u0644\u0637\u064a",
|
563 |
+
"\u062e\u0648\u0630\u0629 \u0643\u0631\u0629 \u0627\u0644\u0642\u062f\u0645",
|
564 |
+
"\u0631\u0627\u0641\u0639\u0629 \u0627\u0644\u062d\u0645\u0648\u0644\u0629",
|
565 |
+
"\u0627\u0644\u0646\u0627\u0641\u0648\u0631\u0629",
|
566 |
+
"\u0642\u0644\u0645 \u062d\u0628\u0631 \u0633\u0627\u0626\u0644",
|
567 |
+
"\u0627\u0644\u0633\u0631\u064a\u0631 \u0628\u0623\u0631\u0628\u0639\u0629 \u0623\u0639\u0645\u062f\u0629",
|
568 |
+
"\u0633\u064a\u0627\u0631\u0629 \u0634\u062d\u0646",
|
569 |
+
"\u0627\u0644\u0628\u0648\u0642 \u0627\u0644\u0641\u0631\u0646\u0633\u064a",
|
570 |
+
"\u0645\u0642\u0644\u0627\u0629",
|
571 |
+
"\u0627\u0644\u0645\u0644\u0627\u0628\u0633 \u0627\u0644\u0645\u0635\u0646\u0648\u0639\u0629 \u0645\u0646 \u0627\u0644\u0641\u0631\u0648\u0629",
|
572 |
+
"\u0634\u0627\u062d\u0646\u0629 \u0642\u0645\u0627\u0645\u0629",
|
573 |
+
"\u0642\u0646\u0627\u0639 \u0627\u0644\u063a\u0627\u0632",
|
574 |
+
"\u0645\u0636\u062e\u0629 \u0627\u0644\u0648\u0642\u0648\u062f",
|
575 |
+
"\u0643\u0623\u0633 \u0627\u0644\u0646\u0628\u064a\u0630",
|
576 |
+
"\u0633\u064a\u0627\u0631\u0629 \u062c\u0648 \u0643\u0627\u0631\u062a",
|
577 |
+
"\u0643\u0631\u0629 \u0627\u0644\u062c\u0648\u0644\u0641",
|
578 |
+
"\u0639\u0631\u0628\u0629 \u0627\u0644\u062c\u0648\u0644\u0641",
|
579 |
+
"\u0627\u0644\u0642\u0627\u0631\u0628 \u0627\u0644\u0637\u0648\u064a\u0644 \u0623\u0648 \u0627\u0644\u063a\u0646\u062f\u0648\u0644",
|
580 |
+
"\u0627\u0644\u0635\u0646\u062c\u0629",
|
581 |
+
"\u0627\u0644\u062b\u0648\u0628 \u0627\u0644\u0646\u0633\u0627\u0626\u064a \u0623\u0648 \u0627\u0644\u0641\u0633\u062a\u0627\u0646",
|
582 |
+
"\u0627\u0644\u0628\u064a\u0627\u0646\u0648 \u0627\u0644\u0643\u0628\u064a\u0631",
|
583 |
+
"\u0627\u0644\u062f\u0641\u064a\u0626\u0629 \u0627\u0644\u0632\u0631\u0627\u0639\u064a\u0629",
|
584 |
+
"\u0634\u0628\u0643 \u0627\u0644\u0633\u064a\u0627\u0631\u0629",
|
585 |
+
"\u0627\u0644\u0628\u0642\u0627\u0644\u0629",
|
586 |
+
"\u0627\u0644\u0645\u0642\u0635\u0644\u0629",
|
587 |
+
"\u0645\u0634\u0628\u0643 \u0644\u0644\u0634\u0639\u0631",
|
588 |
+
"\u0628\u062e\u0627\u062e \u0645\u062b\u0628\u062a \u0627\u0644\u0634\u0639\u0631",
|
589 |
+
"\u0627\u0644\u0639\u0631\u0628\u0629 \u0646\u0635\u0641 \u0627\u0644\u0645\u062c\u0646\u0632\u0631\u0629",
|
590 |
+
"\u0645\u0637\u0631\u0642\u0629",
|
591 |
+
"\u0627\u0644\u0633\u0644\u0629",
|
592 |
+
"\u0645\u062c\u0641\u0641 \u0627\u0644\u0634\u0639\u0631",
|
593 |
+
"\u062c\u0647\u0627\u0632 \u0645\u062d\u0645\u0648\u0644 \u0628\u0627\u0644\u064a\u062f",
|
594 |
+
"\u0627\u0644\u0645\u0646\u062f\u064a\u0644 \u0623\u0648 \u0627\u0644\u0645\u062d\u0631\u0645\u0629",
|
595 |
+
"\u0642\u0631\u0635 \u0635\u0644\u0628",
|
596 |
+
"\u0627\u0644\u0634\u064e\u0651\u0641\u064e\u0648\u0650\u064a\u064e\u0651\u0629",
|
597 |
+
"\u0627\u0644\u0642\u064a\u062b\u0627\u0631\u0629",
|
598 |
+
"\u0627\u0644\u062d\u0635\u0651\u0627\u062f\u0629",
|
599 |
+
"\u062e\u0635\u064a\u0646",
|
600 |
+
"\u062d\u0627\u0641\u0638\u0629 \u0627\u0644\u0645\u0633\u062f\u0633",
|
601 |
+
"\u0627\u0644\u0645\u0633\u0631\u062d \u0627\u0644\u0645\u0646\u0632\u0644\u064a",
|
602 |
+
"\u0642\u0631\u0635 \u0639\u0633\u0644",
|
603 |
+
"\u0627\u0644\u062e\u0637\u0627\u0641",
|
604 |
+
"\u0627\u0644\u062a\u0646\u0648\u0631\u0629 \u0627\u0644\u0645\u064f\u0637\u064e\u0648\u064e\u0651\u0642\u0629",
|
605 |
+
"\u0639\u0642\u0644\u0629 (\u062c\u0645\u0628\u0627\u0632)",
|
606 |
+
"\u0639\u0631\u0628\u0629 \u0627\u0644\u062e\u064a\u0648\u0644",
|
607 |
+
"\u0633\u0627\u0639\u0629 \u0631\u0645\u0644\u064a\u0629",
|
608 |
+
"\u0622\u064a \u0628\u0648\u062f",
|
609 |
+
"\u0627\u0644\u0645\u0643\u0648\u0627\u0629",
|
610 |
+
"\u0627\u0644\u0642\u0631\u0639\u0629 \u0627\u0644\u0645\u0636\u064a\u0626\u0629",
|
611 |
+
"\u0627\u0644\u062c\u064a\u0646\u0632",
|
612 |
+
"\u062c\u064a\u0628 (\u0633\u064a\u0627\u0631\u0629)",
|
613 |
+
"\u0642\u0645\u064a\u0635 \u0642\u0635\u064a\u0631 \u0627\u0644\u0643\u0645\u064a\u0646",
|
614 |
+
"\u0623\u062d\u062c\u064a\u0629 \u0627\u0644\u0635\u0648\u0631 \u0627\u0644\u0645\u0642\u0637\u0648\u0639\u0629",
|
615 |
+
"\u0631\u064a\u0643\u0634\u0627",
|
616 |
+
"\u0630\u0631\u0627\u0639 \u0627\u0644\u062a\u0648\u062c\u064a\u0647",
|
617 |
+
"\u0627\u0644\u0643\u064a\u0645\u0648\u0646\u0648",
|
618 |
+
"\u0648\u0633\u0627\u062f\u0627\u062a \u0627\u0644\u0631\u0643\u0628\u0629",
|
619 |
+
"\u0627\u0644\u0639\u0642\u062f\u0629",
|
620 |
+
"\u0645\u0639\u0637\u0641 \u0627\u0644\u0645\u062e\u062a\u0628\u0631",
|
621 |
+
"\u0627\u0644\u0645\u063a\u0631\u0641\u0629",
|
622 |
+
"\u0639\u0627\u0643\u0633 \u0627\u0644\u0636\u0648\u0621",
|
623 |
+
"\u062d\u0627\u0633\u0648\u0628 \u0645\u062d\u0645\u0648\u0644",
|
624 |
+
"\u062c\u0632\u0627\u0632\u0629 \u0627\u0644\u0639\u0634\u0628",
|
625 |
+
"\u063a\u0637\u0627\u0621 \u0627\u0644\u0639\u062f\u0633\u0629",
|
626 |
+
"\u0641\u062a\u0627\u062d\u0629 \u0627\u0644\u0631\u0633\u0627\u0626\u0644",
|
627 |
+
"\u0645\u0643\u062a\u0628\u0629",
|
628 |
+
"\u0642\u0627\u0631\u0628 \u0627\u0644\u0646\u062c\u0627\u0629",
|
629 |
+
"\u0627\u0644\u0642\u064e\u062f\u064e\u0651\u0627\u062d\u064e\u0629",
|
630 |
+
"\u0627\u0644\u0644\u064a\u0645\u0648\u0632\u064a\u0646",
|
631 |
+
"\u0639\u0627\u0628\u0631\u0629 \u0645\u062d\u064a\u0637 \u0645\u0646\u062a\u0638\u0645\u0629",
|
632 |
+
"\u0623\u062d\u0645\u0631 \u0634\u0641\u0627\u0647",
|
633 |
+
"\u0627\u0644\u062d\u0630\u0627\u0621 \u0633\u0647\u0644 \u0627\u0644\u0627\u0631\u062a\u062f\u0627\u0621",
|
634 |
+
"\u063a\u0633\u0648\u0644",
|
635 |
+
"\u0645\u0643\u0628\u0631 \u0627\u0644\u0635\u0648\u062a",
|
636 |
+
"\u0639\u062f\u0633\u0629",
|
637 |
+
"\u0627\u0644\u0645\u0646\u0634\u0631\u0629",
|
638 |
+
"\u0627\u0644\u0628\u0648\u0635\u0644\u0629",
|
639 |
+
"\u062d\u0642\u064a\u0628\u0629 \u0633\u0627\u0639\u064a \u0627\u0644\u0628\u0631\u064a\u062f",
|
640 |
+
"\u0635\u0646\u062f\u0648\u0642 \u0628\u0631\u064a\u062f",
|
641 |
+
"\u0627\u0644\u062c\u0648\u0627\u0631\u0628 \u0627\u0644\u0637\u0648\u064a\u0644\u0629",
|
642 |
+
"\u0627\u0644\u0645\u0627\u064a\u0648\u0647",
|
643 |
+
"\u063a\u0637\u0627\u0621 \u0627\u0644\u0645\u0637\u0628\u0642",
|
644 |
+
"\u0622\u0644\u0629 \u0645\u0627\u0631\u0627\u0643\u0633",
|
645 |
+
"\u0627\u0644\u0645\u0627\u0631\u064a\u0645\u0628\u0627",
|
646 |
+
"\u0642\u0646\u0627\u0639",
|
647 |
+
"\u0623\u0639\u0648\u0627\u062f \u0627\u0644\u062b\u0642\u0627\u0628",
|
648 |
+
"\u0633\u0627\u0631\u064a\u0629 \u0645\u0627\u064a\u0648",
|
649 |
+
"\u0627\u0644\u0645\u062a\u0627\u0647\u0629",
|
650 |
+
"\u0643\u0648\u0628 \u0627\u0644\u0642\u064a\u0627\u0633",
|
651 |
+
"\u062e\u0632\u0627\u0646\u0629 \u0627\u0644\u0623\u062f\u0648\u064a\u0629",
|
652 |
+
"\u0627\u0644\u0622\u062b\u0627\u0631 \u0627\u0644\u0635\u062e\u0631\u064a\u0629",
|
653 |
+
"\u0627\u0644\u0644\u0627\u0642\u0637 \u0627\u0644\u0635\u0648\u062a\u064a",
|
654 |
+
"\u0641\u0631\u0646 \u0627\u0644\u0645\u064a\u0643\u0631\u0648\u064a\u0641",
|
655 |
+
"\u0627\u0644\u0632\u064a \u0627\u0644\u0639\u0633\u0643\u0631\u064a",
|
656 |
+
"\u0645\u062f\u0644\u062c\u0629",
|
657 |
+
"\u0627\u0644\u062d\u0627\u0641\u0644\u0629 \u0627\u0644\u0635\u063a\u064a\u0631\u0629",
|
658 |
+
"\u0627\u0644\u062a\u0646\u0648\u0631\u0629 \u0627\u0644\u0642\u0635\u064a\u0631\u0629",
|
659 |
+
"\u0633\u064a\u0627\u0631\u0629 \u0627\u0644\u0645\u064a\u0646\u064a \u0641\u0627\u0646 \u0627\u0644\u0639\u0627\u0626\u0644\u064a\u0629",
|
660 |
+
"\u0627\u0644\u0642\u0630\u064a\u0641\u0629 \u0627\u0644\u0645\u0648\u062c\u0647\u0629",
|
661 |
+
"\u0627\u0644\u0642\u0641\u0627\u0632 \u0645\u0644\u062a\u0635\u0642 \u0627\u0644\u0623\u0635\u0627\u0628\u0639",
|
662 |
+
"\u0637\u0628\u0642 \u062e\u0644\u0637",
|
663 |
+
"\u0627\u0644\u0645\u0646\u0632\u0644 \u0627\u0644\u0645\u062a\u0646\u0642\u0644",
|
664 |
+
"\u0641\u0648\u0631\u062f \u0645\u0648\u062f\u064a\u0644 \u062a\u064a",
|
665 |
+
"\u0627\u0644\u0645\u0648\u062f\u0645",
|
666 |
+
"\u0627\u0644\u062f\u064a\u0631",
|
667 |
+
"\u0634\u0627\u0634\u0629 \u062d\u0627\u0633\u0648\u0628",
|
668 |
+
"\u0627\u0644\u062f\u0631\u0627\u062c\u0629 \u0627\u0644\u0646\u0627\u0631\u064a\u0629 \u0627\u0644\u0635\u063a\u064a\u0631\u0629",
|
669 |
+
"\u0627\u0644\u0647\u0627\u0648\u0646 \u0648\u0627\u0644\u0645\u062f\u0642\u0629",
|
670 |
+
"\u0627\u0644\u0642\u0628\u0639\u0629 \u0627\u0644\u062c\u0627\u0645\u0639\u064a\u0629 \u0627\u0644\u0645\u0631\u0628\u0639\u0629",
|
671 |
+
"\u0645\u0633\u062c\u062f",
|
672 |
+
"\u0627\u0644\u0646\u0627\u0645\u0648\u0633\u064a\u0651\u0629",
|
673 |
+
"\u0627\u0644\u062f\u0639\u0631\u0648\u0645\u0629",
|
674 |
+
"\u0627\u0644\u062f\u0631\u0627\u062c\u0629 \u0627\u0644\u0647\u0648\u0627\u0626\u064a\u0629 \u0627\u0644\u062c\u0628\u0644\u064a\u0629",
|
675 |
+
"\u062e\u064a\u0645\u0629",
|
676 |
+
"\u0627\u0644\u0641\u0623\u0631\u0629",
|
677 |
+
"\u0645\u0635\u064a\u062f\u0629 \u0627\u0644\u0641\u0626\u0631\u0627\u0646",
|
678 |
+
"\u0633\u064a\u0627\u0631\u0627\u062a \u0634\u0631\u0643\u0629 \u0627\u0644\u0646\u0642\u0644",
|
679 |
+
"\u0643\u0645\u0627\u0645 \u0627\u0644\u0641\u0645",
|
680 |
+
"\u0645\u0633\u0645\u0627\u0631",
|
681 |
+
"\u0637\u0648\u0642 \u0627\u0644\u0639\u0646\u0642",
|
682 |
+
"\u0627\u0644\u0642\u0644\u0627\u062f\u0629",
|
683 |
+
"\u0627\u0644\u0631\u0636\u0627\u0639\u0629",
|
684 |
+
"\u062d\u0627\u0633\u0628 \u0627\u0644\u0645\u0641\u0643\u0631\u0629",
|
685 |
+
"\u0627\u0644\u0645\u0633\u0644\u0629",
|
686 |
+
"\u0622\u0644\u0629 \u0627\u0644\u0623\u0648\u0628\u0648\u0627",
|
687 |
+
"\u0623\u0643\u0631\u064a\u0646\u0629",
|
688 |
+
"\u0639\u062f\u0627\u062f \u0627\u0644\u0645\u0633\u0627\u0641\u0627\u062a",
|
689 |
+
"\u0641\u0644\u062a\u0631 \u0627\u0644\u0632\u064a\u062a",
|
690 |
+
"\u0627\u0644\u0623\u0631\u063a\u0646 \u0630\u0648 \u0627\u0644\u0623\u0646\u0627\u0628\u064a\u0628",
|
691 |
+
"\u062c\u0647\u0627\u0632 \u0631\u0627\u0633\u0645 \u0627\u0644\u0625\u0634\u0627\u0631\u0629",
|
692 |
+
"\u0627\u0644\u062a\u0646\u0648\u0631\u0629 \u0627\u0644\u062e\u0627\u0631\u062c\u064a\u0629",
|
693 |
+
"\u0639\u0631\u0628\u0629 \u064a\u062c\u0631\u0647\u0627 \u0627\u0644\u062b\u0648\u0631",
|
694 |
+
"\u0642\u0646\u0627\u0639 \u0623\u0643\u0633\u062c\u064a\u0646",
|
695 |
+
"\u0627\u0644\u062a\u063a\u0644\u064a\u0641",
|
696 |
+
"\u0627\u0644\u0645\u0650\u063a\u0652\u062f\u0627\u0641",
|
697 |
+
"\u0639\u064e\u062c\u064e\u0644\u0629 \u0627\u0644\u062a\u064e\u063a\u062f\u064a\u0641",
|
698 |
+
"\u0642\u0641\u0644 \u062d\u0644\u0642\u064a",
|
699 |
+
"\u0641\u0631\u0634\u0627\u0629 \u0627\u0644\u0631\u0633\u0645",
|
700 |
+
"\u0627\u0644\u0645\u0650\u0646\u064e\u0627\u0645\u064e\u0629\u064f",
|
701 |
+
"\u0642\u0635\u0631",
|
702 |
+
"\u0627\u0644\u0645\u0650\u0635\u0641\u0627\u0631",
|
703 |
+
"\u0645\u0646\u0634\u0641\u0629 \u0648\u0631\u0642\u064a\u0629",
|
704 |
+
"\u0645\u0650\u0638\u064e\u0644\u064e\u0651\u0629 \u0627\u0644\u0647\u0628\u064f\u0648\u0637",
|
705 |
+
"\u062c\u0647\u0627\u0632 \u0627\u0644\u0639\u0642\u0644\u0629",
|
706 |
+
"\u0645\u0642\u0639\u062f \u0639\u0627\u0645",
|
707 |
+
"\u0639\u062f\u0627\u062f \u0627\u0646\u062a\u0638\u0627\u0631 \u0627\u0644\u0633\u064a\u0627\u0631\u0627\u062a",
|
708 |
+
"\u0639\u0631\u0628\u0629 \u0627\u0644\u0642\u0637\u0627\u0631",
|
709 |
+
"\u0627\u0644\u0641\u0646\u0627\u0621",
|
710 |
+
"\u0627\u0644\u0647\u0627\u062a\u0641 \u0627\u0644\u0639\u0645\u0648\u0645\u064a",
|
711 |
+
"\u0627\u0644\u0631\u0643\u064a\u0632\u0629",
|
712 |
+
"\u0627\u0644\u0645\u064e\u0642\u0652\u0644\u064e\u0645\u064e\u0629",
|
713 |
+
"\u0627\u0644\u0645\u0628\u0631\u0627\u0629",
|
714 |
+
"\u0627\u0644\u0639\u0637\u0631",
|
715 |
+
"\u0637\u0628\u0642 \u0628\u062a\u0631\u064a",
|
716 |
+
"\u0627\u0644\u0622\u0644\u0629 \u0627\u0644\u0646\u0627\u0633\u062e\u0629",
|
717 |
+
"\u0627\u0644\u0631\u064a\u0634\u0629 \u0627\u0644\u0645\u0648\u0633\u064a\u0642\u064a\u0629",
|
718 |
+
"\u062e\u0648\u0630\u0629 \u0628\u064a\u0643\u0644\u0647\u0627\u0648\u0628\u0647",
|
719 |
+
"\u0627\u0644\u0633\u064a\u0627\u062c \u0627\u0644\u0648\u062a\u062f\u064a",
|
720 |
+
"\u0627\u0644\u0633\u064a\u0627\u0631\u0629 \u0627\u0644\u0646\u0635\u0641-\u0646\u0642\u0644",
|
721 |
+
"\u0627\u0644\u0631\u0635\u064a\u0641 \u0627\u0644\u0628\u062d\u0631\u064a",
|
722 |
+
"\u062d\u0635\u0627\u0644\u0629",
|
723 |
+
"\u0627\u0644\u062a\u063a\u0644\u064a\u0641 \u0627\u0644\u0635\u064a\u062f\u0644\u0627\u0646\u064a",
|
724 |
+
"\u0648\u0633\u0627\u062f\u0629",
|
725 |
+
"\u0643\u0631\u0629 \u0627\u0644\u0637\u0627\u0648\u0644\u0629",
|
726 |
+
"\u0644\u0639\u0628\u0629 \u0637\u0627\u062d\u0648\u0646\u0629 \u0647\u0648\u0627\u0621",
|
727 |
+
"\u0633\u0641\u064a\u0646\u0629 \u0627\u0644\u0642\u0631\u0627\u0635\u0646\u0629",
|
728 |
+
"\u0627\u0644\u0625\u0628\u0631\u064a\u0642",
|
729 |
+
"\u0627\u0644\u0645\u0650\u0633\u0652\u062d\u064e\u062c",
|
730 |
+
"\u0627\u0644\u0642\u0628\u0629 \u0627\u0644\u0641\u0644\u0643\u064a\u0629",
|
731 |
+
"\u0643\u064a\u0633 \u0646\u0627\u064a\u0644\u0648\u0646",
|
732 |
+
"\u0631\u0641 \u062a\u0646\u0634\u064a\u0641 \u0627\u0644\u0623\u0637\u0628\u0627\u0642",
|
733 |
+
"\u0627\u0644\u0645\u062d\u0627\u0631\u064a\u062b \u0627\u0644\u062d\u0641\u0627\u0631\u0629",
|
734 |
+
"\u0627\u0644\u0645\u0643\u0628\u0633 \u0627\u0644\u063a\u0637\u064e\u0651\u0627\u0633",
|
735 |
+
"\u0627\u0644\u0643\u0627\u0645\u064a\u0631\u0627 \u0627\u0644\u0641\u0648\u0631\u064a\u0629",
|
736 |
+
"\u0627\u0644\u0639\u0645\u0648\u062f",
|
737 |
+
"\u0639\u0631\u0628\u0629 \u0627\u0644\u0634\u0631\u0637\u0629",
|
738 |
+
"\u0644\u0628\u0627\u0633 \u0627\u0644\u0628\u0646\u0634",
|
739 |
+
"\u0637\u0627\u0648\u0644\u0629 \u0627\u0644\u0628\u0644\u064a\u0627\u0631\u062f\u0648",
|
740 |
+
"\u0639\u0628\u0648\u0629 \u0627\u0644\u0645\u0634\u0631\u0648\u0628\u0627\u062a",
|
741 |
+
"\u0627\u0644\u0623\u0635\u064a\u0635",
|
742 |
+
"\u0639\u062c\u0644\u0629 \u0641\u062e\u0627\u0631",
|
743 |
+
"\u0627\u0644\u0645\u0650\u062b\u0652\u0642\u064e\u0628",
|
744 |
+
"\u0633\u062c\u0627\u062f\u0629 \u0627\u0644\u0635\u0644\u0627\u0629",
|
745 |
+
"\u0627\u0644\u0637\u0627\u0628\u0639\u0629 \u0627\u0644\u062d\u0627\u0633\u0648\u0628\u064a\u0629",
|
746 |
+
"\u0627\u0644\u0633\u062c\u0646",
|
747 |
+
"\u0627\u0644\u0642\u0630\u064a\u0641\u0629",
|
748 |
+
"\u0627\u0644\u0628\u0631\u0648\u062c\u0643\u062a\u0631",
|
749 |
+
"\u0642\u0631\u0635 \u0627\u0644\u0647\u0648\u0643\u064a",
|
750 |
+
"\u0627\u0644\u0645\u0644\u0643\u0645\u0629",
|
751 |
+
"\u062d\u0642\u064a\u0628\u0629 \u064a\u062f",
|
752 |
+
"\u0627\u0644\u0631\u064a\u0634\u0629 ",
|
753 |
+
"\u0627\u0644\u0644\u0650\u062d\u064e\u0627\u0641",
|
754 |
+
"\u0633\u064a\u0627\u0631\u0629 \u0627\u0644\u0633\u0628\u0627\u0642",
|
755 |
+
"\u0645\u0636\u0631\u0628 \u0627\u0644\u062a\u0646\u0633",
|
756 |
+
"\u0645\u0634\u0639\u0627\u0639",
|
757 |
+
"\u0627\u0644\u0645\u0630\u064a\u0627\u0639",
|
758 |
+
"\u0627\u0644\u0645\u0642\u0631\u0627\u0628 \u0627\u0644\u0627\u0630\u0627\u0639\u064a",
|
759 |
+
"\u062e\u0632\u0627\u0646 \u0645\u064a\u0627\u0647 \u0627\u0644\u0623\u0645\u0637\u0627\u0631",
|
760 |
+
"\u0627\u0644\u0645\u0631\u0643\u0628\u0627\u062a \u0627\u0644\u062a\u0631\u0641\u064a\u0647\u064a\u0629",
|
761 |
+
"\u0628\u0643\u0631\u0629 \u0635\u064a\u062f",
|
762 |
+
"\u0627\u0644\u0643\u0627\u0645\u064a\u0631\u0627 \u0627\u0644\u0627\u0646\u0639\u0643\u0627\u0633\u064a\u0629",
|
763 |
+
"\u0627\u0644\u062b\u0644\u0627\u064e\u0651\u062c\u0629",
|
764 |
+
"\u062c\u0647\u0627\u0632 \u062a\u062d\u0643\u0645 \u0639\u0646 \u0628\u0639\u062f",
|
765 |
+
"\u0645\u0637\u0639\u0645",
|
766 |
+
"\u0627\u0644\u0645\u0633\u062f\u0633 \u0627\u0644\u062f\u0648\u0627\u0631",
|
767 |
+
"\u0628\u0646\u062f\u0642\u064a\u0629",
|
768 |
+
"\u0627\u0644\u0643\u0631\u0633\u064a \u0627\u0644\u0647\u0632\u0627\u0632",
|
769 |
+
"\u0627\u0644\u0645\u0634\u0648\u0627\u0629",
|
770 |
+
"\u0627\u0644\u0645\u0645\u062d\u0627\u0629",
|
771 |
+
"\u0643\u0631\u0629 \u0627\u0644\u0631\u063a\u0628\u064a",
|
772 |
+
"\u0627\u0644\u0645\u0633\u0637\u0631\u0629",
|
773 |
+
"\u0627\u0644\u062d\u0630\u0627\u0621 \u0627\u0644\u0631\u064a\u0627\u0636\u064a",
|
774 |
+
"\u0627\u0644\u062e\u0632\u0627\u0646\u0629",
|
775 |
+
"\u062f\u0628\u0648\u0633 \u0645\u0634\u0628\u0643",
|
776 |
+
"\u0639\u0644\u0628 \u0627\u0644\u0645\u0644\u062d \u0648\u0627\u0644\u0641\u0644\u0641\u0644",
|
777 |
+
"\u0627\u0644\u0635\u0646\u062f\u0644",
|
778 |
+
"\u0627\u0644\u0633\u0627\u0631\u0648\u0646\u062c",
|
779 |
+
"\u0633\u0627\u0643\u0633\u0641\u0648\u0646 \u0627\u0644\u0629 \u0646\u0641\u062e \u0645\u0648\u0633\u064a\u0642\u064a\u0629",
|
780 |
+
"\u0627\u0644\u063a\u0650\u0645\u0652\u062f \u0623\u0648 \u063a\u0650\u0645\u0652\u062f \u0627\u0644\u0633\u064a\u0641 \u0623\u0648 \u063a\u0650\u0645\u0652\u062f \u0627\u0644\u062e\u0646\u062c\u0631",
|
781 |
+
"\u0627\u0644\u0645\u064a\u0632\u0627\u0646",
|
782 |
+
"\u062d\u0627\u0641\u0644\u0629 \u0645\u062f\u0631\u0633\u064a\u0629",
|
783 |
+
"\u0627\u0644\u0645\u0631\u0643\u0628 \u0627\u0644\u0634\u0631\u0627\u0639\u064a ",
|
784 |
+
"\u0644\u0648\u062d\u0629 \u0627\u0644\u0646\u062a\u0627\u0626\u062c",
|
785 |
+
"\u0634\u0627\u0634\u0629 \u0627\u0644\u0633\u064a \u0623\u0631 \u062a\u064a",
|
786 |
+
"\u0628\u0631\u063a\u064a",
|
787 |
+
"\u0645\u0641\u0643 \u0627\u0644\u0628\u0631\u0627\u063a\u064a",
|
788 |
+
"\u062d\u0632\u0627\u0645 \u0627\u0644\u0623\u0645\u0627\u0646",
|
789 |
+
"\u0622\u0644\u0629 \u0627\u0644\u062e\u064a\u0627\u0637\u0629",
|
790 |
+
"\u0627\u0644\u062f\u0631\u0639",
|
791 |
+
"\u0645\u062a\u062c\u0631 \u0627\u0644\u0623\u062d\u0630\u064a\u0629",
|
792 |
+
"\u0645\u0642\u0633\u0645 \u0627\u0644\u063a\u0631\u0641\u0629",
|
793 |
+
"\u0633\u0644\u0629 \u0627\u0644\u062a\u0633\u0648\u0642",
|
794 |
+
"\u0639\u0631\u0628\u0629 \u0627\u0644\u062a\u0633\u0648\u0642",
|
795 |
+
"\u0627\u0644\u0645\u0650\u062c\u0652\u0631\u064e\u0641\u064e\u0629",
|
796 |
+
"\u0642\u0628\u0639\u0629 \u0627\u0644\u0627\u0633\u062a\u062d\u0645\u0627\u0645",
|
797 |
+
"\u0633\u062a\u0627\u0626\u0631 \u0627\u0644\u0627\u0633\u062a\u062d\u0645\u0627\u0645",
|
798 |
+
"\u062a\u0632\u062d\u0644\u0642 \u0639\u0644\u0649 \u0627\u0644\u062b\u0644\u062c",
|
799 |
+
"\u0642\u0646\u0627\u0639 \u0627\u0644\u062a\u0632\u0644\u062c",
|
800 |
+
"\u0643\u064a\u0633 \u0627\u0644\u0646\u0648\u0645",
|
801 |
+
"\u0627\u0644\u0645\u0633\u0637\u0631\u0629 \u0627\u0644\u062d\u0627\u0633\u0628\u0629",
|
802 |
+
"\u0627\u0644\u0628\u0627\u0628 \u0627\u0644\u0645\u0646\u0632\u0644\u0642",
|
803 |
+
"\u0645\u0627\u0643\u064a\u0646\u0629 \u0627\u0644\u062d\u0638",
|
804 |
+
"\u0627\u0644\u063a\u0637\u0633 \u062a\u062d\u062a \u0627\u0644\u0645\u0627\u0621",
|
805 |
+
"\u0639\u0631\u0628\u0629 \u0627\u0644\u062c\u0644\u064a\u062f \u0627\u0644\u0622\u0644\u064a\u0629",
|
806 |
+
"\u0643\u0627\u0633\u062d\u0629 \u062b\u0644\u0648\u062c",
|
807 |
+
"\u0645\u0648\u0632\u0639 \u0627\u0644\u0635\u0627\u0628\u0648\u0646",
|
808 |
+
"\u0643\u0631\u0629 (\u0643\u0631\u0629 \u0627\u0644\u0642\u062f\u0645)",
|
809 |
+
"\u062c\u0648\u0631\u0628",
|
810 |
+
"\u0645\u062c\u0645\u0639 \u0627\u0644\u0637\u0627\u0642\u0629 \u0627\u0644\u0634\u0645\u0633\u064a\u0629 \u0627\u0644\u062d\u0631\u0627\u0631\u064a\u0629",
|
811 |
+
"\u0627\u0644\u0635\u064e\u0645\u0652\u0628\u0631\u0650\u064a\u0631\u0629",
|
812 |
+
"\u0648\u0639\u0627\u0621 \u0627\u0644\u0634\u0648\u0631\u0628\u0629",
|
813 |
+
"\u0645\u0641\u062a\u0627\u062d \u0627\u0644\u0645\u0633\u0627\u0641\u0629",
|
814 |
+
"\u0627\u0644\u0645\u062f\u0641\u0623\u0629",
|
815 |
+
"\u0645\u0643\u0648\u0643 \u0627\u0644\u0641\u0636\u0627\u0621",
|
816 |
+
"\u0627\u0644\u0645\u0650\u0644\u0648\u064e\u0642",
|
817 |
+
"\u0627\u0644\u0642\u0627\u0631\u0628 \u0627\u0644\u0633\u0631\u064a\u0639",
|
818 |
+
"\u0634\u0628\u0643\u0629 \u0627\u0644\u0639\u0646\u0643\u0628\u0648\u062a",
|
819 |
+
"\u062e\u0634\u0628\u0629 \u0627\u0644\u0645\u063a\u0632\u0644",
|
820 |
+
"\u0627\u0644\u0633\u064a\u0627\u0631\u0629 \u0627\u0644\u0631\u064a\u0627\u0636\u064a\u0629",
|
821 |
+
"\u0628\u0642\u0639\u0629 \u0636\u0648\u0621",
|
822 |
+
"\u0633\u0637\u062d \u0627\u0644\u0645\u0633\u0631\u062d",
|
823 |
+
"\u0627\u0644\u0642\u0627\u0637\u0631\u0629 \u0627\u0644\u0628\u062e\u0627\u0631\u064a\u0629",
|
824 |
+
"\u062c\u0633\u0631 \u0645\u0642\u0648\u0633 \u0646\u0641\u0642\u064a",
|
825 |
+
"\u0627\u0644\u0637\u0628\u0644 \u0627\u0644\u0646\u062d\u0627\u0633\u064a",
|
826 |
+
"\u0627\u0644\u0633\u0645\u0627\u0639\u0629 \u0627\u0644\u0637\u0628\u064a\u0629",
|
827 |
+
"\u0627\u0644\u0644\u0650\u0641\u0627\u0639",
|
828 |
+
"\u0627\u0644\u062c\u062f\u0627\u0631 \u0627\u0644\u062c\u0627\u0641",
|
829 |
+
"\u0645\u0624\u0642\u062a",
|
830 |
+
"\u0627\u0644\u0645\u0648\u0642\u062f",
|
831 |
+
"\u0627\u0644\u063a\u0631\u0628\u0627\u0644",
|
832 |
+
"\u0627\u0644\u062a\u0631\u0627\u0645",
|
833 |
+
"\u0627\u0644\u0646\u0642\u0627\u0644\u0629",
|
834 |
+
"\u0627\u0644\u0623\u0631\u064a\u0643\u0629",
|
835 |
+
"\u0645\u0628\u0646\u0649 \u0633\u062a\u0648\u064a\u0627",
|
836 |
+
"\u0627\u0644\u063a\u0648\u0627\u0635\u0629",
|
837 |
+
"\u0627\u0644\u0628\u0630\u0644\u0629",
|
838 |
+
"\u0627\u0644\u0645\u0632\u0648\u0644\u0629",
|
839 |
+
"\u0627\u0644\u0646\u0638\u0627\u0631\u0629 \u0627\u0644\u0634\u0645\u0633\u064a\u0629",
|
840 |
+
"\u0627\u0644\u0646\u0638\u0627\u0631\u0629 \u0627\u0644\u0634\u0645\u0633\u064a\u0629",
|
841 |
+
"\u0627\u0644\u0648\u0627\u0642\u064a \u0627\u0644\u0634\u0645\u0633\u064a",
|
842 |
+
"\u0627\u0644\u062c\u0633\u0631 \u0627\u0644\u0645\u0639\u0644\u0642",
|
843 |
+
"\u0627\u0644\u0645\u0645\u0633\u062d\u0629",
|
844 |
+
"\u0627\u0644\u0642\u0645\u064a\u0635 \u0627\u0644\u062b\u0642\u064a\u0644",
|
845 |
+
"\u0627\u0644\u062a\u064f\u0628\u0651\u0627\u0646 \u0623\u0648 \u0627\u0644\u0628\u0646\u0637\u0627\u0644 \u0627\u0644\u0642\u0635\u064a\u0631\\",
|
846 |
+
"\u0627\u0644\u0623\u0631\u062c\u0648\u062d\u0629",
|
847 |
+
"\u0627\u0644\u0645\u0641\u062a\u0627\u062d \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0626\u064a",
|
848 |
+
"\u0645\u062d\u0642\u0646\u0629 \u0623\u0648 \u0627\u0644\u0625\u0628\u0631\u0629",
|
849 |
+
"\u0627\u0644\u0623\u0628\u0627\u062c\u0648\u0631\u0629",
|
850 |
+
"\u0627\u0644\u062f\u0628\u0627\u0628\u0629",
|
851 |
+
"\u0645\u0633\u062c\u0644 \u0627\u0644\u0634\u0631\u064a\u0637 \u0627\u0644\u0635\u0648\u062a\u064a",
|
852 |
+
"\u0625\u0628\u0631\u064a\u0642 \u0627\u0644\u0634\u0627\u064a",
|
853 |
+
"\u0627\u0644\u062f\u0628\u062f\u0648\u0628",
|
854 |
+
"\u0627\u0644\u0631\u0627\u0626\u064a",
|
855 |
+
"\u0643\u0631\u0629 \u062a\u0646\u0633",
|
856 |
+
"\u0627\u0644\u062a\u0633\u0642\u064a\u0641 \u0628\u0627\u0644\u0642\u0634",
|
857 |
+
"\u0627\u0644\u0633\u062a\u0627\u0631\u0629 \u0627\u0644\u0645\u0633\u0631\u062d\u064a\u0629",
|
858 |
+
"\u0627\u0644\u0643\u064f\u0634\u0652\u062a\u0650\u0628\u064e\u0627\u0646",
|
859 |
+
"\u0627\u0644\u062f\u0631\u064e\u0651\u0627\u0633\u0629",
|
860 |
+
"\u0639\u0631\u0634",
|
861 |
+
"\u0628\u0644\u0627\u0637 \u0627\u0644\u0633\u0642\u0641",
|
862 |
+
"\u0622\u0644\u0629 \u062a\u062d\u0645\u064a\u0635 \u0627\u0644\u062e\u0628\u0632",
|
863 |
+
"\u0645\u062d\u0644\u0627\u062a \u0628\u064a\u0639 \u0644\u0648\u0627\u0632\u0645 \u0627\u0644\u062a\u062f\u062e\u064a\u0646",
|
864 |
+
"\u0645\u0642\u0639\u062f \u0627\u0644\u0645\u0631\u062d\u0627\u0636",
|
865 |
+
"\u0645\u0634\u0639\u0644\u0629",
|
866 |
+
"\u0627\u0644\u0623\u064e\u0639\u0652\u0645\u0650\u062f\u064e\u0629\u064f \u0627\u0644\u0637\u064e\u0651\u0648\u0652\u0637\u064e\u0645\u0650\u064a\u064e\u0651\u0629\u0650",
|
867 |
+
"\u0634\u0627\u062d\u0646\u0629 \u0627\u0644\u0642\u0637\u0631",
|
868 |
+
"\u0645\u062a\u062c\u0631 \u0627\u0644\u0623\u0644\u0639\u0627\u0628",
|
869 |
+
"\u0633\u064a\u0627\u0631\u0629 \u0627\u0644\u062c\u0631\u0627\u0631",
|
870 |
+
"\u0634\u0627\u062d\u0646\u0629 \u0646\u0635\u0641 \u0645\u0642\u0637\u0648\u0631\u0629",
|
871 |
+
"\u0627\u0644\u0635\u064a\u0646\u064a\u0629",
|
872 |
+
"\u0645\u0639\u0637\u0641 \u0627\u0644\u062e\u0646\u062f\u0642",
|
873 |
+
"\u0627\u0644\u062f\u0631\u0627\u062c\u0629 \u062b\u0644\u0627\u062b\u064a\u0629 \u0627\u0644\u0639\u062c\u0644\u0627\u062a",
|
874 |
+
"\u0642\u0627\u0631\u0628 \u0627\u0644\u062f\u0639\u0627\u0645\u0629 \u0627\u0644\u0645\u0632\u062f\u0648\u062c\u0629",
|
875 |
+
"\u062d\u0627\u0645\u0644 \u062b\u0644\u0627\u062b\u064a",
|
876 |
+
"\u0642\u0648\u0633 \u0627\u0644\u0646\u0635\u0631",
|
877 |
+
"\u0627\u0644\u062d\u0627\u0641\u0644\u0629 \u0633\u0637\u062d\u064a\u0629 \u0627\u0644\u062a\u0645\u062f\u064a\u062f \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0626\u064a",
|
878 |
+
"\u0627\u0644\u062a\u0631\u0648\u0645\u0628\u0648\u0646",
|
879 |
+
"\u062d\u0648\u0636 \u0627\u0644\u0627\u0633\u062a\u062d\u0645\u0627\u0645",
|
880 |
+
"\u0627\u0644\u0628\u0648\u0627\u0628\u0629 \u0627\u0644\u062f\u0648\u0627\u0631\u0629",
|
881 |
+
"\u0627\u0644\u0622\u0644\u0629 \u0627\u0644\u0643\u0627\u062a\u0628\u0629",
|
882 |
+
"\u0627\u0644\u0645\u0638\u0644\u0629",
|
883 |
+
"\u0627\u0644\u062f\u0631\u0627\u062c\u0629 \u0627\u0644\u0623\u062d\u0627\u062f\u064a\u0629",
|
884 |
+
"\u0627\u0644\u0628\u064a\u0627\u0646\u0648 \u0627\u0644\u0642\u0627\u0626\u0645",
|
885 |
+
"\u0627\u0644\u0645\u0643\u0646\u0633\u0629 \u0627\u0644\u0643\u0647\u0631\u0628\u0627\u0626\u064a\u0629",
|
886 |
+
"\u0627\u0644\u0645\u0632\u0647\u0631\u064a\u0629",
|
887 |
+
"\u0627\u0644\u0642\u0646\u0637\u0631\u0629",
|
888 |
+
"\u0627\u0644\u0642\u0645\u0627\u0634 \u0627\u0644\u0645\u062e\u0645\u0644\u064a",
|
889 |
+
"\u0622\u0644\u0629 \u0627\u0644\u0628\u064a\u0639 \u0627\u0644\u0630\u0627\u062a\u064a",
|
890 |
+
"\u0627\u0644\u0635\u062f\u0627\u0631\u064a",
|
891 |
+
"\u0642\u0646\u0637\u0631\u0629 \u0645\u062a\u0639\u062f\u062f\u0629 \u0627\u0644\u0631\u0643\u0627\u0626\u0632",
|
892 |
+
"\u0627\u0644\u0643\u0645\u0627\u0646",
|
893 |
+
"\u0627\u0644\u0643\u0631\u0629 \u0627\u0644\u0637\u0627\u0626\u0631\u0629",
|
894 |
+
"\u0635\u0627\u0646\u0639\u0629 \u0627\u0644\u0648\u0627\u0641\u0644",
|
895 |
+
"\u0633\u0627\u0639\u0629 \u0627\u0644\u062d\u0627\u0626\u0637",
|
896 |
+
"\u0645\u062d\u0641\u0638\u0629",
|
897 |
+
"\u062e\u0632\u0627\u0646\u0629 \u0627\u0644\u0635\u0648\u0627\u0646",
|
898 |
+
"\u0637\u0627\u0626\u0631\u0629 \u0639\u0633\u0643\u0631\u064a\u0629",
|
899 |
+
"\u0627\u0644\u0645\u062c\u0644\u0649",
|
900 |
+
"\u0627\u0644\u063a\u0633\u0627\u0644\u0629",
|
901 |
+
"\u0642\u0627\u0631\u0648\u0631\u0629 \u0645\u0627\u0621",
|
902 |
+
"\u0625\u0628\u0631\u064a\u0642 \u0627\u0644\u0645\u0627\u0621",
|
903 |
+
"\u0628\u0631\u062c \u0627\u0644\u0645\u064a\u0627\u0647",
|
904 |
+
"\u0625\u0628\u0631\u064a\u0642 \u0627\u0644\u0643\u062d\u0648\u0644\u064a\u0627\u062a",
|
905 |
+
"\u0627\u0644\u0635\u0627\u0641\u0631\u0629",
|
906 |
+
"\u0634\u0639\u0631 \u0645\u0633\u062a\u0639\u0627\u0631",
|
907 |
+
"\u0627\u0644\u0646\u0627\u0641\u0630\u0629 \u0627\u0644\u0648\u0627\u0642\u064a\u0629",
|
908 |
+
"\u0627\u0644\u0633\u062a\u0627\u0631 \u0627\u0644\u0644\u0641\u064e\u0651\u0627\u0641",
|
909 |
+
"\u0631\u0628\u0637\u0629 \u0639\u0646\u0642 \u0648\u0646\u062f\u0633\u0648\u0631 ",
|
910 |
+
"\u0632\u062c\u0627\u062c\u0629 \u0627\u0644\u0646\u0628\u064a\u0630",
|
911 |
+
"\u062c\u0646\u0627\u062d \u0627\u0644\u0637\u0627\u0626\u0631\u0629",
|
912 |
+
"\u0645\u0642\u0644\u0627\u0629 \u0635\u064a\u0646\u064a\u0629",
|
913 |
+
"\u0627\u0644\u0645\u0644\u0639\u0642\u0629 \u0627\u0644\u062e\u0634\u0628\u064a\u0629",
|
914 |
+
"\u0627\u0644\u0635\u0648\u0641",
|
915 |
+
"\u0627\u0644\u0633\u064a\u0627\u062c \u0627\u0644\u0645\u0646\u0642\u0633\u0645",
|
916 |
+
"\u062d\u0637\u0627\u0645 \u0627\u0644\u0633\u0641\u064a\u0646\u0629",
|
917 |
+
"\u0627\u0644\u0632\u0648\u0631\u0642 \u0627\u0644\u0634\u0631\u0627\u0639\u064a",
|
918 |
+
"\u0645\u0646\u0632\u0644 \u0627\u0644\u064a\u0648\u0631\u062a",
|
919 |
+
"\u0645\u0648\u0627\u0642\u0639 \u0627\u0644\u0648\u064a\u0628",
|
920 |
+
"\u0643\u062a\u0627\u0628 \u0631\u0633\u0648\u0645 \u0647\u0632\u0644\u064a\u0629",
|
921 |
+
"\u0627\u0644\u0643\u0644\u0645\u0627\u062a \u0627\u0644\u0645\u062a\u0642\u0627\u0637\u0639\u0629",
|
922 |
+
"\u0644\u0627\u0641\u062a\u0629 \u0645\u0631\u0648\u0631\u064a\u0629",
|
923 |
+
"\u0625\u0634\u0627\u0631\u0629 \u0627\u0644\u0645\u0631\u0648\u0631 \u0627\u0644\u0636\u0648\u0626\u064a\u0629",
|
924 |
+
"\u063a\u0644\u0627\u0641 \u0627\u0644\u062d\u0645\u0627\u064a\u0629 \u0644\u0644\u0643\u062a\u0627\u0628",
|
925 |
+
"\u0642\u0627\u0626\u0645\u0629 \u0637\u0639\u0627\u0645",
|
926 |
+
"\u0635\u062d\u0646",
|
927 |
+
"\u0642\u0646\u0628\u064a\u0637 \u0623\u062e\u0636\u0631",
|
928 |
+
"\u062d\u0633\u0627\u0621 \u0627\u0644\u0643\u0648\u0646\u0633\u0648\u0645\u064a\u0629",
|
929 |
+
"\u0627\u0644\u0648\u0639\u0627\u0621 \u0627\u0644\u0633\u0627\u062e\u0646",
|
930 |
+
"\u062a\u0631\u0627\u064a\u0641\u0644",
|
931 |
+
"\u0627\u0644\u0645\u062b\u0644\u062c\u0627\u062a",
|
932 |
+
"\u0627\u0644\u0645\u0635\u0627\u0635\u0629",
|
933 |
+
"\u0627\u0644\u062e\u0628\u0632 \u0627\u0644\u0641\u0631\u0646\u0633\u064a",
|
934 |
+
"\u062e\u0628\u0632 \u0627\u0644\u0628\u064a\u063a\u0644",
|
935 |
+
"\u0627\u0644\u0645\u062e\u0628\u0648\u0632\u0627\u062a \u0627\u0644\u0639\u064f\u0642\u0652\u062f\u0650\u064a\u064e\u0651\u0629",
|
936 |
+
"\u062a\u0634\u064a\u0632 \u0628\u0631\u062c\u0631",
|
937 |
+
"\u0627\u0644\u0646\u0642\u0627\u0646\u0642",
|
938 |
+
"\u0627\u0644\u0628\u0637\u0627\u0637\u0627 \u0627\u0644\u0645\u0647\u0631\u0648\u0633\u0629",
|
939 |
+
"\u0645\u0644\u0641\u0648\u0641",
|
940 |
+
"\u0627\u0644\u0642\u0631\u0646\u0628\u064a\u0637 \u0627\u0644\u0623\u062e\u0636\u0631",
|
941 |
+
"\u0627\u0644\u0642\u0631\u0646\u0628\u064a\u0637",
|
942 |
+
"\u0627\u0644\u0643\u0648\u0633\u0627",
|
943 |
+
"\u0645\u0639\u0643\u0631\u0648\u0646\u0629 \u0627\u0644\u0627\u0633\u0643\u0648\u0627\u0634",
|
944 |
+
"\u0642\u0631\u0639 \u0627\u0644\u0628\u0644\u0648\u0637",
|
945 |
+
"\u0642\u0631\u0639 \u0627\u0644\u062c\u0648\u0632",
|
946 |
+
"\u062e\u064a\u0627\u0631",
|
947 |
+
"\u0627\u0644\u062e\u0631\u0634\u0648\u0641 \u0627\u0644\u0634\u0648\u0643\u064a",
|
948 |
+
"\u0641\u0644\u0641\u0644 \u062d\u0644\u0648",
|
949 |
+
"\u0627\u0644\u062e\u0631\u0634\u0648\u0641 \u0627\u0644\u0633\u0643\u0648\u0644\u064a\u0645\u064a",
|
950 |
+
"\u0639\u064a\u0634 \u0627\u0644\u063a\u0631\u0627\u0628",
|
951 |
+
"\u062a\u0641\u0627\u062d \u0623\u062e\u0636\u0631",
|
952 |
+
"\u0627\u0644\u0641\u0631\u0627\u0648\u0644\u0629",
|
953 |
+
"\u0627\u0644\u0628\u0631\u062a\u0642\u0627\u0644",
|
954 |
+
"\u0627\u0644\u0644\u064a\u0645\u0648\u0646",
|
955 |
+
"\u0627\u0644\u062a\u064a\u0646",
|
956 |
+
"\u0627\u0644\u0623\u0646\u0627\u0646\u0627\u0633",
|
957 |
+
"\u0627\u0644\u0645\u0648\u0632",
|
958 |
+
"\u062c\u0627\u0643 \u0641\u0631\u0648\u062a",
|
959 |
+
"\u0642\u0634\u0637\u0629 \u0634\u0631\u064a\u0645\u0648\u0644\u064a\u0627",
|
960 |
+
"\u0627\u0644\u0631\u0645\u0627\u0646",
|
961 |
+
"\u0627\u0644\u062f\u0631\u064a\u0633",
|
962 |
+
"\u0643\u0631\u0628\u0646\u0627\u0631\u0629",
|
963 |
+
"\u0635\u0644\u0635\u0629 \u0627\u0644\u0634\u0648\u0643\u0648\u0644\u0627",
|
964 |
+
"\u0639\u062c\u064a\u0646\u0629 \u0627\u0644\u062e\u0628\u0632",
|
965 |
+
"\u0631\u063a\u064a\u0641 \u0627\u0644\u0644\u062d\u0645",
|
966 |
+
"\u0628\u064a\u062a\u0632\u0627",
|
967 |
+
"\u0641\u0637\u064a\u0631\u0629 \u0627\u0644\u0642\u062f\u0631",
|
968 |
+
"\u0628\u0648\u0631\u064a\u062a\u0648",
|
969 |
+
"\u0627\u0644\u0646\u0628\u064a\u0630 \u0627\u0644\u0623\u062d\u0645\u0631",
|
970 |
+
"\u0642\u0647\u0648\u0629 \u0625\u0633\u0628\u0631\u064a\u0633\u0648",
|
971 |
+
"\u0641\u0646\u062c\u0627\u0646 \u0627\u0644\u0634\u0627\u064a",
|
972 |
+
"\u062d\u0644\u064a\u0628 \u0627\u0644\u0628\u064a\u0636",
|
973 |
+
"\u0627\u0644\u062c\u0628\u0644",
|
974 |
+
"\u0641\u0642\u0627\u0639\u0629",
|
975 |
+
"\u0627\u0644\u062c\u0631\u0641",
|
976 |
+
"\u0627\u0644\u0634\u0639\u0627\u0628 \u0627\u0644\u0645\u0631\u062c\u0627\u0646\u064a\u0629",
|
977 |
+
"\u0627\u0644\u0641\u0648\u0627\u0631\u0629 \u0627\u0644\u062d\u0627\u0631\u0629",
|
978 |
+
"\u0627\u0644\u0636\u0641\u0629",
|
979 |
+
"\u0627\u0644\u0634\u0646\u062e\u0629",
|
980 |
+
"\u0627\u0644\u0645\u064a\u0627\u0647 \u0627\u0644\u0636\u062d\u0644\u0629",
|
981 |
+
"\u0627\u0644\u0634\u0627\u0637\u0626",
|
982 |
+
"\u0627\u0644\u0648\u0627\u062f\u064a",
|
983 |
+
"\u0628\u0631\u0643\u0627\u0646",
|
984 |
+
"\u0644\u0627\u0639\u0628 \u0643\u0631\u0629 \u0627\u0644\u0642\u0627\u0639\u062f\u0629",
|
985 |
+
"\u0627\u0644\u0639\u0631\u064a\u0633",
|
986 |
+
"\u0627\u0644\u063a\u0648\u0635 \u0628\u062c\u0647\u0627\u0632 \u0627\u0644\u062a\u0646\u0641\u0633 ",
|
987 |
+
"\u0627\u0644\u0633\u0644\u062c\u0645",
|
988 |
+
"\u0632\u0647\u0631\u0629 \u0627\u0644\u0644\u0624\u0644\u0624 ",
|
989 |
+
"\u062e\u0641 \u0627\u0644\u0633\u064a\u062f\u0629 \u0627\u0644\u0623\u0635\u0641\u0631",
|
990 |
+
"\u0627\u0644\u0630\u0631\u0629",
|
991 |
+
"\u0634\u062c\u0631\u0629 \u062b\u0645\u0631\u0629 \u0627\u0644\u0628\u0644\u0648\u0637",
|
992 |
+
"\u062b\u0645\u0631 \u0627\u0644\u0648\u0631\u062f \u0627\u0644\u0628\u0631\u064a",
|
993 |
+
"\u0628\u0630\u0648\u0631 \u0643\u0633\u062a\u0646\u0627\u0621 \u0627\u0644\u062d\u0635\u0627\u0646",
|
994 |
+
"\u0627\u0644\u0641\u0637\u0631\u064a\u0627\u062a \u0627\u0644\u0645\u0631\u062c\u0627\u0646\u064a\u0629",
|
995 |
+
"\u0641\u0637\u0631 \u063a\u0627\u0631\u064a\u0642\u0648\u0646",
|
996 |
+
"\u0641\u0637\u0631 \u062c\u0627\u0631\u0648\u0645\u064a\u062a\u0631\u0627 \u0627\u064a\u0633\u0643\u0644\u0646\u062a\u0627",
|
997 |
+
"\u0627\u0644\u0642\u0631\u0646 \u0627\u0644\u0646\u062a\u0646",
|
998 |
+
"\u0641\u0637\u0631 \u0646\u062c\u0645 \u0627\u0644\u0623\u0631\u0636",
|
999 |
+
"\u0641\u0637\u0631 \u0631\u0641 \u0627\u0644\u0643\u0628\u0631\u064a\u062a",
|
1000 |
+
"\u0641\u0637\u0631 \u0627\u0644\u0628\u0648\u0644\u064a\u0637",
|
1001 |
+
"\u0627\u0644\u0639\u0631\u0646\u0627\u0633",
|
1002 |
+
"\u0648\u0631\u0642 \u0627\u0644\u0645\u0631\u062d\u0627\u0636"
|
1003 |
+
]
|
1004 |
+
}
|
CLIP_benchmark/clip_benchmark/datasets/ar_zeroshot_classification_templates.json
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imagenet1k": [
|
3 |
+
"{c}",
|
4 |
+
"\u0635\u0648\u0631\u0629 \u0633\u064a\u0626\u0629 \u0644\u0640 {c}",
|
5 |
+
"\u0635\u0648\u0631\u0629 \u0633\u064a\u0626\u0629 \u062a\u062d\u062a\u0648\u064a \u0639\u0644\u0649 {c}",
|
6 |
+
"\u0646\u062d\u062a \u0644\u0634\u0643\u0644 {c}",
|
7 |
+
"\u0646\u062d\u062a \u0644\u0640 {c}",
|
8 |
+
"\u0635\u0648\u0631\u0629 \u0630\u0627\u062a \u062c\u0648\u0648\u062f\u0629 \u0645\u0646\u062e\u0641\u0636\u0629 \u0644\u0640 {c}",
|
9 |
+
"\u0635\u0648\u0631\u0629 \u0630\u0627\u062a \u062c\u0648\u0648\u062f\u0629 \u0645\u0646\u062e\u0641\u0636\u0629 \u062a\u062d\u062a\u0648\u064a {c}",
|
10 |
+
"\u0631\u0633\u0648\u0645\u0627\u062a \u062c\u062f\u0627\u0631\u064a\u0629 \u062a\u062d\u062a\u0648\u064a {c}",
|
11 |
+
"\u0631\u0633\u0648\u0645\u0627\u062a \u062c\u062f\u0627\u0631\u064a\u0629 \u0644\u0640 {c}",
|
12 |
+
"\u0635\u0648\u0631\u0629 \u0645\u0642\u062a\u0637\u0639\u0629 \u062a\u062d\u062a\u0648\u064a \u0639\u0644\u0649 {c}",
|
13 |
+
"\u0635\u0648\u0631\u0629 \u0645\u0642\u062a\u0637\u0639\u0629 \u0644\u0640 {c}",
|
14 |
+
"\u062a\u0637\u0631\u064a\u0632 {c} ",
|
15 |
+
" \u0635\u0648\u0631\u0629 \u064a\u0635\u0639\u0628 \u0641\u064a\u0647\u0627 \u0631\u0624\u064a\u0629 {c} ",
|
16 |
+
"\u0635\u0648\u0631\u0629 \u0633\u0627\u0637\u0639\u0629 \u0644\u0640 {c}",
|
17 |
+
"\u0635\u0648\u0631\u0629 \u0648\u0627\u0636\u062d\u0629 \u0644\u0640 {c}",
|
18 |
+
"\u0635\u0648\u0631\u0629 \u0645\u062a\u0633\u062e\u0629 \u0644\u0640 {c}",
|
19 |
+
"\u0635\u0648\u0631\u0629 \u0645\u0638\u0644\u0645\u0629 \u0644\u0640 {c}",
|
20 |
+
"\u0635\u0648\u0631\u0629 \u0623\u0628\u064a\u0636 \u0648\u0623\u0633\u0648\u062f {c}",
|
21 |
+
"{c} \u0641\u064a \u0644\u0642\u0637\u0629 \u0642\u0631\u064a\u0628\u0629",
|
22 |
+
"\u0635\u0648\u0631\u0629 \u0631\u0627\u0626\u0639\u0629 \u0644\u0640 {c}",
|
23 |
+
"\u0644\u0642\u0637\u0629 \u0642\u0631\u064a\u0628\u0629 \u0644\u0640 {c}",
|
24 |
+
"\u0631\u0633\u0645 \u062d\u0627\u0633\u0648\u0628\u064a \u064a\u062d\u062a\u0648\u064a {c}",
|
25 |
+
"\u0635\u0648\u0631\u0629 \u0645\u0631\u0633\u0648\u0645\u0629 \u062a\u062d\u062a\u0648\u064a {c}",
|
26 |
+
"\u0631\u0633\u0645\u0629 \u0644\u0640 {c}",
|
27 |
+
"\u0631\u0633\u0645\u0629 {c}",
|
28 |
+
"\u0631\u0633\u0645 \u064a\u062d\u062a\u0648\u064a {c} ",
|
29 |
+
"\u0635\u0648\u0631\u0629 \u0628\u0646\u0645\u0637 \u0627\u0644\u0628\u0643\u0633\u0644 \u0644\u0640 {c}",
|
30 |
+
" \u0635\u0648\u0631\u0629 \u0633\u0627\u0637\u0639\u0629 {c}",
|
31 |
+
"\u0648\u0634\u0645 {c}",
|
32 |
+
"{c} \u0641\u064a \u0627\u0644\u0635\u0648\u0631\u0629",
|
33 |
+
"\u0635\u0648\u0631\u0629 \u0645\u062a\u0633\u062e\u0629 \u062a\u062d\u062a\u0648\u064a {c}",
|
34 |
+
"\u0635\u0648\u0631\u0629 \u062a\u0627\u0644\u0641\u0629 {c}",
|
35 |
+
"\u0635\u0648\u0631\u0629 \u0636\u0628\u0627\u0628\u064a\u0629 \u0644\u0640 {c}",
|
36 |
+
"\u0635\u0648\u0631\u0629 {c}",
|
37 |
+
"\u0635\u0648\u0631\u0629 \u062c\u064a\u062f\u0629 \u0644\u0640 {c}",
|
38 |
+
"\u0635\u0648\u0631\u0629 \u0644\u0640 {c}",
|
39 |
+
"\u062a\u0635\u064a\u064a\u0631 \u0644\u0640 {c}",
|
40 |
+
"{c} \u0639\u0644\u0649 \u0634\u0643\u0644 \u0631\u0633\u0645 \u062d\u0627\u0633\u0648\u0628\u064a \u062b\u0646\u0627\u0626\u064a \u0623\u0648 \u062b\u0644\u0627\u062b\u064a \u0627\u0644\u0623\u0628\u0639\u0627\u062f",
|
41 |
+
"\u064a\u0648\u062c\u062f {c} \u0648\u0627\u062d\u062f \u0641\u064a \u0627\u0644\u0635\u0648\u0631\u0629",
|
42 |
+
"\u0631\u0633\u0645 \u062d\u0627\u0633\u0648\u0628\u064a \u0644\u0640 {c}",
|
43 |
+
"\u0627\u0648\u0631\u064a\u063a\u0627\u0645\u064a \u0644\u0640 {c}",
|
44 |
+
"{c} \u0645\u0635\u0646\u0648\u0639 \u0639\u0646 \u0637\u0631\u064a\u0642 \u0641\u0646 \u0637\u064a \u0627\u0644\u0648\u0631\u0642",
|
45 |
+
"{c} \u0641\u064a \u0644\u0639\u0628\u0629 \u0641\u064a\u062f\u064a\u0648",
|
46 |
+
"{c} \u0645\u0648\u062c\u0648\u062f \u0641\u064a \u0644\u0639\u0628\u0629 \u0627\u0644\u0641\u064a\u062f\u064a\u0648",
|
47 |
+
"\u0631\u0633\u0645 \u062a\u0642\u0631\u064a\u0628\u064a \u0644\u0640 {c}",
|
48 |
+
"{c} \u0645\u0631\u0633\u0648\u0645 \u0628\u0627\u0644\u062e\u0631\u0627\u0628\u064a\u0634",
|
49 |
+
"\u0635\u0648\u0631\u0629 \u0628\u0641\u0646 \u0627\u0644\u062e\u0631\u0627\u0628\u064a\u0634 \u0644\u0640 {c}",
|
50 |
+
"\u0644\u0639\u0628\u0629 {c}",
|
51 |
+
"\u0635\u0648\u0631\u0629 \u064a\u0648\u062c\u062f \u0641\u064a\u0647\u0627 {c}",
|
52 |
+
"\u0631\u0633\u0648\u0645 \u0645\u062a\u062d\u0631\u0643\u0629 \u0644\u0640 {c} ",
|
53 |
+
"\u0635\u0648\u0631\u0629 \u0644\u0639\u062f\u062f \u0645\u0646 {c}",
|
54 |
+
"\u0635\u0648\u0631\u0629 \u064a\u0638\u0647\u0631 \u0641\u064a\u0647\u0627 {c}",
|
55 |
+
"\u0635\u0648\u0631\u0629 {c} \u0635\u063a\u064a\u0631 ",
|
56 |
+
"\u0635\u0648\u0631\u0629 {c} \u0643\u0628\u064a\u0631",
|
57 |
+
"{c} \u064a\u0638\u0647\u0631 \u0641\u064a \u0627\u0644\u0635\u0648\u0631\u0629"
|
58 |
+
]
|
59 |
+
}
|
CLIP_benchmark/clip_benchmark/datasets/babel_imagenet.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
CLIP_benchmark/clip_benchmark/datasets/babel_imagenet.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchvision
|
2 |
+
|
3 |
+
"""
|
4 |
+
BabelImageNet from https://arxiv.org/pdf/2306.08658.pdf
|
5 |
+
Adapted from https://github.com/gregor-ge/Babel-ImageNet, thanks to the authors
|
6 |
+
"""
|
7 |
+
class BabelImageNet(torchvision.datasets.ImageNet):
|
8 |
+
def __init__(self, root: str, idxs, split: str = "val", download=None, **kwargs) -> None:
|
9 |
+
super().__init__(root, split, **kwargs)
|
10 |
+
examples_per_class = len(self.targets) // 1000
|
11 |
+
select_idxs = [idx*examples_per_class + i for idx in idxs for i in range(examples_per_class)]
|
12 |
+
self.targets = [i for i in range(len(idxs)) for _ in range(examples_per_class)]
|
13 |
+
self.imgs = [self.imgs[i] for i in select_idxs]
|
14 |
+
self.samples = [self.samples[i] for i in select_idxs]
|
15 |
+
self.idxs = idxs
|
16 |
+
|
17 |
+
def __getitem__(self, i):
|
18 |
+
img, target = super().__getitem__(i)
|
19 |
+
target = self.idxs.index(target)
|
20 |
+
return img, target
|
CLIP_benchmark/clip_benchmark/datasets/builder.py
ADDED
@@ -0,0 +1,817 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import warnings
|
3 |
+
import sys
|
4 |
+
import json
|
5 |
+
from subprocess import call
|
6 |
+
from collections import defaultdict
|
7 |
+
import torch
|
8 |
+
from torchvision.datasets import (
|
9 |
+
VisionDataset, ImageFolder,
|
10 |
+
CIFAR10, CIFAR100, ImageNet, CocoCaptions, Flickr8k, Flickr30k, Food101, SUN397,
|
11 |
+
StanfordCars, FGVCAircraft, DTD, OxfordIIITPet, Caltech101, Flowers102,
|
12 |
+
MNIST, STL10, EuroSAT, GTSRB, Kitti, Country211, PCAM, RenderedSST2
|
13 |
+
)
|
14 |
+
|
15 |
+
from . import voc2007, flickr, caltech101, imagenetv2, objectnet, babel_imagenet, sugar_crepe
|
16 |
+
from torch.utils.data import default_collate
|
17 |
+
from PIL import Image
|
18 |
+
|
19 |
+
|
20 |
+
def build_dataset(dataset_name, root="root", transform=None, split="test", download=True, annotation_file=None, language="en", task="zeroshot_classification", wds_cache_dir=None, custom_classname_file=None, custom_template_file=None, **kwargs):
|
21 |
+
"""
|
22 |
+
Main function to use in order to build a dataset instance,
|
23 |
+
|
24 |
+
dataset_name: str
|
25 |
+
name of the dataset
|
26 |
+
|
27 |
+
root: str
|
28 |
+
root folder where the dataset is downloaded and stored. can be shared among datasets.
|
29 |
+
|
30 |
+
transform: torchvision transform applied to images
|
31 |
+
|
32 |
+
split: str
|
33 |
+
split to use, depending on the dataset can have different options.
|
34 |
+
In general, `train` and `test` are available.
|
35 |
+
For specific splits, please look at the corresponding dataset.
|
36 |
+
|
37 |
+
annotation_file: str or None
|
38 |
+
only for datasets with captions (used for retrieval) such as COCO
|
39 |
+
and Flickr.
|
40 |
+
|
41 |
+
custom_classname_file: str or None
|
42 |
+
Custom classname file where keys are dataset names and values are list of classnames.
|
43 |
+
|
44 |
+
custom_template_file: str or None
|
45 |
+
Custom template file where keys are dataset names and values are list of prompts, or dicts
|
46 |
+
where keys are classnames and values are class-specific prompts.
|
47 |
+
|
48 |
+
"""
|
49 |
+
if task in ('zeroshot_classification', 'linear_probe'): # Only load templates and classnames if we have to
|
50 |
+
current_folder = os.path.dirname(__file__)
|
51 |
+
|
52 |
+
if dataset_name == "babel_imagenet":
|
53 |
+
classnames = json.load(open(os.path.join(current_folder, "babel_imagenet.json")))
|
54 |
+
assert language.upper() in classnames, f"Language '{language}' not supported for Babel-ImageNet"
|
55 |
+
classnames = classnames[language.upper()]
|
56 |
+
templates = json.load(open(os.path.join(current_folder, "nllb_dist13b_prompts.json")))
|
57 |
+
templates = templates[language.upper()]
|
58 |
+
templates = [t.replace('{}', '{c}') for t in templates]
|
59 |
+
else:
|
60 |
+
if custom_classname_file and not os.path.exists(custom_classname_file):
|
61 |
+
# look at current_folder
|
62 |
+
custom_classname_file_attempt = os.path.join(current_folder, custom_classname_file)
|
63 |
+
assert os.path.exists(custom_classname_file_attempt), f"Custom classname file '{custom_classname_file}' does not exist"
|
64 |
+
custom_classname_file = custom_classname_file_attempt
|
65 |
+
else:
|
66 |
+
custom_classname_file = os.path.join(current_folder, language + "_classnames.json")
|
67 |
+
|
68 |
+
if custom_template_file and not os.path.exists(custom_template_file):
|
69 |
+
# look at current_folder
|
70 |
+
custom_template_file_attempt = os.path.join(current_folder, custom_template_file)
|
71 |
+
assert os.path.exists(custom_template_file_attempt), f"Custom template file '{custom_template_file}' does not exist"
|
72 |
+
custom_template_file = custom_template_file_attempt
|
73 |
+
else:
|
74 |
+
custom_template_file = os.path.join(current_folder, language + "_zeroshot_classification_templates.json")
|
75 |
+
|
76 |
+
with open(custom_classname_file, "r") as f:
|
77 |
+
classnames = json.load(f)
|
78 |
+
|
79 |
+
with open(custom_template_file, "r") as f:
|
80 |
+
templates = json.load(f)
|
81 |
+
|
82 |
+
default_template = templates["imagenet1k"] if "imagenet1k" in templates else None
|
83 |
+
|
84 |
+
if dataset_name.startswith("tfds/") or dataset_name.startswith("vtab/") or dataset_name.startswith("wds/"):
|
85 |
+
name = dataset_name.split("/")[-1]
|
86 |
+
else:
|
87 |
+
name = dataset_name
|
88 |
+
templates = templates.get(name, default_template)
|
89 |
+
assert templates is not None, f"Templates for dataset '{dataset_name}' not found in '{custom_template_file}'"
|
90 |
+
else:
|
91 |
+
classnames, templates = None, None
|
92 |
+
|
93 |
+
def download_imagenet(r):
|
94 |
+
os.makedirs(r, exist_ok=True)
|
95 |
+
call(f"wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_devkit_t12.tar.gz --output-document={r}/ILSVRC2012_devkit_t12.tar.gz", shell=True)
|
96 |
+
call(f"wget https://image-net.org/data/ILSVRC/2012/ILSVRC2012_img_val.tar --output-document={r}/ILSVRC2012_img_val.tar", shell=True)
|
97 |
+
|
98 |
+
train = (split == "train")
|
99 |
+
if dataset_name == "cifar10":
|
100 |
+
ds = CIFAR10(root=root, train=train, transform=transform, download=download, **kwargs)
|
101 |
+
elif dataset_name == "cifar100":
|
102 |
+
ds = CIFAR100(root=root, train=train, transform=transform, download=download, **kwargs)
|
103 |
+
elif dataset_name == "imagenet1k":
|
104 |
+
if not os.path.exists(root):
|
105 |
+
download_imagenet(root)
|
106 |
+
ds = ImageNet(root=root, split="train" if train else "val", transform=transform, **kwargs)
|
107 |
+
ds.classes = classnames["imagenet1k"]
|
108 |
+
elif dataset_name == "imagenet-w":
|
109 |
+
from imagenet_w import AddWatermark
|
110 |
+
from torchvision.transforms import Normalize, CenterCrop
|
111 |
+
if not os.path.exists(root):
|
112 |
+
download_imagenet(root)
|
113 |
+
index_normalize = None
|
114 |
+
crop_size = None
|
115 |
+
for i, t in enumerate(transform.transforms):
|
116 |
+
if isinstance(t, Normalize):
|
117 |
+
index_normalize = i
|
118 |
+
elif isinstance(t, CenterCrop):
|
119 |
+
crop_size = min(t.size)
|
120 |
+
assert crop_size is not None, "CenterCrop not found in transform"
|
121 |
+
assert index_normalize is not None, "Normalize not found in transform"
|
122 |
+
transform.transforms.insert(index_normalize, AddWatermark(crop_size))
|
123 |
+
ds = ImageNet(root=root, split="train" if train else "val", transform=transform, **kwargs)
|
124 |
+
ds.classes = classnames["imagenet1k"]
|
125 |
+
elif dataset_name == "babel_imagenet":
|
126 |
+
# babel ImageNet from https://github.com/gregor-ge/Babel-ImageNet
|
127 |
+
if not os.path.exists(root):
|
128 |
+
download_imagenet(root)
|
129 |
+
idxs, classnames = classnames
|
130 |
+
ds = babel_imagenet.BabelImageNet(root=root, idxs=idxs, split="train" if train else "val", transform=transform, **kwargs)
|
131 |
+
ds.classes = classnames
|
132 |
+
elif dataset_name == "imagenet1k-unverified":
|
133 |
+
split = "train" if train else "val"
|
134 |
+
ds = ImageFolder(root=os.path.join(root, split), transform=transform, **kwargs)
|
135 |
+
# use classnames from OpenAI
|
136 |
+
ds.classes = classnames["imagenet1k"]
|
137 |
+
elif dataset_name == "imagenetv2":
|
138 |
+
assert split == "test", f"Only test split available for {dataset_name}"
|
139 |
+
os.makedirs(root, exist_ok=True)
|
140 |
+
ds = imagenetv2.ImageNetV2Dataset(variant="matched-frequency", transform=transform, location=root)
|
141 |
+
ds.classes = classnames["imagenet1k"]
|
142 |
+
elif dataset_name == "imagenet_sketch":
|
143 |
+
assert split == "test", f"Only test split available for {dataset_name}"
|
144 |
+
# Downloadable from https://drive.google.com/open?id=1Mj0i5HBthqH1p_yeXzsg22gZduvgoNeA
|
145 |
+
if not os.path.exists(root):
|
146 |
+
# Automatic download
|
147 |
+
print("Downloading imagenet_sketch...")
|
148 |
+
if not has_gdown():
|
149 |
+
print("GDown is needed to download the dataset. Please install it via `pip install gdown`")
|
150 |
+
sys.exit(1)
|
151 |
+
# Download ImageNet-Sketch.zip
|
152 |
+
call("gdown --id 1Mj0i5HBthqH1p_yeXzsg22gZduvgoNeA", shell=True)
|
153 |
+
assert os.path.exists("ImageNet-Sketch.zip")
|
154 |
+
# Unzip and move to `root`
|
155 |
+
call("unzip ImageNet-Sketch.zip", shell=True)
|
156 |
+
call(f"mv sketch {root}", shell=True)
|
157 |
+
ds = ImageFolder(root=root, transform=transform, **kwargs)
|
158 |
+
ds.classes = classnames["imagenet1k"]
|
159 |
+
elif dataset_name == "imagenet-a":
|
160 |
+
assert split == "test", f"Only test split available for {dataset_name}"
|
161 |
+
# Downloadable from https://people.eecs.berkeley.edu/~hendrycks/imagenet-a.tar
|
162 |
+
if not os.path.exists(root):
|
163 |
+
print("Downloading imagenet-a...")
|
164 |
+
call("wget https://people.eecs.berkeley.edu/~hendrycks/imagenet-a.tar", shell=True)
|
165 |
+
# Untar and move to `root`
|
166 |
+
call("tar xvf imagenet-a.tar", shell=True)
|
167 |
+
call(f"mv imagenet-a {root}", shell=True)
|
168 |
+
ds = ImageFolder(root=root, transform=transform, **kwargs)
|
169 |
+
ds.classes = classnames["imagenet1k"]
|
170 |
+
imagenet_a_wnids = ['n01498041', 'n01531178', 'n01534433', 'n01558993', 'n01580077', 'n01614925', 'n01616318', 'n01631663', 'n01641577', 'n01669191', 'n01677366', 'n01687978', 'n01694178', 'n01698640', 'n01735189', 'n01770081', 'n01770393', 'n01774750', 'n01784675', 'n01819313', 'n01820546', 'n01833805', 'n01843383', 'n01847000', 'n01855672', 'n01882714', 'n01910747', 'n01914609', 'n01924916', 'n01944390', 'n01985128', 'n01986214', 'n02007558', 'n02009912', 'n02037110', 'n02051845', 'n02077923', 'n02085620', 'n02099601', 'n02106550', 'n02106662', 'n02110958', 'n02119022', 'n02123394', 'n02127052', 'n02129165', 'n02133161', 'n02137549', 'n02165456', 'n02174001', 'n02177972', 'n02190166', 'n02206856', 'n02219486', 'n02226429', 'n02231487', 'n02233338', 'n02236044', 'n02259212', 'n02268443', 'n02279972', 'n02280649', 'n02281787', 'n02317335', 'n02325366', 'n02346627', 'n02356798', 'n02361337', 'n02410509', 'n02445715', 'n02454379', 'n02486410', 'n02492035', 'n02504458', 'n02655020', 'n02669723', 'n02672831', 'n02676566', 'n02690373', 'n02701002', 'n02730930', 'n02777292', 'n02782093', 'n02787622', 'n02793495', 'n02797295', 'n02802426', 'n02814860', 'n02815834', 'n02837789', 'n02879718', 'n02883205', 'n02895154', 'n02906734', 'n02948072', 'n02951358', 'n02980441', 'n02992211', 'n02999410', 'n03014705', 'n03026506', 'n03124043', 'n03125729', 'n03187595', 'n03196217', 'n03223299', 'n03250847', 'n03255030', 'n03291819', 'n03325584', 'n03355925', 'n03384352', 'n03388043', 'n03417042', 'n03443371', 'n03444034', 'n03445924', 'n03452741', 'n03483316', 'n03584829', 'n03590841', 'n03594945', 'n03617480', 'n03666591', 'n03670208', 'n03717622', 'n03720891', 'n03721384', 'n03724870', 'n03775071', 'n03788195', 'n03804744', 'n03837869', 'n03840681', 'n03854065', 'n03888257', 'n03891332', 'n03935335', 'n03982430', 'n04019541', 'n04033901', 'n04039381', 'n04067472', 'n04086273', 'n04099969', 'n04118538', 'n04131690', 'n04133789', 'n04141076', 'n04146614', 'n04147183', 'n04179913', 'n04208210', 'n04235860', 'n04252077', 'n04252225', 'n04254120', 'n04270147', 'n04275548', 'n04310018', 'n04317175', 'n04344873', 'n04347754', 'n04355338', 'n04366367', 'n04376876', 'n04389033', 'n04399382', 'n04442312', 'n04456115', 'n04482393', 'n04507155', 'n04509417', 'n04532670', 'n04540053', 'n04554684', 'n04562935', 'n04591713', 'n04606251', 'n07583066', 'n07695742', 'n07697313', 'n07697537', 'n07714990', 'n07718472', 'n07720875', 'n07734744', 'n07749582', 'n07753592', 'n07760859', 'n07768694', 'n07831146', 'n09229709', 'n09246464', 'n09472597', 'n09835506', 'n11879895', 'n12057211', 'n12144580', 'n12267677']
|
171 |
+
imagenet_a_mask = [wnid in set(imagenet_a_wnids) for wnid in all_imagenet_wordnet_ids]
|
172 |
+
ds.classes = [cl for cl, mask in zip(ds.classes, imagenet_a_mask) if mask]
|
173 |
+
elif dataset_name == "imagenet-r":
|
174 |
+
assert split == "test", f"Only test split available for {dataset_name}"
|
175 |
+
# downloadable from https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar
|
176 |
+
if not os.path.exists(root):
|
177 |
+
print("Downloading imagenet-r...")
|
178 |
+
call("wget https://people.eecs.berkeley.edu/~hendrycks/imagenet-r.tar", shell=True)
|
179 |
+
# Untar and move to `root`
|
180 |
+
call("tar xvf imagenet-r.tar", shell=True)
|
181 |
+
call(f"mv imagenet-r {root}", shell=True)
|
182 |
+
imagenet_r_wnids = {'n01443537', 'n01484850', 'n01494475', 'n01498041', 'n01514859', 'n01518878', 'n01531178', 'n01534433', 'n01614925', 'n01616318', 'n01630670', 'n01632777', 'n01644373', 'n01677366', 'n01694178', 'n01748264', 'n01770393', 'n01774750', 'n01784675', 'n01806143', 'n01820546', 'n01833805', 'n01843383', 'n01847000', 'n01855672', 'n01860187', 'n01882714', 'n01910747', 'n01944390', 'n01983481', 'n01986214', 'n02007558', 'n02009912', 'n02051845', 'n02056570', 'n02066245', 'n02071294', 'n02077923', 'n02085620', 'n02086240', 'n02088094', 'n02088238', 'n02088364', 'n02088466', 'n02091032', 'n02091134', 'n02092339', 'n02094433', 'n02096585', 'n02097298', 'n02098286', 'n02099601', 'n02099712', 'n02102318', 'n02106030', 'n02106166', 'n02106550', 'n02106662', 'n02108089', 'n02108915', 'n02109525', 'n02110185', 'n02110341', 'n02110958', 'n02112018', 'n02112137', 'n02113023', 'n02113624', 'n02113799', 'n02114367', 'n02117135', 'n02119022', 'n02123045', 'n02128385', 'n02128757', 'n02129165', 'n02129604', 'n02130308', 'n02134084', 'n02138441', 'n02165456', 'n02190166', 'n02206856', 'n02219486', 'n02226429', 'n02233338', 'n02236044', 'n02268443', 'n02279972', 'n02317335', 'n02325366', 'n02346627', 'n02356798', 'n02363005', 'n02364673', 'n02391049', 'n02395406', 'n02398521', 'n02410509', 'n02423022', 'n02437616', 'n02445715', 'n02447366', 'n02480495', 'n02480855', 'n02481823', 'n02483362', 'n02486410', 'n02510455', 'n02526121', 'n02607072', 'n02655020', 'n02672831', 'n02701002', 'n02749479', 'n02769748', 'n02793495', 'n02797295', 'n02802426', 'n02808440', 'n02814860', 'n02823750', 'n02841315', 'n02843684', 'n02883205', 'n02906734', 'n02909870', 'n02939185', 'n02948072', 'n02950826', 'n02951358', 'n02966193', 'n02980441', 'n02992529', 'n03124170', 'n03272010', 'n03345487', 'n03372029', 'n03424325', 'n03452741', 'n03467068', 'n03481172', 'n03494278', 'n03495258', 'n03498962', 'n03594945', 'n03602883', 'n03630383', 'n03649909', 'n03676483', 'n03710193', 'n03773504', 'n03775071', 'n03888257', 'n03930630', 'n03947888', 'n04086273', 'n04118538', 'n04133789', 'n04141076', 'n04146614', 'n04147183', 'n04192698', 'n04254680', 'n04266014', 'n04275548', 'n04310018', 'n04325704', 'n04347754', 'n04389033', 'n04409515', 'n04465501', 'n04487394', 'n04522168', 'n04536866', 'n04552348', 'n04591713', 'n07614500', 'n07693725', 'n07695742', 'n07697313', 'n07697537', 'n07714571', 'n07714990', 'n07718472', 'n07720875', 'n07734744', 'n07742313', 'n07745940', 'n07749582', 'n07753275', 'n07753592', 'n07768694', 'n07873807', 'n07880968', 'n07920052', 'n09472597', 'n09835506', 'n10565667', 'n12267677'}
|
183 |
+
imagenet_r_mask = [wnid in imagenet_r_wnids for wnid in all_imagenet_wordnet_ids]
|
184 |
+
ds = ImageFolder(root=root, transform=transform, **kwargs)
|
185 |
+
ds.classes = classnames["imagenet1k"]
|
186 |
+
ds.classes = [cl for cl, mask in zip(ds.classes, imagenet_r_mask) if mask]
|
187 |
+
elif dataset_name == "imagenet-o":
|
188 |
+
assert split == "test", f"Only test split available for {dataset_name}"
|
189 |
+
# downloadable from https://people.eecs.berkeley.edu/~hendrycks/imagenet-o.tar
|
190 |
+
if not os.path.exists(root):
|
191 |
+
print("Downloading imagenet-o...")
|
192 |
+
call("wget https://people.eecs.berkeley.edu/~hendrycks/imagenet-o.tar", shell=True)
|
193 |
+
# Untar and move to `root`
|
194 |
+
call("tar xvf imagenet-o.tar", shell=True)
|
195 |
+
call(f"mv imagenet-o {root}", shell=True)
|
196 |
+
ds = ImageFolder(root=root, transform=transform, **kwargs)
|
197 |
+
ds.classes = classnames["imagenet1k"]
|
198 |
+
imagenet_o_wnids = ['n01443537', 'n01704323', 'n01770081', 'n01784675', 'n01819313', 'n01820546', 'n01910747', 'n01917289', 'n01968897', 'n02074367', 'n02317335', 'n02319095', 'n02395406', 'n02454379', 'n02606052', 'n02655020', 'n02666196', 'n02672831', 'n02730930', 'n02777292', 'n02783161', 'n02786058', 'n02787622', 'n02791270', 'n02808304', 'n02817516', 'n02841315', 'n02865351', 'n02877765', 'n02892767', 'n02906734', 'n02910353', 'n02916936', 'n02948072', 'n02965783', 'n03000134', 'n03000684', 'n03017168', 'n03026506', 'n03032252', 'n03075370', 'n03109150', 'n03126707', 'n03134739', 'n03160309', 'n03196217', 'n03207743', 'n03218198', 'n03223299', 'n03240683', 'n03271574', 'n03291819', 'n03297495', 'n03314780', 'n03325584', 'n03344393', 'n03347037', 'n03372029', 'n03376595', 'n03388043', 'n03388183', 'n03400231', 'n03445777', 'n03457902', 'n03467068', 'n03482405', 'n03483316', 'n03494278', 'n03530642', 'n03544143', 'n03584829', 'n03590841', 'n03598930', 'n03602883', 'n03649909', 'n03661043', 'n03666591', 'n03676483', 'n03692522', 'n03706229', 'n03717622', 'n03720891', 'n03721384', 'n03724870', 'n03729826', 'n03733131', 'n03733281', 'n03742115', 'n03786901', 'n03788365', 'n03794056', 'n03804744', 'n03814639', 'n03814906', 'n03825788', 'n03840681', 'n03843555', 'n03854065', 'n03857828', 'n03868863', 'n03874293', 'n03884397', 'n03891251', 'n03908714', 'n03920288', 'n03929660', 'n03930313', 'n03937543', 'n03942813', 'n03944341', 'n03961711', 'n03970156', 'n03982430', 'n03991062', 'n03995372', 'n03998194', 'n04005630', 'n04023962', 'n04033901', 'n04040759', 'n04067472', 'n04074963', 'n04116512', 'n04118776', 'n04125021', 'n04127249', 'n04131690', 'n04141975', 'n04153751', 'n04154565', 'n04201297', 'n04204347', 'n04209133', 'n04209239', 'n04228054', 'n04235860', 'n04243546', 'n04252077', 'n04254120', 'n04258138', 'n04265275', 'n04270147', 'n04275548', 'n04330267', 'n04332243', 'n04336792', 'n04347754', 'n04371430', 'n04371774', 'n04372370', 'n04376876', 'n04409515', 'n04417672', 'n04418357', 'n04423845', 'n04429376', 'n04435653', 'n04442312', 'n04482393', 'n04501370', 'n04507155', 'n04525305', 'n04542943', 'n04554684', 'n04557648', 'n04562935', 'n04579432', 'n04591157', 'n04597913', 'n04599235', 'n06785654', 'n06874185', 'n07615774', 'n07693725', 'n07695742', 'n07697537', 'n07711569', 'n07714990', 'n07715103', 'n07716358', 'n07717410', 'n07718472', 'n07720875', 'n07742313', 'n07745940', 'n07747607', 'n07749582', 'n07753275', 'n07753592', 'n07754684', 'n07768694', 'n07836838', 'n07871810', 'n07873807', 'n07880968', 'n09229709', 'n09472597', 'n12144580', 'n12267677', 'n13052670']
|
199 |
+
imagenet_o_mask = [wnid in set(imagenet_o_wnids) for wnid in all_imagenet_wordnet_ids]
|
200 |
+
ds.classes = [cl for cl, mask in zip(ds.classes, imagenet_o_mask) if mask]
|
201 |
+
elif dataset_name == "objectnet":
|
202 |
+
assert split == "test", f"Only test split available for {dataset_name}"
|
203 |
+
# downloadable from https://objectnet.dev/downloads/objectnet-1.0.zip or https://www.dropbox.com/s/raw/cxeztdtm16nzvuw/objectnet-1.0.zip
|
204 |
+
if not os.path.exists(root):
|
205 |
+
print("Downloading objectnet...")
|
206 |
+
call("wget https://objectnet.dev/downloads/objectnet-1.0.zip", shell=True)
|
207 |
+
# Untar and move to `root`
|
208 |
+
call("UNZIP_DISABLE_ZIPBOMB_DETECTION=TRUE unzip -P objectnetisatestset objectnet-1.0.zip", shell=True)
|
209 |
+
os.makedirs(root)
|
210 |
+
call(f"mv objectnet-1.0 {root}", shell=True)
|
211 |
+
call(f"cp {root}/objectnet-1.0/mappings/* {root}", shell=True)
|
212 |
+
ds = objectnet.ObjectNetDataset(root=root, transform=transform)
|
213 |
+
elif dataset_name == "voc2007":
|
214 |
+
ds = voc2007.PASCALVoc2007Cropped(root=root, set="train" if train else "test", transform=transform, download=download, **kwargs)
|
215 |
+
elif dataset_name == "voc2007_multilabel":
|
216 |
+
ds = voc2007.PASCALVoc2007(root=root, set="train" if train else "test", transform=transform, download=download, **kwargs)
|
217 |
+
elif dataset_name.startswith("sugar_crepe"):
|
218 |
+
# https://github.com/RAIVNLab/sugar-crepe/tree/main
|
219 |
+
_, task = dataset_name.split("/")
|
220 |
+
assert task in ("add_att", "add_obj", "replace_att", "replace_obj", "replace_rel", "swap_att", "swap_obj"), f"Unknown task {task} for {dataset_name}"
|
221 |
+
assert split == "test", f"Only test split available for {dataset_name}"
|
222 |
+
archive_name = "val2017.zip"
|
223 |
+
root_split = os.path.join(root, archive_name.replace(".zip", ""))
|
224 |
+
if not os.path.exists(root_split):
|
225 |
+
print(f"Downloading coco captions {archive_name}...")
|
226 |
+
if not os.path.exists(os.path.join(root, archive_name)):
|
227 |
+
call(f"wget http://images.cocodataset.org/zips/{archive_name} --output-document={root}/{archive_name}", shell=True)
|
228 |
+
call(f"unzip {root}/{archive_name} -d {root}", shell=True)
|
229 |
+
ann = f"{root}/{task}.json"
|
230 |
+
if not os.path.exists(ann):
|
231 |
+
url = f"https://raw.githubusercontent.com/RAIVNLab/sugar-crepe/main/data/{task}.json"
|
232 |
+
call(f"wget {url} --output-document={ann}", shell=True)
|
233 |
+
ds = sugar_crepe.SugarCrepe(root=os.path.join(root, "val2017"), ann_file=ann, transform=transform, **kwargs)
|
234 |
+
elif dataset_name == "mscoco_captions":
|
235 |
+
# https://github.com/mehdidc/retrieval_annotations/releases/tag/1.0.0(annotations)
|
236 |
+
if split == "train":
|
237 |
+
archive_name = "train2014.zip"
|
238 |
+
elif split in ("val", "test"):
|
239 |
+
archive_name = "val2014.zip"
|
240 |
+
else:
|
241 |
+
raise ValueError(f"split should be train or val or test for `{dataset_name}`")
|
242 |
+
root_split = os.path.join(root, archive_name.replace(".zip", ""))
|
243 |
+
if not os.path.exists(root_split):
|
244 |
+
print(f"Downloading mscoco_captions {archive_name}...")
|
245 |
+
if not os.path.exists(os.path.join(root, archive_name)):
|
246 |
+
call(f"wget http://images.cocodataset.org/zips/{archive_name} --output-document={root}/{archive_name}", shell=True)
|
247 |
+
call(f"unzip {root}/{archive_name} -d {root}", shell=True)
|
248 |
+
if not annotation_file:
|
249 |
+
annotation_file = f"{root}/coco_{split}_karpathy.json"
|
250 |
+
if not os.path.exists(annotation_file):
|
251 |
+
call(f"wget https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/coco_{split}_karpathy.json --output-document={annotation_file}", shell=True)
|
252 |
+
ds = CocoCaptions(root=root_split, annFile=annotation_file, transform=transform, **kwargs)
|
253 |
+
elif dataset_name == 'multilingual_mscoco_captions':
|
254 |
+
from clip_benchmark.datasets import multilingual_mscoco
|
255 |
+
if(language not in multilingual_mscoco.SUPPORTED_LANGUAGES):
|
256 |
+
raise ValueError("Unsupported language for multilingual_ms_coco:", language)
|
257 |
+
|
258 |
+
def get_archive_name(target_split):
|
259 |
+
if target_split == "train":
|
260 |
+
return "train2014.zip"
|
261 |
+
elif target_split in ("val", "test"):
|
262 |
+
return "val2014.zip"
|
263 |
+
else:
|
264 |
+
raise ValueError(f"split should be train or val or test for `{dataset_name}`")
|
265 |
+
|
266 |
+
def download_mscoco_split(target_split):
|
267 |
+
archive_name = get_archive_name(target_split)
|
268 |
+
root_split = os.path.join(root, archive_name.replace(".zip", ""))
|
269 |
+
if not os.path.exists(root_split):
|
270 |
+
print(f"Downloading mscoco_captions {archive_name}...")
|
271 |
+
if not os.path.exists(os.path.join(root, archive_name)):
|
272 |
+
call(f"wget http://images.cocodataset.org/zips/{archive_name} --output-document={root}/{archive_name}", shell=True)
|
273 |
+
call(f"unzip {root}/{archive_name} -d {root}", shell=True)
|
274 |
+
|
275 |
+
# The multilingual MS-COCO uses images from various splits
|
276 |
+
for target_split in ['train', 'val', 'test']:
|
277 |
+
download_mscoco_split(target_split)
|
278 |
+
|
279 |
+
annotation_file = os.path.join(root, multilingual_mscoco.CAPTIONS_FILE_NAME.format(language))
|
280 |
+
if (os.path.exists(annotation_file) == False):
|
281 |
+
multilingual_mscoco.create_annotation_file(root, language)
|
282 |
+
|
283 |
+
ds = multilingual_mscoco.Multilingual_MSCOCO(root=root, ann_file=annotation_file, transform=transform, **kwargs)
|
284 |
+
elif dataset_name == "flickr30k":
|
285 |
+
# downloadable from https://www.kaggle.com/datasets/adityajn105/flickr30k
|
286 |
+
# https://github.com/mehdidc/retrieval_annotations/releases/tag/1.0.0(annotations)
|
287 |
+
# `kaggle datasets download -d adityajn105/flickr30k`
|
288 |
+
if not os.path.exists(root):
|
289 |
+
# Automatic download
|
290 |
+
print("Downloading flickr30k...")
|
291 |
+
if not has_kaggle():
|
292 |
+
print("Kaggle is needed to download the dataset. Please install it via `pip install kaggle`")
|
293 |
+
sys.exit(1)
|
294 |
+
call("kaggle datasets download -d hsankesara/flickr-image-dataset", shell=True)
|
295 |
+
call(f"unzip flickr-image-dataset.zip", shell=True)
|
296 |
+
call(f"mv flickr30k_images/flickr30k_images {root} && rm -rf flickr30k_images", shell=True)
|
297 |
+
if not annotation_file:
|
298 |
+
if language == "en":
|
299 |
+
annotation_file = f"{root}/flickr30k_{split}_karpathy.txt"
|
300 |
+
elif language == "zh":
|
301 |
+
annotation_file = f"{root}/flickr30k_{split}_zh.txt"
|
302 |
+
else:
|
303 |
+
raise ValueError(f"Unsupported language {language} for `{dataset_name}`")
|
304 |
+
if not os.path.exists(annotation_file):
|
305 |
+
# Download Flickr30K Karpathy test set
|
306 |
+
if language== "en":
|
307 |
+
call(f"wget https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/flickr30k_{split}_karpathy.txt --output-document={annotation_file}", shell=True)
|
308 |
+
elif language =="zh":
|
309 |
+
call(f"wget https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/flickr30k_{split}_zh.txt --output-document={annotation_file}", shell=True)
|
310 |
+
else:
|
311 |
+
raise ValueError(f"Unsupported language {language} for `{dataset_name}`")
|
312 |
+
ds = flickr.Flickr(root=root, ann_file=annotation_file, transform=transform, **kwargs)
|
313 |
+
elif dataset_name == "flickr8k":
|
314 |
+
# downloadable from https://www.kaggle.com/datasets/adityajn105/flickr8k
|
315 |
+
# `kaggle datasets download -d adityajn105/flickr8k`
|
316 |
+
# https://github.com/mehdidc/retrieval_annotations/releases/tag/1.0.0(annotations)
|
317 |
+
if not os.path.exists(root):
|
318 |
+
# Automatic download
|
319 |
+
print("Downloading flickr8k...")
|
320 |
+
if not has_kaggle():
|
321 |
+
print("Kaggle is needed to download the dataset. Please install it via `pip install kaggle`")
|
322 |
+
sys.exit(1)
|
323 |
+
call("kaggle datasets download -d adityajn105/flickr8k", shell=True)
|
324 |
+
call(f"unzip flickr8k.zip", shell=True)
|
325 |
+
call(f"mv Images {root}", shell=True)
|
326 |
+
call(f"mv captions.txt {root}", shell=True)
|
327 |
+
if not annotation_file:
|
328 |
+
if language == "en":
|
329 |
+
annotation_file = f"{root}/flickr8k_{split}_karpathy.txt"
|
330 |
+
elif language == "zh":
|
331 |
+
annotation_file = f"{root}/flickr8k_{split}_zh.txt"
|
332 |
+
else:
|
333 |
+
raise ValueError(f"Unsupported language {language} for `{dataset_name}`")
|
334 |
+
if not os.path.exists(annotation_file):
|
335 |
+
# Download Flickr8K Karpathy test set
|
336 |
+
if language == "en":
|
337 |
+
call(f"wget https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/flickr8k_{split}_karpathy.txt --output-document={annotation_file}", shell=True)
|
338 |
+
elif language == "zh":
|
339 |
+
call(f"wget https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/flickr8k_{split}_zh.txt --output-document={annotation_file}", shell=True)
|
340 |
+
else:
|
341 |
+
raise ValueError(f"Unsupported language {language} for `{dataset_name}`")
|
342 |
+
ds = flickr.Flickr(root=root, ann_file=annotation_file, transform=transform, **kwargs)
|
343 |
+
elif dataset_name == "food101":
|
344 |
+
ds = Food101(root=root, split="train" if train else "test", transform=transform, download=download, **kwargs)
|
345 |
+
# we use the default class names, we just replace "_" by spaces
|
346 |
+
# to delimit words
|
347 |
+
ds.classes = [cl.replace("_", " ") for cl in ds.classes]
|
348 |
+
elif dataset_name == "sun397":
|
349 |
+
warnings.warn(f"split argument ignored for `{dataset_name}`, there are no pre-defined train/test splits for this dataset")
|
350 |
+
# we use the default class names, we just replace "_" and "/" by spaces
|
351 |
+
# to delimit words
|
352 |
+
ds = SUN397(root=root, transform=transform, download=download, **kwargs)
|
353 |
+
ds.classes = [cl.replace("_", " ").replace("/", " ") for cl in ds.classes]
|
354 |
+
elif dataset_name == "cars":
|
355 |
+
ds = StanfordCars(root=root, split="train" if train else "test", transform=transform, download=download, **kwargs)
|
356 |
+
elif dataset_name == "fgvc_aircraft":
|
357 |
+
ds = FGVCAircraft(root=root, annotation_level="variant", split="train" if train else "test", transform=transform, download=download, **kwargs)
|
358 |
+
elif dataset_name == "dtd":
|
359 |
+
ds = DTD(root=root, split="train" if train else "test", transform=transform, download=download, **kwargs)
|
360 |
+
elif dataset_name == "pets":
|
361 |
+
ds = OxfordIIITPet(root=root, split="train" if train else "test", target_types="category", transform=transform, download=download, **kwargs)
|
362 |
+
elif dataset_name == "caltech101":
|
363 |
+
warnings.warn(f"split argument ignored for `{dataset_name}`, there are no pre-defined train/test splits for this dataset")
|
364 |
+
# broken download link (can't download google drive), fixed by this PR https://github.com/pytorch/vision/pull/5645
|
365 |
+
# also available in "vtab/caltech101" using VTAB splits, we advice to use VTAB version rather than this one
|
366 |
+
# since in this one (torchvision) there are no pre-defined test splits
|
367 |
+
ds = caltech101.Caltech101(root=root, target_type="category", transform=transform, download=download, **kwargs)
|
368 |
+
ds.classes = classnames["caltech101"]
|
369 |
+
elif dataset_name == "flowers":
|
370 |
+
ds = Flowers102(root=root, split="train" if train else "test", transform=transform, download=download, **kwargs)
|
371 |
+
# class indices started by 1 until it was fixed in a PR (#TODO link of the PR)
|
372 |
+
# if older torchvision version, fix it using a target transform that decrements label index
|
373 |
+
# TODO figure out minimal torchvision version needed instead of decrementing
|
374 |
+
if ds[0][1] == 1:
|
375 |
+
ds.target_transform = lambda y:y-1
|
376 |
+
ds.classes = classnames["flowers"]
|
377 |
+
elif dataset_name == "mnist":
|
378 |
+
ds = MNIST(root=root, train=train, transform=transform, download=download, **kwargs)
|
379 |
+
ds.classes = classnames["mnist"]
|
380 |
+
elif dataset_name == "stl10":
|
381 |
+
ds = STL10(root=root, split="train" if train else "test", transform=transform, download=download, **kwargs)
|
382 |
+
elif dataset_name == "eurosat":
|
383 |
+
warnings.warn(f"split argument ignored for `{dataset_name}`, there are no pre-defined train/test splits for this dataset")
|
384 |
+
ds = EuroSAT(root=root, transform=transform, download=download, **kwargs)
|
385 |
+
ds.classes = classnames["eurosat"]
|
386 |
+
elif dataset_name == "gtsrb":
|
387 |
+
ds = GTSRB(root=root, split="train" if train else "test", transform=transform, download=download, **kwargs)
|
388 |
+
ds.classes = classnames["gtsrb"]
|
389 |
+
elif dataset_name == "country211":
|
390 |
+
ds = Country211(root=root, split="train" if train else "test", transform=transform, download=download, **kwargs)
|
391 |
+
ds.classes = classnames["country211"]
|
392 |
+
elif dataset_name == "pcam":
|
393 |
+
# Dead link. Fixed by this PR on torchvision https://github.com/pytorch/vision/pull/5645
|
394 |
+
# TODO figure out minimal torchvision version needed
|
395 |
+
ds = PCAM(root=root, split="train" if train else "test", transform=transform, download=download, **kwargs)
|
396 |
+
ds.classes = classnames["pcam"]
|
397 |
+
elif dataset_name == "renderedsst2":
|
398 |
+
ds = RenderedSST2(root=root, split="train" if train else "test", transform=transform, download=download, **kwargs)
|
399 |
+
elif dataset_name == "fer2013":
|
400 |
+
# Downloadable from https://www.kaggle.com/datasets/msambare/fer2013
|
401 |
+
# `kaggle datasets download -d msambare/fer2013`
|
402 |
+
if not os.path.exists(root):
|
403 |
+
# Automatic download
|
404 |
+
print("Downloading fer2013...")
|
405 |
+
if not has_kaggle():
|
406 |
+
print("Kaggle is needed to download the dataset. Please install it via `pip install kaggle`")
|
407 |
+
sys.exit(1)
|
408 |
+
call("kaggle datasets download -d msambare/fer2013", shell=True)
|
409 |
+
call(f"unzip fer2013.zip -d {root}", shell=True)
|
410 |
+
root = os.path.join(root, "train" if train else "test")
|
411 |
+
ds = ImageFolder(root=root, transform=transform)
|
412 |
+
ds.classes = classnames["fer2013"]
|
413 |
+
elif dataset_name.startswith("tfds/"):
|
414 |
+
# TFDS datasets support using `timm` and `tensorflow_datasets`
|
415 |
+
prefix, *name_list = dataset_name.split("/")
|
416 |
+
name = "/".join(name_list)
|
417 |
+
ds = build_tfds_dataset(name, download=download, split=split, data_dir=root, transform=transform)
|
418 |
+
elif dataset_name.startswith("vtab/"):
|
419 |
+
# VTAB datasets support using `tensorflow_datasets` and `task_adaptation`
|
420 |
+
prefix, *name_list = dataset_name.split("/")
|
421 |
+
name = "/".join(name_list)
|
422 |
+
ds = build_vtab_dataset(name, download=download, split=split, data_dir=root, transform=transform, classnames=classnames)
|
423 |
+
elif dataset_name.startswith("wds/"):
|
424 |
+
# WebDataset support using `webdataset` library
|
425 |
+
name = dataset_name.split("/", 1)[1]
|
426 |
+
ds = build_wds_dataset(name, transform=transform, split=split, data_dir=root, cache_dir=wds_cache_dir)
|
427 |
+
elif dataset_name == "dummy":
|
428 |
+
ds = Dummy()
|
429 |
+
else:
|
430 |
+
raise ValueError(f"Unsupported dataset: {dataset_name}.")
|
431 |
+
ds.templates = templates
|
432 |
+
return ds
|
433 |
+
|
434 |
+
class Dummy():
|
435 |
+
|
436 |
+
def __init__(self):
|
437 |
+
self.classes = ["blank image", "noisy image"]
|
438 |
+
|
439 |
+
def __getitem__(self, i):
|
440 |
+
return torch.zeros(3,224,224), 0
|
441 |
+
|
442 |
+
def __len__(self):
|
443 |
+
return 1
|
444 |
+
|
445 |
+
def get_dataset_default_task(dataset):
|
446 |
+
if dataset in ("flickr30k", "flickr8k", "mscoco_captions", "multilingual_mscoco_captions"):
|
447 |
+
return "zeroshot_retrieval"
|
448 |
+
elif dataset.startswith("sugar_crepe"):
|
449 |
+
return "image_caption_selection"
|
450 |
+
else:
|
451 |
+
return "zeroshot_classification"
|
452 |
+
|
453 |
+
def get_dataset_collate_fn(dataset_name):
|
454 |
+
if dataset_name in ("mscoco_captions", "multilingual_mscoco_captions", "flickr30k", "flickr8k") or dataset_name.startswith("sugar_crepe"):
|
455 |
+
return image_captions_collate_fn
|
456 |
+
else:
|
457 |
+
return default_collate
|
458 |
+
|
459 |
+
def has_gdown():
|
460 |
+
return call("which gdown", shell=True) == 0
|
461 |
+
|
462 |
+
def has_kaggle():
|
463 |
+
return call("which kaggle", shell=True) == 0
|
464 |
+
|
465 |
+
|
466 |
+
def build_vtab_dataset(dataset_name, transform, download=True, split="test", data_dir="root", classnames=[]):
|
467 |
+
# Using VTAB splits instead of default TFDS splits
|
468 |
+
from .tfds import VTABIterableDataset, disable_gpus_on_tensorflow, download_tfds_dataset
|
469 |
+
|
470 |
+
# avoid Tensorflow owning GPUs to not clash with PyTorch
|
471 |
+
disable_gpus_on_tensorflow()
|
472 |
+
|
473 |
+
# by default we take classes from TFDS (default behavior if `classes` stays None),
|
474 |
+
# except for the datasets that will override `classes` (e.g., clevr_*)
|
475 |
+
classes = None
|
476 |
+
if dataset_name == "caltech101":
|
477 |
+
from task_adaptation.data.caltech import Caltech101
|
478 |
+
tfds_dataset = Caltech101(data_dir=data_dir)
|
479 |
+
classes = classnames["caltech101_vtab"]
|
480 |
+
elif dataset_name == "cars":
|
481 |
+
from task_adaptation.data.cars import CarsData
|
482 |
+
tfds_dataset = CarsData(data_dir=data_dir)
|
483 |
+
elif dataset_name in ("cifar10", "cifar100"):
|
484 |
+
from task_adaptation.data.cifar import CifarData
|
485 |
+
tfds_dataset = CifarData(data_dir=data_dir, num_classes=10 if dataset_name == "cifar10" else 100)
|
486 |
+
elif dataset_name.startswith("clevr_"):
|
487 |
+
from task_adaptation.data.clevr import CLEVRData
|
488 |
+
task = _extract_task(dataset_name)
|
489 |
+
assert task in ("count_all", "closest_object_distance")
|
490 |
+
tfds_dataset = CLEVRData(task=task, data_dir=data_dir)
|
491 |
+
if task == "count_all":
|
492 |
+
classes = classnames["clevr_count_all"]
|
493 |
+
elif task == "closest_object_distance":
|
494 |
+
classes = classnames["clevr_closest_object_distance"]
|
495 |
+
else:
|
496 |
+
raise ValueError(f"non supported: {task}")
|
497 |
+
elif dataset_name == "cub":
|
498 |
+
from task_adaptation.data.cub import CUB2011Data
|
499 |
+
tfds_dataset = CUB2011Data(data_dir=data_dir)
|
500 |
+
elif dataset_name == "diabetic_retinopathy":
|
501 |
+
# Needs manual download from Kaggle
|
502 |
+
# 1) `kaggle competitions download -c diabetic-retinopathy-detection` on $ROOT/downloads/manual
|
503 |
+
# 2) extract archives on $ROOT/downloads/manual
|
504 |
+
if not os.path.exists(data_dir):
|
505 |
+
# Automatic download
|
506 |
+
print("Downloading diabetic_retinopathy...")
|
507 |
+
if not has_kaggle():
|
508 |
+
print("Kaggle is needed to download the dataset. Please install it via `pip install kaggle`")
|
509 |
+
sys.exit(1)
|
510 |
+
os.makedirs(os.path.join(data_dir, "downloads", "manual"))
|
511 |
+
call(f"kaggle competitions download -c diabetic-retinopathy-detection -p {data_dir}/downloads/manual", shell=True)
|
512 |
+
call(f"cd {data_dir}/downloads/manual;unzip diabetic-retinopathy-detection.zip;cat train.zip*>train.zip;cat test.zip*>test.zip;unzip train.zip; unzip test.zip;unzip sample.zip;unzip trainLabels.csv.zip", shell=True)
|
513 |
+
from task_adaptation.data.diabetic_retinopathy import RetinopathyData
|
514 |
+
tfds_dataset = RetinopathyData(config="btgraham-300", data_dir=data_dir)
|
515 |
+
classes = classnames["diabetic_retinopathy"]
|
516 |
+
elif dataset_name == "dmlab":
|
517 |
+
from task_adaptation.data.dmlab import DmlabData
|
518 |
+
download_tfds_dataset("dmlab", data_dir=data_dir) # it's not called in the original VTAB code, so we do it explictly
|
519 |
+
tfds_dataset = DmlabData(data_dir=data_dir)
|
520 |
+
classes = classnames["dmlab"]
|
521 |
+
elif dataset_name.startswith("dsprites_"):
|
522 |
+
from task_adaptation.data.dsprites import DSpritesData
|
523 |
+
task = _extract_task(dataset_name)
|
524 |
+
assert task in ("label_shape", "label_scale", "label_orientation", "label_x_position", "label_y_position")
|
525 |
+
tfds_dataset = DSpritesData(task, data_dir=data_dir)
|
526 |
+
classes = tfds_dataset._dataset_builder.info.features[task].names
|
527 |
+
elif dataset_name == "dtd":
|
528 |
+
from task_adaptation.data.dtd import DTDData
|
529 |
+
tfds_dataset = DTDData(data_dir=data_dir)
|
530 |
+
elif dataset_name == "eurosat":
|
531 |
+
from task_adaptation.data.eurosat import EurosatData
|
532 |
+
tfds_dataset = EurosatData(subset="rgb", data_key="image", data_dir=data_dir)
|
533 |
+
classes = classnames["eurosat"]
|
534 |
+
elif dataset_name == "food101":
|
535 |
+
from task_adaptation.data.food101 import Food101Data
|
536 |
+
tfds_dataset = Food101Data(data_dir=data_dir)
|
537 |
+
elif dataset_name == "inaturalist":
|
538 |
+
from task_adaptation.data.inaturalist import INaturalistData
|
539 |
+
tfds_dataset = INaturalistData(data_dir=data_dir, year=2017)
|
540 |
+
elif dataset_name.startswith("kitti_"):
|
541 |
+
from .kitti import KittiData
|
542 |
+
task = _extract_task(dataset_name)
|
543 |
+
assert task in (
|
544 |
+
"count_all", "count_left", "count_far", "count_near",
|
545 |
+
"closest_object_distance", "closest_object_x_location",
|
546 |
+
"count_vehicles", "closest_vehicle_distance",
|
547 |
+
)
|
548 |
+
tfds_dataset = KittiData(task=task, data_dir=data_dir)
|
549 |
+
if task == "closest_vehicle_distance":
|
550 |
+
classes = classnames["kitti_closest_vehicle_distance"]
|
551 |
+
else:
|
552 |
+
raise ValueError(f"Unsupported task: {task}")
|
553 |
+
elif dataset_name == "flowers":
|
554 |
+
from task_adaptation.data.oxford_flowers102 import OxfordFlowers102Data
|
555 |
+
tfds_dataset = OxfordFlowers102Data(data_dir=data_dir)
|
556 |
+
elif dataset_name == "pets":
|
557 |
+
from task_adaptation.data.oxford_iiit_pet import OxfordIIITPetData
|
558 |
+
tfds_dataset = OxfordIIITPetData(data_dir=data_dir)
|
559 |
+
classes = classnames["pets"]
|
560 |
+
elif dataset_name == "pcam":
|
561 |
+
from task_adaptation.data.patch_camelyon import PatchCamelyonData
|
562 |
+
tfds_dataset = PatchCamelyonData(data_dir=data_dir)
|
563 |
+
classes = classnames["pcam"]
|
564 |
+
elif dataset_name == "resisc45":
|
565 |
+
# Needs download from OneDrive: https://1drv.ms/u/s!AmgKYzARBl5ca3HNaHIlzp_IXjs
|
566 |
+
# The archive needs to to be put at <DATASET_ROOT>/downloads/manual then extracted
|
567 |
+
if not os.path.exists(data_dir):
|
568 |
+
os.makedirs(os.path.join(data_dir, "downloads", "manual"))
|
569 |
+
call(f"wget 'https://onedrive.live.com/download?resid=5C5E061130630A68!107&authkey=!AHHNaHIlzp_IXjs' --output-document={data_dir}/downloads/manual/resisc45.rar", shell=True)
|
570 |
+
call(f"cd {data_dir}/downloads/manual;unrar x resisc45.rar", shell=True)
|
571 |
+
from task_adaptation.data.resisc45 import Resisc45Data
|
572 |
+
tfds_dataset = Resisc45Data(data_dir=data_dir)
|
573 |
+
elif dataset_name.startswith("smallnorb_"):
|
574 |
+
from task_adaptation.data.smallnorb import SmallNORBData
|
575 |
+
task = _extract_task(dataset_name)
|
576 |
+
assert task in ("label_category", "label_elevation", "label_azimuth", "label_lighting")
|
577 |
+
tfds_dataset = SmallNORBData(predicted_attribute=task, data_dir=data_dir)
|
578 |
+
classes = tfds_dataset._dataset_builder.info.features[task].names
|
579 |
+
elif dataset_name == "sun397":
|
580 |
+
from task_adaptation.data.sun397 import Sun397Data
|
581 |
+
#FIXME There is a problem in `sun397`, when TFDS tries download it
|
582 |
+
# there is an image that cannot be decoded. For the time being
|
583 |
+
# we will use torchvision's SUN397 instead.
|
584 |
+
tfds_dataset = Sun397Data(config="tfds", data_dir=data_dir)
|
585 |
+
elif dataset_name == "svhn":
|
586 |
+
from task_adaptation.data.svhn import SvhnData
|
587 |
+
tfds_dataset = SvhnData(data_dir=data_dir)
|
588 |
+
classes = classnames["svhn"]
|
589 |
+
else:
|
590 |
+
raise ValueError(f"Unsupported dataset: {dataset_name}")
|
591 |
+
ds = VTABIterableDataset(
|
592 |
+
tfds_dataset,
|
593 |
+
input_name="image", label_name="label",
|
594 |
+
transform=transform,
|
595 |
+
target_transform=int,
|
596 |
+
split=split,
|
597 |
+
classes=classes,
|
598 |
+
)
|
599 |
+
return ds
|
600 |
+
|
601 |
+
def build_tfds_dataset(name, transform, download=True, split="test", data_dir="root", classes=None):
|
602 |
+
from .tfds import disable_gpus_on_tensorflow
|
603 |
+
disable_gpus_on_tensorflow()
|
604 |
+
import tensorflow_datasets as tfds
|
605 |
+
import timm
|
606 |
+
builder = tfds.builder(name, data_dir=data_dir)
|
607 |
+
if download:
|
608 |
+
builder.download_and_prepare()
|
609 |
+
splits = list(builder.info.splits.keys())
|
610 |
+
assert split in splits, (split, splits)
|
611 |
+
ds = timm.data.create_dataset(f"tfds/{name}", data_dir, split=split, transform=transform, target_transform=int)
|
612 |
+
ds.classes = builder.info.features['label'].names if classes is None else classes
|
613 |
+
return ds
|
614 |
+
|
615 |
+
|
616 |
+
def build_wds_dataset(dataset_name, transform, split="test", data_dir="root", cache_dir=None):
|
617 |
+
"""
|
618 |
+
Load a dataset in WebDataset format. Either local paths or HTTP URLs can be specified.
|
619 |
+
Expected file structure is:
|
620 |
+
```
|
621 |
+
data_dir/
|
622 |
+
train/
|
623 |
+
nshards.txt
|
624 |
+
0.tar
|
625 |
+
1.tar
|
626 |
+
...
|
627 |
+
test/
|
628 |
+
nshards.txt
|
629 |
+
0.tar
|
630 |
+
1.tar
|
631 |
+
...
|
632 |
+
classnames.txt
|
633 |
+
zeroshot_classification_templates.txt
|
634 |
+
dataset_type.txt
|
635 |
+
```
|
636 |
+
Classnames and templates are required for zeroshot classification, while dataset type
|
637 |
+
(equal to "retrieval") is required for zeroshot retrieval datasets.
|
638 |
+
|
639 |
+
You can use the `clip_benchmark_export_wds` or corresponding API
|
640 |
+
(`clip_benchmark.webdataset_builder.convert_dataset`) to convert datasets to this format.
|
641 |
+
|
642 |
+
Set `cache_dir` to a path to cache the dataset, otherwise, no caching will occur.
|
643 |
+
"""
|
644 |
+
print(dataset_name, data_dir, split)
|
645 |
+
import webdataset as wds
|
646 |
+
|
647 |
+
def read_txt(fname):
|
648 |
+
if "://" in fname:
|
649 |
+
stream = os.popen("curl -L -s --fail '%s'" % fname, "r")
|
650 |
+
value = stream.read()
|
651 |
+
if stream.close():
|
652 |
+
raise FileNotFoundError("Failed to retreive data")
|
653 |
+
else:
|
654 |
+
with open(fname, "r") as file:
|
655 |
+
value = file.read()
|
656 |
+
return value
|
657 |
+
# Special handling for Huggingface datasets
|
658 |
+
# Git LFS files have a different file path to access the raw data than other files
|
659 |
+
if data_dir.startswith("https://huggingface.co/datasets"):
|
660 |
+
# Format: https://huggingface.co/datasets/<USERNAME>/<REPO>/tree/<BRANCH>
|
661 |
+
*split_url_head, _, url_path = data_dir.split("/", 7)
|
662 |
+
url_head = "/".join(split_url_head)
|
663 |
+
metadata_dir = "/".join([url_head, "raw", url_path])
|
664 |
+
tardata_dir = "/".join([url_head, "resolve", url_path])
|
665 |
+
else:
|
666 |
+
metadata_dir = tardata_dir = data_dir
|
667 |
+
# Get number of shards
|
668 |
+
nshards_fname = os.path.join(metadata_dir, split, "nshards.txt")
|
669 |
+
nshards = int(read_txt(nshards_fname)) # Do not catch FileNotFound, nshards.txt should be mandatory
|
670 |
+
# Get dataset type (classification or retrieval)
|
671 |
+
type_fname = os.path.join(metadata_dir, "dataset_type.txt")
|
672 |
+
try:
|
673 |
+
dataset_type = read_txt(type_fname).strip().lower()
|
674 |
+
except FileNotFoundError:
|
675 |
+
# print("WARNING: dataset_type.txt not found, assuming type=classification")
|
676 |
+
dataset_type = "classification"
|
677 |
+
#
|
678 |
+
filepattern = os.path.join(tardata_dir, split, "{0..%d}.tar" % (nshards - 1))
|
679 |
+
# Load webdataset (support WEBP, PNG, and JPG for now)
|
680 |
+
if not cache_dir or not isinstance(cache_dir, str):
|
681 |
+
cache_dir = None
|
682 |
+
dataset = (
|
683 |
+
wds.WebDataset(filepattern, cache_dir=cache_dir)
|
684 |
+
.decode(wds.autodecode.ImageHandler("pil", extensions=["webp", "png", "jpg", "jpeg"]))
|
685 |
+
)
|
686 |
+
# Load based on classification or retrieval task
|
687 |
+
if dataset_type == "retrieval":
|
688 |
+
dataset = (dataset
|
689 |
+
.to_tuple(["webp", "png", "jpg", "jpeg"], "txt")
|
690 |
+
.map_tuple(transform, str.splitlines)
|
691 |
+
)
|
692 |
+
dataset.classes = dataset.templates = None
|
693 |
+
else:
|
694 |
+
label_type = "npy" if dataset_type == "multilabel" else "cls" # Special case for multilabel
|
695 |
+
dataset = (dataset
|
696 |
+
.to_tuple(["webp", "png", "jpg", "jpeg"], label_type)
|
697 |
+
.map_tuple(transform, None)
|
698 |
+
)
|
699 |
+
# Get class names if present
|
700 |
+
classnames_fname = os.path.join(metadata_dir, "classnames.txt")
|
701 |
+
try:
|
702 |
+
dataset.classes = [line.strip() for line in read_txt(classnames_fname).splitlines() if line.strip()]
|
703 |
+
except FileNotFoundError:
|
704 |
+
print("WARNING: classnames.txt not found")
|
705 |
+
dataset.classes = None
|
706 |
+
# Get zeroshot classification templates if present
|
707 |
+
templates_fname = os.path.join(metadata_dir, "zeroshot_classification_templates.txt")
|
708 |
+
try:
|
709 |
+
dataset.templates = [line.strip() for line in read_txt(templates_fname).splitlines() if line.strip()]
|
710 |
+
except FileNotFoundError:
|
711 |
+
print("WARNING: zeroshot_classification_templates.txt not found")
|
712 |
+
dataset.templates = None
|
713 |
+
|
714 |
+
return dataset
|
715 |
+
|
716 |
+
|
717 |
+
def _extract_task(dataset_name):
|
718 |
+
prefix, *task_name_list = dataset_name.split("_")
|
719 |
+
task = "_".join(task_name_list)
|
720 |
+
return task
|
721 |
+
|
722 |
+
|
723 |
+
def image_captions_collate_fn(batch):
|
724 |
+
transposed = list(zip(*batch))
|
725 |
+
imgs = default_collate(transposed[0])
|
726 |
+
texts = transposed[1]
|
727 |
+
return imgs, texts
|
728 |
+
|
729 |
+
def get_dataset_collection_from_file(path):
|
730 |
+
return [l.strip() for l in open(path).readlines()]
|
731 |
+
|
732 |
+
dataset_collection = {
|
733 |
+
"vtab": [
|
734 |
+
"vtab/caltech101",
|
735 |
+
"vtab/cifar100",
|
736 |
+
"vtab/clevr_count_all",
|
737 |
+
"vtab/clevr_closest_object_distance",
|
738 |
+
"vtab/diabetic_retinopathy",
|
739 |
+
"vtab/dmlab",
|
740 |
+
"vtab/dsprites_label_orientation",
|
741 |
+
"vtab/dsprites_label_x_position",
|
742 |
+
"vtab/dtd",
|
743 |
+
"vtab/eurosat",
|
744 |
+
"vtab/kitti_closest_vehicle_distance",
|
745 |
+
"vtab/flowers",
|
746 |
+
"vtab/pets",
|
747 |
+
"vtab/pcam",
|
748 |
+
"vtab/resisc45",
|
749 |
+
"vtab/smallnorb_label_azimuth",
|
750 |
+
"vtab/smallnorb_label_elevation",
|
751 |
+
"sun397",
|
752 |
+
"vtab/svhn",
|
753 |
+
],
|
754 |
+
"vtab+":[
|
755 |
+
"imagenet1k",
|
756 |
+
"imagenetv2",
|
757 |
+
"imagenet_sketch",
|
758 |
+
"imagenet-a",
|
759 |
+
"imagenet-r",
|
760 |
+
"objectnet",
|
761 |
+
"fer2013",
|
762 |
+
"voc2007",
|
763 |
+
"voc2007_multilabel",
|
764 |
+
"sun397",
|
765 |
+
"cars",
|
766 |
+
"fgvc_aircraft",
|
767 |
+
"mnist",
|
768 |
+
"stl10",
|
769 |
+
"gtsrb",
|
770 |
+
"country211",
|
771 |
+
"renderedsst2",
|
772 |
+
"vtab/caltech101",
|
773 |
+
"vtab/cifar10",
|
774 |
+
"vtab/cifar100",
|
775 |
+
"vtab/clevr_count_all",
|
776 |
+
"vtab/clevr_closest_object_distance",
|
777 |
+
"vtab/diabetic_retinopathy",
|
778 |
+
"vtab/dmlab",
|
779 |
+
"vtab/dsprites_label_orientation",
|
780 |
+
"vtab/dsprites_label_x_position",
|
781 |
+
"vtab/dtd",
|
782 |
+
"vtab/eurosat",
|
783 |
+
"vtab/kitti_closest_vehicle_distance",
|
784 |
+
"vtab/flowers",
|
785 |
+
"vtab/pets",
|
786 |
+
"vtab/pcam",
|
787 |
+
"vtab/resisc45",
|
788 |
+
"vtab/smallnorb_label_azimuth",
|
789 |
+
"vtab/smallnorb_label_elevation",
|
790 |
+
"vtab/svhn",
|
791 |
+
],
|
792 |
+
"retrieval": [
|
793 |
+
"mscoco_captions",
|
794 |
+
"flickr8k",
|
795 |
+
"flickr30k",
|
796 |
+
],
|
797 |
+
"imagenet_robustness": [
|
798 |
+
"imagenetv2",
|
799 |
+
"imagenet_sketch",
|
800 |
+
"imagenet-a",
|
801 |
+
"imagenet-r",
|
802 |
+
"objectnet",
|
803 |
+
],
|
804 |
+
"sugar_crepe":[
|
805 |
+
"sugar_crepe/add_att",
|
806 |
+
"sugar_crepe/add_obj",
|
807 |
+
"sugar_crepe/replace_att",
|
808 |
+
"sugar_crepe/replace_obj",
|
809 |
+
"sugar_crepe/replace_rel",
|
810 |
+
"sugar_crepe/swap_att",
|
811 |
+
"sugar_crepe/swap_obj",
|
812 |
+
]
|
813 |
+
}
|
814 |
+
# use by imagenet robustness datasets
|
815 |
+
all_imagenet_wordnet_ids = ['n01440764', 'n01443537', 'n01484850', 'n01491361', 'n01494475', 'n01496331', 'n01498041', 'n01514668', 'n01514859', 'n01518878', 'n01530575', 'n01531178', 'n01532829', 'n01534433', 'n01537544', 'n01558993', 'n01560419', 'n01580077', 'n01582220', 'n01592084', 'n01601694', 'n01608432', 'n01614925', 'n01616318', 'n01622779', 'n01629819', 'n01630670', 'n01631663', 'n01632458', 'n01632777', 'n01641577', 'n01644373', 'n01644900', 'n01664065', 'n01665541', 'n01667114', 'n01667778', 'n01669191', 'n01675722', 'n01677366', 'n01682714', 'n01685808', 'n01687978', 'n01688243', 'n01689811', 'n01692333', 'n01693334', 'n01694178', 'n01695060', 'n01697457', 'n01698640', 'n01704323', 'n01728572', 'n01728920', 'n01729322', 'n01729977', 'n01734418', 'n01735189', 'n01737021', 'n01739381', 'n01740131', 'n01742172', 'n01744401', 'n01748264', 'n01749939', 'n01751748', 'n01753488', 'n01755581', 'n01756291', 'n01768244', 'n01770081', 'n01770393', 'n01773157', 'n01773549', 'n01773797', 'n01774384', 'n01774750', 'n01775062', 'n01776313', 'n01784675', 'n01795545', 'n01796340', 'n01797886', 'n01798484', 'n01806143', 'n01806567', 'n01807496', 'n01817953', 'n01818515', 'n01819313', 'n01820546', 'n01824575', 'n01828970', 'n01829413', 'n01833805', 'n01843065', 'n01843383', 'n01847000', 'n01855032', 'n01855672', 'n01860187', 'n01871265', 'n01872401', 'n01873310', 'n01877812', 'n01882714', 'n01883070', 'n01910747', 'n01914609', 'n01917289', 'n01924916', 'n01930112', 'n01943899', 'n01944390', 'n01945685', 'n01950731', 'n01955084', 'n01968897', 'n01978287', 'n01978455', 'n01980166', 'n01981276', 'n01983481', 'n01984695', 'n01985128', 'n01986214', 'n01990800', 'n02002556', 'n02002724', 'n02006656', 'n02007558', 'n02009229', 'n02009912', 'n02011460', 'n02012849', 'n02013706', 'n02017213', 'n02018207', 'n02018795', 'n02025239', 'n02027492', 'n02028035', 'n02033041', 'n02037110', 'n02051845', 'n02056570', 'n02058221', 'n02066245', 'n02071294', 'n02074367', 'n02077923', 'n02085620', 'n02085782', 'n02085936', 'n02086079', 'n02086240', 'n02086646', 'n02086910', 'n02087046', 'n02087394', 'n02088094', 'n02088238', 'n02088364', 'n02088466', 'n02088632', 'n02089078', 'n02089867', 'n02089973', 'n02090379', 'n02090622', 'n02090721', 'n02091032', 'n02091134', 'n02091244', 'n02091467', 'n02091635', 'n02091831', 'n02092002', 'n02092339', 'n02093256', 'n02093428', 'n02093647', 'n02093754', 'n02093859', 'n02093991', 'n02094114', 'n02094258', 'n02094433', 'n02095314', 'n02095570', 'n02095889', 'n02096051', 'n02096177', 'n02096294', 'n02096437', 'n02096585', 'n02097047', 'n02097130', 'n02097209', 'n02097298', 'n02097474', 'n02097658', 'n02098105', 'n02098286', 'n02098413', 'n02099267', 'n02099429', 'n02099601', 'n02099712', 'n02099849', 'n02100236', 'n02100583', 'n02100735', 'n02100877', 'n02101006', 'n02101388', 'n02101556', 'n02102040', 'n02102177', 'n02102318', 'n02102480', 'n02102973', 'n02104029', 'n02104365', 'n02105056', 'n02105162', 'n02105251', 'n02105412', 'n02105505', 'n02105641', 'n02105855', 'n02106030', 'n02106166', 'n02106382', 'n02106550', 'n02106662', 'n02107142', 'n02107312', 'n02107574', 'n02107683', 'n02107908', 'n02108000', 'n02108089', 'n02108422', 'n02108551', 'n02108915', 'n02109047', 'n02109525', 'n02109961', 'n02110063', 'n02110185', 'n02110341', 'n02110627', 'n02110806', 'n02110958', 'n02111129', 'n02111277', 'n02111500', 'n02111889', 'n02112018', 'n02112137', 'n02112350', 'n02112706', 'n02113023', 'n02113186', 'n02113624', 'n02113712', 'n02113799', 'n02113978', 'n02114367', 'n02114548', 'n02114712', 'n02114855', 'n02115641', 'n02115913', 'n02116738', 'n02117135', 'n02119022', 'n02119789', 'n02120079', 'n02120505', 'n02123045', 'n02123159', 'n02123394', 'n02123597', 'n02124075', 'n02125311', 'n02127052', 'n02128385', 'n02128757', 'n02128925', 'n02129165', 'n02129604', 'n02130308', 'n02132136', 'n02133161', 'n02134084', 'n02134418', 'n02137549', 'n02138441', 'n02165105', 'n02165456', 'n02167151', 'n02168699', 'n02169497', 'n02172182', 'n02174001', 'n02177972', 'n02190166', 'n02206856', 'n02219486', 'n02226429', 'n02229544', 'n02231487', 'n02233338', 'n02236044', 'n02256656', 'n02259212', 'n02264363', 'n02268443', 'n02268853', 'n02276258', 'n02277742', 'n02279972', 'n02280649', 'n02281406', 'n02281787', 'n02317335', 'n02319095', 'n02321529', 'n02325366', 'n02326432', 'n02328150', 'n02342885', 'n02346627', 'n02356798', 'n02361337', 'n02363005', 'n02364673', 'n02389026', 'n02391049', 'n02395406', 'n02396427', 'n02397096', 'n02398521', 'n02403003', 'n02408429', 'n02410509', 'n02412080', 'n02415577', 'n02417914', 'n02422106', 'n02422699', 'n02423022', 'n02437312', 'n02437616', 'n02441942', 'n02442845', 'n02443114', 'n02443484', 'n02444819', 'n02445715', 'n02447366', 'n02454379', 'n02457408', 'n02480495', 'n02480855', 'n02481823', 'n02483362', 'n02483708', 'n02484975', 'n02486261', 'n02486410', 'n02487347', 'n02488291', 'n02488702', 'n02489166', 'n02490219', 'n02492035', 'n02492660', 'n02493509', 'n02493793', 'n02494079', 'n02497673', 'n02500267', 'n02504013', 'n02504458', 'n02509815', 'n02510455', 'n02514041', 'n02526121', 'n02536864', 'n02606052', 'n02607072', 'n02640242', 'n02641379', 'n02643566', 'n02655020', 'n02666196', 'n02667093', 'n02669723', 'n02672831', 'n02676566', 'n02687172', 'n02690373', 'n02692877', 'n02699494', 'n02701002', 'n02704792', 'n02708093', 'n02727426', 'n02730930', 'n02747177', 'n02749479', 'n02769748', 'n02776631', 'n02777292', 'n02782093', 'n02783161', 'n02786058', 'n02787622', 'n02788148', 'n02790996', 'n02791124', 'n02791270', 'n02793495', 'n02794156', 'n02795169', 'n02797295', 'n02799071', 'n02802426', 'n02804414', 'n02804610', 'n02807133', 'n02808304', 'n02808440', 'n02814533', 'n02814860', 'n02815834', 'n02817516', 'n02823428', 'n02823750', 'n02825657', 'n02834397', 'n02835271', 'n02837789', 'n02840245', 'n02841315', 'n02843684', 'n02859443', 'n02860847', 'n02865351', 'n02869837', 'n02870880', 'n02871525', 'n02877765', 'n02879718', 'n02883205', 'n02892201', 'n02892767', 'n02894605', 'n02895154', 'n02906734', 'n02909870', 'n02910353', 'n02916936', 'n02917067', 'n02927161', 'n02930766', 'n02939185', 'n02948072', 'n02950826', 'n02951358', 'n02951585', 'n02963159', 'n02965783', 'n02966193', 'n02966687', 'n02971356', 'n02974003', 'n02977058', 'n02978881', 'n02979186', 'n02980441', 'n02981792', 'n02988304', 'n02992211', 'n02992529', 'n02999410', 'n03000134', 'n03000247', 'n03000684', 'n03014705', 'n03016953', 'n03017168', 'n03018349', 'n03026506', 'n03028079', 'n03032252', 'n03041632', 'n03042490', 'n03045698', 'n03047690', 'n03062245', 'n03063599', 'n03063689', 'n03065424', 'n03075370', 'n03085013', 'n03089624', 'n03095699', 'n03100240', 'n03109150', 'n03110669', 'n03124043', 'n03124170', 'n03125729', 'n03126707', 'n03127747', 'n03127925', 'n03131574', 'n03133878', 'n03134739', 'n03141823', 'n03146219', 'n03160309', 'n03179701', 'n03180011', 'n03187595', 'n03188531', 'n03196217', 'n03197337', 'n03201208', 'n03207743', 'n03207941', 'n03208938', 'n03216828', 'n03218198', 'n03220513', 'n03223299', 'n03240683', 'n03249569', 'n03250847', 'n03255030', 'n03259280', 'n03271574', 'n03272010', 'n03272562', 'n03290653', 'n03291819', 'n03297495', 'n03314780', 'n03325584', 'n03337140', 'n03344393', 'n03345487', 'n03347037', 'n03355925', 'n03372029', 'n03376595', 'n03379051', 'n03384352', 'n03388043', 'n03388183', 'n03388549', 'n03393912', 'n03394916', 'n03400231', 'n03404251', 'n03417042', 'n03424325', 'n03425413', 'n03443371', 'n03444034', 'n03445777', 'n03445924', 'n03447447', 'n03447721', 'n03450230', 'n03452741', 'n03457902', 'n03459775', 'n03461385', 'n03467068', 'n03476684', 'n03476991', 'n03478589', 'n03481172', 'n03482405', 'n03483316', 'n03485407', 'n03485794', 'n03492542', 'n03494278', 'n03495258', 'n03496892', 'n03498962', 'n03527444', 'n03529860', 'n03530642', 'n03532672', 'n03534580', 'n03535780', 'n03538406', 'n03544143', 'n03584254', 'n03584829', 'n03590841', 'n03594734', 'n03594945', 'n03595614', 'n03598930', 'n03599486', 'n03602883', 'n03617480', 'n03623198', 'n03627232', 'n03630383', 'n03633091', 'n03637318', 'n03642806', 'n03649909', 'n03657121', 'n03658185', 'n03661043', 'n03662601', 'n03666591', 'n03670208', 'n03673027', 'n03676483', 'n03680355', 'n03690938', 'n03691459', 'n03692522', 'n03697007', 'n03706229', 'n03709823', 'n03710193', 'n03710637', 'n03710721', 'n03717622', 'n03720891', 'n03721384', 'n03724870', 'n03729826', 'n03733131', 'n03733281', 'n03733805', 'n03742115', 'n03743016', 'n03759954', 'n03761084', 'n03763968', 'n03764736', 'n03769881', 'n03770439', 'n03770679', 'n03773504', 'n03775071', 'n03775546', 'n03776460', 'n03777568', 'n03777754', 'n03781244', 'n03782006', 'n03785016', 'n03786901', 'n03787032', 'n03788195', 'n03788365', 'n03791053', 'n03792782', 'n03792972', 'n03793489', 'n03794056', 'n03796401', 'n03803284', 'n03804744', 'n03814639', 'n03814906', 'n03825788', 'n03832673', 'n03837869', 'n03838899', 'n03840681', 'n03841143', 'n03843555', 'n03854065', 'n03857828', 'n03866082', 'n03868242', 'n03868863', 'n03871628', 'n03873416', 'n03874293', 'n03874599', 'n03876231', 'n03877472', 'n03877845', 'n03884397', 'n03887697', 'n03888257', 'n03888605', 'n03891251', 'n03891332', 'n03895866', 'n03899768', 'n03902125', 'n03903868', 'n03908618', 'n03908714', 'n03916031', 'n03920288', 'n03924679', 'n03929660', 'n03929855', 'n03930313', 'n03930630', 'n03933933', 'n03935335', 'n03937543', 'n03938244', 'n03942813', 'n03944341', 'n03947888', 'n03950228', 'n03954731', 'n03956157', 'n03958227', 'n03961711', 'n03967562', 'n03970156', 'n03976467', 'n03976657', 'n03977966', 'n03980874', 'n03982430', 'n03983396', 'n03991062', 'n03992509', 'n03995372', 'n03998194', 'n04004767', 'n04005630', 'n04008634', 'n04009552', 'n04019541', 'n04023962', 'n04026417', 'n04033901', 'n04033995', 'n04037443', 'n04039381', 'n04040759', 'n04041544', 'n04044716', 'n04049303', 'n04065272', 'n04067472', 'n04069434', 'n04070727', 'n04074963', 'n04081281', 'n04086273', 'n04090263', 'n04099969', 'n04111531', 'n04116512', 'n04118538', 'n04118776', 'n04120489', 'n04125021', 'n04127249', 'n04131690', 'n04133789', 'n04136333', 'n04141076', 'n04141327', 'n04141975', 'n04146614', 'n04147183', 'n04149813', 'n04152593', 'n04153751', 'n04154565', 'n04162706', 'n04179913', 'n04192698', 'n04200800', 'n04201297', 'n04204238', 'n04204347', 'n04208210', 'n04209133', 'n04209239', 'n04228054', 'n04229816', 'n04235860', 'n04238763', 'n04239074', 'n04243546', 'n04251144', 'n04252077', 'n04252225', 'n04254120', 'n04254680', 'n04254777', 'n04258138', 'n04259630', 'n04263257', 'n04264628', 'n04265275', 'n04266014', 'n04270147', 'n04273569', 'n04275548', 'n04277352', 'n04285008', 'n04286575', 'n04296562', 'n04310018', 'n04311004', 'n04311174', 'n04317175', 'n04325704', 'n04326547', 'n04328186', 'n04330267', 'n04332243', 'n04335435', 'n04336792', 'n04344873', 'n04346328', 'n04347754', 'n04350905', 'n04355338', 'n04355933', 'n04356056', 'n04357314', 'n04366367', 'n04367480', 'n04370456', 'n04371430', 'n04371774', 'n04372370', 'n04376876', 'n04380533', 'n04389033', 'n04392985', 'n04398044', 'n04399382', 'n04404412', 'n04409515', 'n04417672', 'n04418357', 'n04423845', 'n04428191', 'n04429376', 'n04435653', 'n04442312', 'n04443257', 'n04447861', 'n04456115', 'n04458633', 'n04461696', 'n04462240', 'n04465501', 'n04467665', 'n04476259', 'n04479046', 'n04482393', 'n04483307', 'n04485082', 'n04486054', 'n04487081', 'n04487394', 'n04493381', 'n04501370', 'n04505470', 'n04507155', 'n04509417', 'n04515003', 'n04517823', 'n04522168', 'n04523525', 'n04525038', 'n04525305', 'n04532106', 'n04532670', 'n04536866', 'n04540053', 'n04542943', 'n04548280', 'n04548362', 'n04550184', 'n04552348', 'n04553703', 'n04554684', 'n04557648', 'n04560804', 'n04562935', 'n04579145', 'n04579432', 'n04584207', 'n04589890', 'n04590129', 'n04591157', 'n04591713', 'n04592741', 'n04596742', 'n04597913', 'n04599235', 'n04604644', 'n04606251', 'n04612504', 'n04613696', 'n06359193', 'n06596364', 'n06785654', 'n06794110', 'n06874185', 'n07248320', 'n07565083', 'n07579787', 'n07583066', 'n07584110', 'n07590611', 'n07613480', 'n07614500', 'n07615774', 'n07684084', 'n07693725', 'n07695742', 'n07697313', 'n07697537', 'n07711569', 'n07714571', 'n07714990', 'n07715103', 'n07716358', 'n07716906', 'n07717410', 'n07717556', 'n07718472', 'n07718747', 'n07720875', 'n07730033', 'n07734744', 'n07742313', 'n07745940', 'n07747607', 'n07749582', 'n07753113', 'n07753275', 'n07753592', 'n07754684', 'n07760859', 'n07768694', 'n07802026', 'n07831146', 'n07836838', 'n07860988', 'n07871810', 'n07873807', 'n07875152', 'n07880968', 'n07892512', 'n07920052', 'n07930864', 'n07932039', 'n09193705', 'n09229709', 'n09246464', 'n09256479', 'n09288635', 'n09332890', 'n09399592', 'n09421951', 'n09428293', 'n09468604', 'n09472597', 'n09835506', 'n10148035', 'n10565667', 'n11879895', 'n11939491', 'n12057211', 'n12144580', 'n12267677', 'n12620546', 'n12768682', 'n12985857', 'n12998815', 'n13037406', 'n13040303', 'n13044778', 'n13052670', 'n13054560', 'n13133613', 'n15075141']
|
816 |
+
|
817 |
+
|
CLIP_benchmark/clip_benchmark/datasets/caltech101.py
ADDED
@@ -0,0 +1,243 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Code adapted from https://github.com/pytorch/vision/blob/main/torchvision/datasets/caltech.py
|
3 |
+
Modification of caltech101 from torchvision where the background class is not removed
|
4 |
+
Thanks to the authors of torchvision
|
5 |
+
"""
|
6 |
+
from glob import glob
|
7 |
+
import os
|
8 |
+
import os.path
|
9 |
+
from typing import Any, Callable, List, Optional, Union, Tuple
|
10 |
+
|
11 |
+
from PIL import Image
|
12 |
+
|
13 |
+
from torchvision.datasets.utils import download_and_extract_archive, verify_str_arg
|
14 |
+
from torchvision.datasets.vision import VisionDataset
|
15 |
+
|
16 |
+
|
17 |
+
class Caltech101(VisionDataset):
|
18 |
+
"""`Caltech 101 <http://www.vision.caltech.edu/Image_Datasets/Caltech101/>`_ Dataset.
|
19 |
+
|
20 |
+
.. warning::
|
21 |
+
|
22 |
+
This class needs `scipy <https://docs.scipy.org/doc/>`_ to load target files from `.mat` format.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
root (string): Root directory of dataset where directory
|
26 |
+
``caltech101`` exists or will be saved to if download is set to True.
|
27 |
+
target_type (string or list, optional): Type of target to use, ``category`` or
|
28 |
+
``annotation``. Can also be a list to output a tuple with all specified
|
29 |
+
target types. ``category`` represents the target class, and
|
30 |
+
``annotation`` is a list of points from a hand-generated outline.
|
31 |
+
Defaults to ``category``.
|
32 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
33 |
+
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
34 |
+
target_transform (callable, optional): A function/transform that takes in the
|
35 |
+
target and transforms it.
|
36 |
+
download (bool, optional): If true, downloads the dataset from the internet and
|
37 |
+
puts it in root directory. If dataset is already downloaded, it is not
|
38 |
+
downloaded again.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
root: str,
|
44 |
+
target_type: Union[List[str], str] = "category",
|
45 |
+
transform: Optional[Callable] = None,
|
46 |
+
target_transform: Optional[Callable] = None,
|
47 |
+
download: bool = False,
|
48 |
+
) -> None:
|
49 |
+
super().__init__(os.path.join(root, "caltech101"), transform=transform, target_transform=target_transform)
|
50 |
+
os.makedirs(self.root, exist_ok=True)
|
51 |
+
if isinstance(target_type, str):
|
52 |
+
target_type = [target_type]
|
53 |
+
self.target_type = [verify_str_arg(t, "target_type", ("category", "annotation")) for t in target_type]
|
54 |
+
|
55 |
+
if download:
|
56 |
+
self.download()
|
57 |
+
|
58 |
+
if not self._check_integrity():
|
59 |
+
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
|
60 |
+
|
61 |
+
self.categories = sorted(os.listdir(os.path.join(self.root, "101_ObjectCategories")))
|
62 |
+
#self.categories.remove("BACKGROUND_Google") # this is not a real class
|
63 |
+
|
64 |
+
# For some reason, the category names in "101_ObjectCategories" and
|
65 |
+
# "Annotations" do not always match. This is a manual map between the
|
66 |
+
# two. Defaults to using same name, since most names are fine.
|
67 |
+
name_map = {
|
68 |
+
"Faces": "Faces_2",
|
69 |
+
"Faces_easy": "Faces_3",
|
70 |
+
"Motorbikes": "Motorbikes_16",
|
71 |
+
"airplanes": "Airplanes_Side_2",
|
72 |
+
}
|
73 |
+
self.annotation_categories = list(map(lambda x: name_map[x] if x in name_map else x, self.categories))
|
74 |
+
|
75 |
+
self.index: List[int] = []
|
76 |
+
self.y = []
|
77 |
+
for (i, c) in enumerate(self.categories):
|
78 |
+
n = len(glob(os.path.join(self.root, "101_ObjectCategories", c, "*.jpg")))
|
79 |
+
self.index.extend(range(1, n + 1))
|
80 |
+
self.y.extend(n * [i])
|
81 |
+
|
82 |
+
def __getitem__(self, index: int) -> Tuple[Any, Any]:
|
83 |
+
"""
|
84 |
+
Args:
|
85 |
+
index (int): Index
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
tuple: (image, target) where the type of target specified by target_type.
|
89 |
+
"""
|
90 |
+
import scipy.io
|
91 |
+
|
92 |
+
img = Image.open(
|
93 |
+
os.path.join(
|
94 |
+
self.root,
|
95 |
+
"101_ObjectCategories",
|
96 |
+
self.categories[self.y[index]],
|
97 |
+
f"image_{self.index[index]:04d}.jpg",
|
98 |
+
)
|
99 |
+
)
|
100 |
+
|
101 |
+
target: Any = []
|
102 |
+
for t in self.target_type:
|
103 |
+
if t == "category":
|
104 |
+
target.append(self.y[index])
|
105 |
+
elif t == "annotation":
|
106 |
+
data = scipy.io.loadmat(
|
107 |
+
os.path.join(
|
108 |
+
self.root,
|
109 |
+
"Annotations",
|
110 |
+
self.annotation_categories[self.y[index]],
|
111 |
+
f"annotation_{self.index[index]:04d}.mat",
|
112 |
+
)
|
113 |
+
)
|
114 |
+
target.append(data["obj_contour"])
|
115 |
+
target = tuple(target) if len(target) > 1 else target[0]
|
116 |
+
|
117 |
+
if self.transform is not None:
|
118 |
+
img = self.transform(img)
|
119 |
+
|
120 |
+
if self.target_transform is not None:
|
121 |
+
target = self.target_transform(target)
|
122 |
+
|
123 |
+
return img, target
|
124 |
+
|
125 |
+
def _check_integrity(self) -> bool:
|
126 |
+
# can be more robust and check hash of files
|
127 |
+
return os.path.exists(os.path.join(self.root, "101_ObjectCategories"))
|
128 |
+
|
129 |
+
def __len__(self) -> int:
|
130 |
+
return len(self.index)
|
131 |
+
|
132 |
+
def download(self) -> None:
|
133 |
+
if self._check_integrity():
|
134 |
+
print("Files already downloaded and verified")
|
135 |
+
return
|
136 |
+
|
137 |
+
download_and_extract_archive(
|
138 |
+
"https://drive.google.com/file/d/137RyRjvTBkBiIfeYBNZBtViDHQ6_Ewsp",
|
139 |
+
self.root,
|
140 |
+
filename="101_ObjectCategories.tar.gz",
|
141 |
+
md5="b224c7392d521a49829488ab0f1120d9",
|
142 |
+
)
|
143 |
+
download_and_extract_archive(
|
144 |
+
"https://drive.google.com/file/d/175kQy3UsZ0wUEHZjqkUDdNVssr7bgh_m",
|
145 |
+
self.root,
|
146 |
+
filename="Annotations.tar",
|
147 |
+
md5="6f83eeb1f24d99cab4eb377263132c91",
|
148 |
+
)
|
149 |
+
|
150 |
+
def extra_repr(self) -> str:
|
151 |
+
return "Target type: {target_type}".format(**self.__dict__)
|
152 |
+
|
153 |
+
|
154 |
+
class Caltech256(VisionDataset):
|
155 |
+
"""`Caltech 256 <http://www.vision.caltech.edu/Image_Datasets/Caltech256/>`_ Dataset.
|
156 |
+
|
157 |
+
Args:
|
158 |
+
root (string): Root directory of dataset where directory
|
159 |
+
``caltech256`` exists or will be saved to if download is set to True.
|
160 |
+
transform (callable, optional): A function/transform that takes in an PIL image
|
161 |
+
and returns a transformed version. E.g, ``transforms.RandomCrop``
|
162 |
+
target_transform (callable, optional): A function/transform that takes in the
|
163 |
+
target and transforms it.
|
164 |
+
download (bool, optional): If true, downloads the dataset from the internet and
|
165 |
+
puts it in root directory. If dataset is already downloaded, it is not
|
166 |
+
downloaded again.
|
167 |
+
"""
|
168 |
+
|
169 |
+
def __init__(
|
170 |
+
self,
|
171 |
+
root: str,
|
172 |
+
transform: Optional[Callable] = None,
|
173 |
+
target_transform: Optional[Callable] = None,
|
174 |
+
download: bool = False,
|
175 |
+
) -> None:
|
176 |
+
super().__init__(os.path.join(root, "caltech256"), transform=transform, target_transform=target_transform)
|
177 |
+
os.makedirs(self.root, exist_ok=True)
|
178 |
+
|
179 |
+
if download:
|
180 |
+
self.download()
|
181 |
+
|
182 |
+
if not self._check_integrity():
|
183 |
+
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
|
184 |
+
|
185 |
+
self.categories = sorted(os.listdir(os.path.join(self.root, "256_ObjectCategories")))
|
186 |
+
self.index: List[int] = []
|
187 |
+
self.y = []
|
188 |
+
for (i, c) in enumerate(self.categories):
|
189 |
+
n = len(
|
190 |
+
[
|
191 |
+
item
|
192 |
+
for item in os.listdir(os.path.join(self.root, "256_ObjectCategories", c))
|
193 |
+
if item.endswith(".jpg")
|
194 |
+
]
|
195 |
+
)
|
196 |
+
self.index.extend(range(1, n + 1))
|
197 |
+
self.y.extend(n * [i])
|
198 |
+
|
199 |
+
def __getitem__(self, index: int) -> Tuple[Any, Any]:
|
200 |
+
"""
|
201 |
+
Args:
|
202 |
+
index (int): Index
|
203 |
+
|
204 |
+
Returns:
|
205 |
+
tuple: (image, target) where target is index of the target class.
|
206 |
+
"""
|
207 |
+
img = Image.open(
|
208 |
+
os.path.join(
|
209 |
+
self.root,
|
210 |
+
"256_ObjectCategories",
|
211 |
+
self.categories[self.y[index]],
|
212 |
+
f"{self.y[index] + 1:03d}_{self.index[index]:04d}.jpg",
|
213 |
+
)
|
214 |
+
)
|
215 |
+
|
216 |
+
target = self.y[index]
|
217 |
+
|
218 |
+
if self.transform is not None:
|
219 |
+
img = self.transform(img)
|
220 |
+
|
221 |
+
if self.target_transform is not None:
|
222 |
+
target = self.target_transform(target)
|
223 |
+
|
224 |
+
return img, target
|
225 |
+
|
226 |
+
def _check_integrity(self) -> bool:
|
227 |
+
# can be more robust and check hash of files
|
228 |
+
return os.path.exists(os.path.join(self.root, "256_ObjectCategories"))
|
229 |
+
|
230 |
+
def __len__(self) -> int:
|
231 |
+
return len(self.index)
|
232 |
+
|
233 |
+
def download(self) -> None:
|
234 |
+
if self._check_integrity():
|
235 |
+
print("Files already downloaded and verified")
|
236 |
+
return
|
237 |
+
|
238 |
+
download_and_extract_archive(
|
239 |
+
"https://drive.google.com/file/d/1r6o0pSROcV1_VwT4oSjA2FBUSCWGuxLK",
|
240 |
+
self.root,
|
241 |
+
filename="256_ObjectCategories.tar",
|
242 |
+
md5="67b4f42ca05d46448c6bb8ecd2220f6d",
|
243 |
+
)
|
CLIP_benchmark/clip_benchmark/datasets/cn_classnames.json
ADDED
@@ -0,0 +1,1004 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imagenet1k": [
|
3 |
+
"\u4e01\u9cb7",
|
4 |
+
"\u91d1\u9c7c",
|
5 |
+
"\u5927\u767d\u9ca8",
|
6 |
+
"\u864e\u9ca8",
|
7 |
+
"\u9524\u5934\u9ca8",
|
8 |
+
"\u7535\u9cd0",
|
9 |
+
"\u9ec4\u8c82\u9c7c",
|
10 |
+
"\u516c\u9e21",
|
11 |
+
"\u6bcd\u9e21",
|
12 |
+
"\u9e35\u9e1f",
|
13 |
+
"\u71d5\u96c0",
|
14 |
+
"\u91d1\u7fc5\u96c0",
|
15 |
+
"\u5bb6\u6731\u96c0",
|
16 |
+
"\u706f\u82af\u8349\u96c0",
|
17 |
+
"\u975b\u84dd\u96c0",
|
18 |
+
"\u84dd\u9e40",
|
19 |
+
"\u591c\u83ba",
|
20 |
+
"\u677e\u9e26",
|
21 |
+
"\u559c\u9e4a",
|
22 |
+
"\u5c71\u96c0",
|
23 |
+
"\u6cb3\u9e1f",
|
24 |
+
"\u9e22\uff08\u731b\u79bd\uff09",
|
25 |
+
"\u79c3\u5934\u9e70",
|
26 |
+
"\u79c3\u9e6b",
|
27 |
+
"\u5927\u7070\u732b\u5934\u9e70",
|
28 |
+
"\u6b27\u6d32\u706b\u877e\u8788",
|
29 |
+
"\u666e\u901a\u877e\u8788",
|
30 |
+
"\u6c34\u8725",
|
31 |
+
"\u6591\u70b9\u877e\u8788",
|
32 |
+
"\u877e\u8788",
|
33 |
+
"\u725b\u86d9",
|
34 |
+
"\u6811\u86d9",
|
35 |
+
"\u5c3e\u86d9",
|
36 |
+
"\u7ea2\u6d77\u9f9f",
|
37 |
+
"\u76ae\u9769\u9f9f",
|
38 |
+
"\u6ce5\u9f9f",
|
39 |
+
"\u6de1\u6c34\u9f9f",
|
40 |
+
"\u7bb1\u9f9f",
|
41 |
+
"\u5e26\u72b6\u58c1\u864e",
|
42 |
+
"\u666e\u901a\u9b23\u8725",
|
43 |
+
"\u7f8e\u56fd\u53d8\u8272\u9f99",
|
44 |
+
"\u97ad\u5c3e\u8725\u8734",
|
45 |
+
"\u98de\u9f99\u79d1\u8725\u8734",
|
46 |
+
"\u8936\u8fb9\u8725\u8734",
|
47 |
+
"\u9cc4\u9c7c\u8725\u8734",
|
48 |
+
"\u6bd2\u8725",
|
49 |
+
"\u7eff\u8725\u8734",
|
50 |
+
"\u975e\u6d32\u53d8\u8272\u9f99",
|
51 |
+
"\u79d1\u83ab\u591a\u8725\u8734",
|
52 |
+
"\u975e\u6d32\u9cc4",
|
53 |
+
"\u7f8e\u56fd\u9cc4\u9c7c",
|
54 |
+
"\u4e09\u89d2\u9f99",
|
55 |
+
"\u96f7\u86c7",
|
56 |
+
"\u73af\u86c7",
|
57 |
+
"\u5e0c\u814a\u86c7",
|
58 |
+
"\u7eff\u86c7",
|
59 |
+
"\u56fd\u738b\u86c7",
|
60 |
+
"\u889c\u5e26\u86c7",
|
61 |
+
"\u6c34\u86c7",
|
62 |
+
"\u85e4\u86c7",
|
63 |
+
"\u591c\u86c7",
|
64 |
+
"\u5927\u87d2\u86c7",
|
65 |
+
"\u5ca9\u77f3\u87d2\u86c7",
|
66 |
+
"\u5370\u5ea6\u773c\u955c\u86c7",
|
67 |
+
"\u7eff\u66fc\u5df4",
|
68 |
+
"\u6d77\u86c7",
|
69 |
+
"\u89d2\u8179\u86c7",
|
70 |
+
"\u83f1\u7eb9\u54cd\u5c3e\u86c7",
|
71 |
+
"\u89d2\u54cd\u5c3e\u86c7",
|
72 |
+
"\u4e09\u53f6\u866b",
|
73 |
+
"\u76f2\u8718\u86db",
|
74 |
+
"\u874e\u5b50",
|
75 |
+
"\u9ed1\u91d1\u82b1\u56ed\u8718\u86db",
|
76 |
+
"\u8c37\u4ed3\u8718\u86db",
|
77 |
+
"\u82b1\u56ed\u8718\u86db",
|
78 |
+
"\u9ed1\u5be1\u5987\u8718\u86db",
|
79 |
+
"\u72fc\u86db",
|
80 |
+
"\u72fc\u8718\u86db",
|
81 |
+
"\u58c1\u8671",
|
82 |
+
"\u8708\u86a3",
|
83 |
+
"\u9ed1\u677e\u9e21",
|
84 |
+
"\u677e\u9e21",
|
85 |
+
"\u62ab\u80a9\u9e21",
|
86 |
+
"\u8349\u539f\u9e21",
|
87 |
+
"\u5b54\u96c0",
|
88 |
+
"\u9e4c\u9e51",
|
89 |
+
"\u9e67\u9e2a",
|
90 |
+
"\u975e\u6d32\u7070\u9e66\u9e49",
|
91 |
+
"\u91d1\u521a\u9e66\u9e49",
|
92 |
+
"\u786b\u51a0\u9e66\u9e49",
|
93 |
+
"\u77ed\u5c3e\u9e66\u9e49",
|
94 |
+
"\u8910\u7fc5\u9e26\u9e43",
|
95 |
+
"\u98df\u8702\u9e1f\uff1b\u8702\u864e",
|
96 |
+
"\u7280\u9e1f",
|
97 |
+
"\u8702\u9e1f",
|
98 |
+
"\u9e5f\u4d15",
|
99 |
+
"\u5de8\u5634\u9e1f\uff1b\u5927\u5634\u9e1f",
|
100 |
+
"\u91ce\u9e2d",
|
101 |
+
"\u7ea2\u80f8\u79cb\u6c99\u9e2d",
|
102 |
+
"\u9e45",
|
103 |
+
"\u9ed1\u5929\u9e45",
|
104 |
+
"\u5927\u8c61",
|
105 |
+
"\u9488\u9f39\u9f20",
|
106 |
+
"\u9e2d\u5634\u517d",
|
107 |
+
"\u6c99\u888b\u9f20",
|
108 |
+
"\u8003\u62c9",
|
109 |
+
"\u888b\u718a",
|
110 |
+
"\u6c34\u6bcd",
|
111 |
+
"\u6d77\u8475",
|
112 |
+
"\u8111\u73ca\u745a",
|
113 |
+
"\u6241\u5f62\u866b\u6241\u866b",
|
114 |
+
"\u7ebf\u866b",
|
115 |
+
"\u6d77\u87ba",
|
116 |
+
"\u8717\u725b",
|
117 |
+
"\u9f3b\u6d95\u866b",
|
118 |
+
"\u6d77\u86de\u8753\uff1b\u6d77\u53c2",
|
119 |
+
"\u77f3\u9cd6",
|
120 |
+
"\u9e66\u9e49\u87ba",
|
121 |
+
"\u73cd\u5b9d\u87f9",
|
122 |
+
"\u77f3\u87f9",
|
123 |
+
"\u62db\u6f6e\u87f9",
|
124 |
+
"\u5e1d\u738b\u87f9",
|
125 |
+
"\u7f8e\u56fd\u9f99\u867e",
|
126 |
+
"\u5927\u87af\u867e",
|
127 |
+
"\u5c0f\u9f99\u867e",
|
128 |
+
"\u5bc4\u5c45\u87f9",
|
129 |
+
"\u7b49\u8db3\u76ee\u52a8\u7269\uff08\u660e\u867e\u548c\u8783\u87f9\u8fd1\u4eb2\uff09",
|
130 |
+
"\u767d\u9e73",
|
131 |
+
"\u9ed1\u9e73",
|
132 |
+
"\u9e6d",
|
133 |
+
"\u706b\u70c8\u9e1f",
|
134 |
+
"\u5c0f\u84dd\u9e6d",
|
135 |
+
"\u7f8e\u56fd\u9e6d",
|
136 |
+
"\u9ebb\u9e26",
|
137 |
+
"\u9e64",
|
138 |
+
"\u79e7\u9e64",
|
139 |
+
"\u6b27\u6d32\u6c34\u9e21",
|
140 |
+
"\u6cbc\u6cfd\u6ce5\u6bcd\u9e21",
|
141 |
+
"\u9e28",
|
142 |
+
"\u7ea2\u7ffb\u77f3\u9e6c",
|
143 |
+
"\u7ea2\u80cc\u9e6c",
|
144 |
+
"\u7ea2\u811a\u9e6c",
|
145 |
+
"\u534a\u8e7c\u9e6c",
|
146 |
+
"\u86ce\u9e6c",
|
147 |
+
"\u9e48\u9e55",
|
148 |
+
"\u56fd\u738b\u4f01\u9e45",
|
149 |
+
"\u4fe1\u5929\u7fc1",
|
150 |
+
"\u7070\u9cb8",
|
151 |
+
"\u6740\u4eba\u9cb8",
|
152 |
+
"\u6d77\u725b",
|
153 |
+
"\u6d77\u72ee",
|
154 |
+
"\u5409\u5a03\u5a03",
|
155 |
+
"\u65e5\u672c\u72c6\u72ac",
|
156 |
+
"\u9a6c\u5c14\u6d4e\u65af\u72ac",
|
157 |
+
"\u72ee\u5b50\u72d7",
|
158 |
+
"\u897f\u65bd\u72ac",
|
159 |
+
"\u5e03\u83b1\u5c3c\u59c6\u730e\u72ac",
|
160 |
+
"\u5df4\u6bd4\u72d7",
|
161 |
+
"\u73a9\u5177\u72ac",
|
162 |
+
"\u7f57\u5f97\u897f\u4e9a\u957f\u80cc\u730e\u72d7",
|
163 |
+
"\u963f\u5bcc\u6c57\u730e\u72ac",
|
164 |
+
"\u5df4\u5409\u5ea6\u730e\u72ac",
|
165 |
+
"\u6bd4\u683c\u72ac",
|
166 |
+
"\u4fa6\u63a2\u72ac",
|
167 |
+
"\u84dd\u8272\u5feb\u72d7",
|
168 |
+
"\u9ed1\u8910\u730e\u6d63\u718a\u72ac",
|
169 |
+
"\u6c83\u514b\u730e\u72ac",
|
170 |
+
"\u82f1\u56fd\u730e\u72d0\u72ac",
|
171 |
+
"\u7f8e\u6d32\u8d64\u72d7",
|
172 |
+
"\u4fc4\u7f57\u65af\u730e\u72fc\u72ac",
|
173 |
+
"\u7231\u5c14\u5170\u730e\u72fc\u72ac",
|
174 |
+
"\u610f\u5927\u5229\u7070\u72d7",
|
175 |
+
"\u60e0\u6bd4\u7279\u72ac",
|
176 |
+
"\u4f9d\u6bd4\u6c99\u730e\u72ac",
|
177 |
+
"\u632a\u5a01\u730e\u72ac",
|
178 |
+
"\u5965\u8fbe\u730e\u72ac",
|
179 |
+
"\u6c99\u514b\u72ac",
|
180 |
+
"\u82cf\u683c\u5170\u730e\u9e7f\u72ac",
|
181 |
+
"\u5a01\u739b\u730e\u72ac",
|
182 |
+
"\u65af\u5854\u798f\u5fb7\u90e1\u6597\u725b\u72ac",
|
183 |
+
"\u7f8e\u56fd\u65af\u5854\u798f\u5fb7\u90e1\u6897",
|
184 |
+
"\u8d1d\u5fb7\u7075\u987f\u6897",
|
185 |
+
"\u8fb9\u5883\u6897",
|
186 |
+
"\u51ef\u4e3d\u84dd\u6897",
|
187 |
+
"\u7231\u5c14\u5170\u6897",
|
188 |
+
"\u8bfa\u798f\u514b\u6897",
|
189 |
+
"\u8bfa\u7ef4\u5947\u6897",
|
190 |
+
"\u7ea6\u514b\u72ac\uff1b\u7ea6\u514b\u590f\u6897\u72ac",
|
191 |
+
"\u521a\u6bdb\u730e\u72d0\u6897",
|
192 |
+
"\u83b1\u514b\u5170\u6897",
|
193 |
+
"\u9521\u5229\u54c8\u59c6\u6897",
|
194 |
+
"\u827e\u5c14\u8c37\u72ac",
|
195 |
+
"\u51ef\u6069\u6897",
|
196 |
+
"\u6fb3\u5927\u5229\u4e9a\u6897",
|
197 |
+
"\u4e39\u8fea\u4e01\u8499\u6897",
|
198 |
+
"\u6ce2\u58eb\u987f\u6897",
|
199 |
+
"\u8ff7\u4f60\u96ea\u7eb3\u745e\u72ac",
|
200 |
+
"\u5de8\u578b\u96ea\u7eb3\u745e\u72ac",
|
201 |
+
"\u6807\u51c6\u96ea\u7eb3\u745e\u72ac",
|
202 |
+
"\u82cf\u683c\u5170\u6897\u72ac",
|
203 |
+
"\u897f\u85cf\u6897",
|
204 |
+
"\u4e1d\u6bdb\u6897",
|
205 |
+
"\u7231\u5c14\u5170\u8f6f\u6bdb\u6897\u72ac",
|
206 |
+
"\u897f\u9ad8\u5730\u767d\u6897",
|
207 |
+
"\u62c9\u8428\u963f\u666e\u7d22\u72ac",
|
208 |
+
"\u5e73\u6bdb\u5bfb\u56de\u72ac",
|
209 |
+
"\u5377\u6bdb\u5bfb\u56de\u72ac",
|
210 |
+
"\u91d1\u6bdb\u730e\u72ac",
|
211 |
+
"\u62c9\u5e03\u62c9\u591a\u730e\u72ac",
|
212 |
+
"\u4e5e\u6c99\u6bd4\u514b\u730e\u72ac",
|
213 |
+
"\u5fb7\u56fd\u77ed\u6bdb\u6307\u793a\u72ac",
|
214 |
+
"\u7ef4\u5179\u62c9\u72ac",
|
215 |
+
"\u82f1\u56fd\u585e\u7279\u72ac",
|
216 |
+
"\u7231\u5c14\u5170\u96ea\u8fbe\u72ac",
|
217 |
+
"\u6208\u767b\u96ea\u8fbe\u72ac",
|
218 |
+
"\u5e03\u5217\u5854\u5c3c\u72ac\u730e\u72ac",
|
219 |
+
"\u9ec4\u6bdb",
|
220 |
+
"\u82f1\u56fd\u53f2\u5bbe\u683c\u72ac",
|
221 |
+
"\u5a01\u5c14\u58eb\u53f2\u5bbe\u683c\u72ac",
|
222 |
+
"\u53ef\u5361\u72ac",
|
223 |
+
"\u8428\u585e\u514b\u65af\u730e\u72ac",
|
224 |
+
"\u7231\u5c14\u5170\u6c34\u730e\u72ac",
|
225 |
+
"\u54e5\u5a01\u65af\u72ac",
|
226 |
+
"\u8212\u67cf\u5947\u72ac",
|
227 |
+
"\u6bd4\u5229\u65f6\u7267\u7f8a\u72ac",
|
228 |
+
"\u9a6c\u91cc\u52aa\u963f\u72ac",
|
229 |
+
"\u4f2f\u745e\u72ac",
|
230 |
+
"\u51ef\u5c14\u76ae\u72ac",
|
231 |
+
"\u5308\u7259\u5229\u7267\u7f8a\u72ac",
|
232 |
+
"\u8001\u82f1\u56fd\u7267\u7f8a\u72ac",
|
233 |
+
"\u559c\u4e50\u8482\u7267\u7f8a\u72ac",
|
234 |
+
"\u7267\u7f8a\u72ac",
|
235 |
+
"\u8fb9\u5883\u7267\u7f8a\u72ac",
|
236 |
+
"\u6cd5\u5170\u5fb7\u65af\u7267\u725b\u72d7",
|
237 |
+
"\u7f57\u7279\u97e6\u5c14\u72ac",
|
238 |
+
"\u5fb7\u56fd\u7267\u7f8a\u72ac",
|
239 |
+
"\u591a\u4f2f\u66fc\u72ac",
|
240 |
+
"\u9e7f\u72ac\uff1b\u8ff7\u4f60\u675c\u5bbe\u72ac",
|
241 |
+
"\u5927\u745e\u58eb\u5c71\u5730\u72ac",
|
242 |
+
"\u4f2f\u6069\u5c71\u72ac",
|
243 |
+
"\u963f\u7b56\u5c14\u5c71\u72ac",
|
244 |
+
"\u6069\u7279\u5c14\u5e03\u8d6b\u5c71\u72ac",
|
245 |
+
"\u62f3\u5e08\u72d7",
|
246 |
+
"\u6597\u725b\u7352",
|
247 |
+
"\u85cf\u7352",
|
248 |
+
"\u6cd5\u56fd\u6597\u725b\u72ac",
|
249 |
+
"\u5927\u4e39\u72ac",
|
250 |
+
"\u5723\u4f2f\u7eb3\u5fb7\u72d7",
|
251 |
+
"\u7231\u65af\u57fa\u6469\u72ac",
|
252 |
+
"\u963f\u62c9\u65af\u52a0\u96ea\u6a47\u72ac",
|
253 |
+
"\u54c8\u58eb\u5947",
|
254 |
+
"\u8fbe\u5c14\u9a6c\u63d0\u4e9a",
|
255 |
+
"\u72ee\u6bdb\u72d7",
|
256 |
+
"\u5df4\u8f9b\u5409\u72d7",
|
257 |
+
"\u516b\u54e5\u72ac",
|
258 |
+
"\u83b1\u6602\u8d1d\u683c\u72d7",
|
259 |
+
"\u7ebd\u82ac\u5170\u72ac",
|
260 |
+
"\u5927\u767d\u718a\u72ac",
|
261 |
+
"\u8428\u6469\u8036\u72ac",
|
262 |
+
"\u535a\u7f8e\u72ac",
|
263 |
+
"\u677e\u72ee",
|
264 |
+
"\u51ef\u65af\u72ac",
|
265 |
+
"\u5e03\u9c81\u585e\u5c14\u683c\u6797\u82ac\u72ac",
|
266 |
+
"\u5f6d\u5e03\u6d1b\u514b\u5a01\u5c14\u58eb\u79d1\u57fa\u72ac",
|
267 |
+
"\u5a01\u5c14\u58eb\u67ef\u57fa\u72ac",
|
268 |
+
"\u73a9\u5177\u8d35\u5bbe\u72ac",
|
269 |
+
"\u8ff7\u4f60\u8d35\u5bbe\u72ac",
|
270 |
+
"\u6807\u51c6\u8d35\u5bbe\u72ac",
|
271 |
+
"\u58a8\u897f\u54e5\u65e0\u6bdb\u72ac",
|
272 |
+
"\u7070\u72fc",
|
273 |
+
"\u767d\u72fc",
|
274 |
+
"\u7ea2\u592a\u72fc",
|
275 |
+
"\u72fc",
|
276 |
+
"\u6fb3\u6d32\u91ce\u72d7",
|
277 |
+
"\u8c7a",
|
278 |
+
"\u975e\u6d32\u730e\u72ac",
|
279 |
+
"\u9b23\u72d7",
|
280 |
+
"\u7ea2\u72d0\u72f8",
|
281 |
+
"\u6c99\u72d0",
|
282 |
+
"\u5317\u6781\u72d0\u72f8",
|
283 |
+
"\u7070\u72d0\u72f8",
|
284 |
+
"\u864e\u6591\u732b",
|
285 |
+
"\u5c71\u732b",
|
286 |
+
"\u6ce2\u65af\u732b",
|
287 |
+
"\u66b9\u7f57\u732b",
|
288 |
+
"\u57c3\u53ca\u732b",
|
289 |
+
"\u7f8e\u6d32\u72ee",
|
290 |
+
"\u731e\u7301",
|
291 |
+
"\u8c79\u5b50",
|
292 |
+
"\u96ea\u8c79",
|
293 |
+
"\u7f8e\u6d32\u864e",
|
294 |
+
"\u72ee\u5b50",
|
295 |
+
"\u8001\u864e",
|
296 |
+
"\u730e\u8c79",
|
297 |
+
"\u68d5\u718a",
|
298 |
+
"\u7f8e\u6d32\u9ed1\u718a",
|
299 |
+
"\u51b0\u718a",
|
300 |
+
"\u61d2\u718a",
|
301 |
+
"\u7374",
|
302 |
+
"\u732b\u9f2c",
|
303 |
+
"\u864e\u7532\u866b",
|
304 |
+
"\u74e2\u866b",
|
305 |
+
"\u571f\u9cd6\u866b",
|
306 |
+
"\u5929\u725b",
|
307 |
+
"\u9f9f\u7532\u866b",
|
308 |
+
"\u7caa\u7532\u866b",
|
309 |
+
"\u7280\u725b\u7532\u866b",
|
310 |
+
"\u8c61\u7532",
|
311 |
+
"\u82cd\u8747",
|
312 |
+
"\u871c\u8702",
|
313 |
+
"\u8682\u8681",
|
314 |
+
"\u86b1\u8722",
|
315 |
+
"\u87cb\u87c0",
|
316 |
+
"\u7af9\u8282\u866b",
|
317 |
+
"\u87d1\u8782",
|
318 |
+
"\u87b3\u8782",
|
319 |
+
"\u8749",
|
320 |
+
"\u53f6\u8749",
|
321 |
+
"\u8349\u873b\u86c9",
|
322 |
+
"\u873b\u8713",
|
323 |
+
"\u8c46\u5a18",
|
324 |
+
"\u4f18\u7ea2\u86f1\u8776",
|
325 |
+
"\u5c0f\u73af\u8774\u8776",
|
326 |
+
"\u541b\u4e3b\u8774\u8776",
|
327 |
+
"\u83dc\u7c89\u8776",
|
328 |
+
"\u767d\u8774\u8776",
|
329 |
+
"\u7070\u8776",
|
330 |
+
"\u6d77\u661f",
|
331 |
+
"\u6d77\u80c6",
|
332 |
+
"\u6d77\u9ec4\u74dc\uff1b\u6d77\u53c2",
|
333 |
+
"\u91ce\u5154",
|
334 |
+
"\u5154",
|
335 |
+
"\u5b89\u54e5\u62c9\u5154",
|
336 |
+
"\u4ed3\u9f20",
|
337 |
+
"\u523a\u732c",
|
338 |
+
"\u9ed1\u677e\u9f20",
|
339 |
+
"\u571f\u62e8\u9f20",
|
340 |
+
"\u6d77\u72f8",
|
341 |
+
"\u8c5a\u9f20",
|
342 |
+
"\u6817\u8272\u9a6c",
|
343 |
+
"\u6591\u9a6c",
|
344 |
+
"\u732a",
|
345 |
+
"\u91ce\u732a",
|
346 |
+
"\u75a3\u732a",
|
347 |
+
"\u6cb3\u9a6c",
|
348 |
+
"\u725b",
|
349 |
+
"\u6c34\u725b",
|
350 |
+
"\u91ce\u725b",
|
351 |
+
"\u516c\u7f8a",
|
352 |
+
"\u5927\u89d2\u7f8a",
|
353 |
+
"\u5c71\u7f8a",
|
354 |
+
"\u72f7\u7f9a",
|
355 |
+
"\u9ed1\u6591\u7f9a",
|
356 |
+
"\u77aa\u7f9a",
|
357 |
+
"\u963f\u62c9\u4f2f\u5355\u5cf0\u9a86\u9a7c",
|
358 |
+
"\u9a86\u9a7c",
|
359 |
+
"\u9ec4\u9f20\u72fc",
|
360 |
+
"\u6c34\u8c82",
|
361 |
+
"\u81ed\u732b",
|
362 |
+
"\u9ed1\u8db3\u9f2c",
|
363 |
+
"\u6c34\u736d",
|
364 |
+
"\u81ed\u9f2c",
|
365 |
+
"\u737e",
|
366 |
+
"\u72b0\u72f3",
|
367 |
+
"\u6811\u61d2",
|
368 |
+
"\u7329\u7329",
|
369 |
+
"\u5927\u7329\u7329",
|
370 |
+
"\u9ed1\u7329\u7329",
|
371 |
+
"\u957f\u81c2\u733f",
|
372 |
+
"\u5408\u8dbe\u733f\u957f\u81c2\u733f",
|
373 |
+
"\u957f\u5c3e\u7334",
|
374 |
+
"\u8d64\u7334",
|
375 |
+
"\u72d2\u72d2",
|
376 |
+
"\u6052\u6cb3\u7334",
|
377 |
+
"\u767d\u5934\u53f6\u7334",
|
378 |
+
"\u75a3\u7334",
|
379 |
+
"\u957f\u9f3b\u7334",
|
380 |
+
"\u72e8\uff08\u7f8e\u6d32\u4ea7\u5c0f\u578b\u957f\u5c3e\u7334\uff09",
|
381 |
+
"\u5377\u5c3e\u7334",
|
382 |
+
"\u543c\u7334",
|
383 |
+
"\u4f36\u7334",
|
384 |
+
"\u8718\u86db\u7334",
|
385 |
+
"\u677e\u9f20\u7334",
|
386 |
+
"\u9a6c\u8fbe\u52a0\u65af\u52a0\u73af\u5c3e\u72d0\u7334",
|
387 |
+
"\u5927\u72d0\u7334",
|
388 |
+
"\u5370\u5ea6\u5927\u8c61",
|
389 |
+
"\u975e\u6d32\u8c61",
|
390 |
+
"\u5c0f\u718a\u732b",
|
391 |
+
"\u5927\u718a\u732b",
|
392 |
+
"\u6756\u9c7c",
|
393 |
+
"\u9cd7\u9c7c",
|
394 |
+
"\u94f6\u9c91",
|
395 |
+
"\u4e09\u8272\u523a\u8776\u9c7c",
|
396 |
+
"\u6d77\u8475\u9c7c",
|
397 |
+
"\u9c9f\u9c7c",
|
398 |
+
"\u96c0\u9cdd",
|
399 |
+
"\u72ee\u5b50\u9c7c",
|
400 |
+
"\u6cb3\u8c5a",
|
401 |
+
"\u7b97\u76d8",
|
402 |
+
"\u957f\u888d",
|
403 |
+
"\u5b66\u4f4d\u888d",
|
404 |
+
"\u624b\u98ce\u7434",
|
405 |
+
"\u539f\u58f0\u5409\u4ed6",
|
406 |
+
"\u822a\u7a7a\u6bcd\u8230",
|
407 |
+
"\u5ba2\u673a",
|
408 |
+
"\u98de\u8247",
|
409 |
+
"\u796d\u575b",
|
410 |
+
"\u6551\u62a4\u8f66",
|
411 |
+
"\u6c34\u9646\u4e24\u7528\u8f66",
|
412 |
+
"\u6a21\u62df\u65f6\u949f",
|
413 |
+
"\u8702\u623f",
|
414 |
+
"\u56f4\u88d9",
|
415 |
+
"\u5783\u573e\u6876",
|
416 |
+
"\u653b\u51fb\u6b65\u67aa",
|
417 |
+
"\u80cc\u5305",
|
418 |
+
"\u9762\u5305\u5e97",
|
419 |
+
"\u5e73\u8861\u6728",
|
420 |
+
"\u70ed\u6c14\u7403",
|
421 |
+
"\u5706\u73e0\u7b14",
|
422 |
+
"\u521b\u53ef\u8d34",
|
423 |
+
"\u73ed\u5353\u7434",
|
424 |
+
"\u680f\u6746",
|
425 |
+
"\u6760\u94c3",
|
426 |
+
"\u7406\u53d1\u5e08\u7684\u6905\u5b50",
|
427 |
+
"\u7406\u53d1\u5e97",
|
428 |
+
"\u7272\u53e3\u68da",
|
429 |
+
"\u6674\u96e8\u8868",
|
430 |
+
"\u5706\u7b52",
|
431 |
+
"\u56ed\u5730\u5c0f\u8f66",
|
432 |
+
"\u68d2\u7403",
|
433 |
+
"\u7bee\u7403",
|
434 |
+
"\u5a74\u513f\u5e8a",
|
435 |
+
"\u5df4\u677e\u7ba1",
|
436 |
+
"\u6e38\u6cf3\u5e3d",
|
437 |
+
"\u6c90\u6d74\u6bdb\u5dfe",
|
438 |
+
"\u6d74\u7f38",
|
439 |
+
"\u6c99\u6ee9\u8f66",
|
440 |
+
"\u706f\u5854",
|
441 |
+
"\u70e7\u676f",
|
442 |
+
"\u718a\u76ae\u9ad8\u5e3d",
|
443 |
+
"\u5564\u9152\u74f6",
|
444 |
+
"\u5564\u9152\u676f",
|
445 |
+
"\u949f\u5854",
|
446 |
+
"\uff08\u5c0f\u513f\u7528\u7684\uff09\u56f4\u5634",
|
447 |
+
"\u4e32\u8054\u81ea\u884c\u8f66",
|
448 |
+
"\u6bd4\u57fa\u5c3c",
|
449 |
+
"\u88c5\u8ba2\u518c",
|
450 |
+
"\u53cc\u7b52\u671b\u8fdc\u955c",
|
451 |
+
"\u9e1f\u820d",
|
452 |
+
"\u8239\u5e93",
|
453 |
+
"\u53cc\u4eba\u96ea\u6a47",
|
454 |
+
"\u9970\u6263\u5f0f\u9886\u5e26",
|
455 |
+
"\u9614\u8fb9\u5973\u5e3d",
|
456 |
+
"\u4e66\u6a71",
|
457 |
+
"\u4e66\u5e97",
|
458 |
+
"\u74f6\u76d6",
|
459 |
+
"\u5f13\u7bad",
|
460 |
+
"\u8774\u8776\u7ed3\u9886\u7ed3",
|
461 |
+
"\u94dc\u5236\u724c\u4f4d",
|
462 |
+
"\u5976\u7f69",
|
463 |
+
"\u9632\u6ce2\u5824",
|
464 |
+
"\u94e0\u7532",
|
465 |
+
"\u626b\u5e1a",
|
466 |
+
"\u6876",
|
467 |
+
"\u6263\u73af",
|
468 |
+
"\u9632\u5f39\u80cc\u5fc3",
|
469 |
+
"\u52a8\u8f66",
|
470 |
+
"\u8089\u94fa",
|
471 |
+
"\u51fa\u79df\u8f66",
|
472 |
+
"\u5927\u9505",
|
473 |
+
"\u8721\u70db",
|
474 |
+
"\u5927\u70ae",
|
475 |
+
"\u72ec\u6728\u821f",
|
476 |
+
"\u5f00\u74f6\u5668",
|
477 |
+
"\u5f00\u886b",
|
478 |
+
"\u8f66\u955c",
|
479 |
+
"\u65cb\u8f6c\u6728\u9a6c",
|
480 |
+
"\u6728\u5320\u7684\u5de5\u5177\u5305",
|
481 |
+
"\u7eb8\u7bb1",
|
482 |
+
"\u8f66\u8f6e",
|
483 |
+
"\u53d6\u6b3e\u673a",
|
484 |
+
"\u76d2\u5f0f\u5f55\u97f3\u5e26",
|
485 |
+
"\u5361\u5e26\u64ad\u653e\u5668",
|
486 |
+
"\u57ce\u5821",
|
487 |
+
"\u53cc\u4f53\u8239",
|
488 |
+
"CD\u64ad\u653e\u5668",
|
489 |
+
"\u5927\u63d0\u7434",
|
490 |
+
"\u79fb\u52a8\u7535\u8bdd",
|
491 |
+
"\u94c1\u94fe",
|
492 |
+
"\u56f4\u680f",
|
493 |
+
"\u94fe\u7532",
|
494 |
+
"\u7535\u952f",
|
495 |
+
"\u7bb1\u5b50",
|
496 |
+
"\u68b3\u5986\u53f0",
|
497 |
+
"\u7f16\u949f",
|
498 |
+
"\u4e2d\u56fd\u6a71\u67dc",
|
499 |
+
"\u5723\u8bde\u889c",
|
500 |
+
"\u6559\u5802",
|
501 |
+
"\u7535\u5f71\u9662",
|
502 |
+
"\u5207\u8089\u5200",
|
503 |
+
"\u60ac\u5d16\u5c4b",
|
504 |
+
"\u6597\u7bf7",
|
505 |
+
"\u6728\u5c50",
|
506 |
+
"\u9e21\u5c3e\u9152\u8c03\u9152\u5668",
|
507 |
+
"\u5496\u5561\u676f",
|
508 |
+
"\u5496\u5561\u58f6",
|
509 |
+
"\u87ba\u65cb\u7ed3\u6784\uff08\u697c\u68af\uff09",
|
510 |
+
"\u7ec4\u5408\u9501",
|
511 |
+
"\u7535\u8111\u952e\u76d8",
|
512 |
+
"\u7cd6\u679c",
|
513 |
+
"\u96c6\u88c5\u7bb1\u8239",
|
514 |
+
"\u655e\u7bf7\u8f66",
|
515 |
+
"\u74f6\u585e\u94bb",
|
516 |
+
"\u77ed\u53f7",
|
517 |
+
"\u725b\u4ed4\u9774",
|
518 |
+
"\u725b\u4ed4\u5e3d",
|
519 |
+
"\u6447\u7bee",
|
520 |
+
"\u8d77\u91cd\u673a",
|
521 |
+
"\u5934\u76d4",
|
522 |
+
"\u677f\u6761\u7bb1",
|
523 |
+
"\u5c0f\u513f\u5e8a",
|
524 |
+
"\u7802\u9505",
|
525 |
+
"\u69cc\u7403",
|
526 |
+
"\u62d0\u6756",
|
527 |
+
"\u80f8\u7532",
|
528 |
+
"\u5927\u575d",
|
529 |
+
"\u4e66\u684c",
|
530 |
+
"\u53f0\u5f0f\u7535\u8111",
|
531 |
+
"\u6709\u7ebf\u7535\u8bdd",
|
532 |
+
"\u5c3f\u5e03\u6e7f",
|
533 |
+
"\u6570\u5b57\u65f6\u949f",
|
534 |
+
"\u6570\u5b57\u624b\u8868",
|
535 |
+
"\u9910\u684c\u677f",
|
536 |
+
"\u62b9\u5e03",
|
537 |
+
"\u6d17\u7897\u673a",
|
538 |
+
"\u76d8\u5f0f\u5236\u52a8\u5668",
|
539 |
+
"\u7801\u5934",
|
540 |
+
"\u72d7\u62c9\u96ea\u6a47",
|
541 |
+
"\u5706\u9876",
|
542 |
+
"\u95e8\u57ab",
|
543 |
+
"\u94bb\u4e95\u5e73\u53f0",
|
544 |
+
"\u9f13",
|
545 |
+
"\u9f13\u69cc",
|
546 |
+
"\u54d1\u94c3",
|
547 |
+
"\u8377\u5170\u70e4\u7bb1",
|
548 |
+
"\u7535\u98ce\u6247",
|
549 |
+
"\u7535\u5409\u4ed6",
|
550 |
+
"\u7535\u529b\u673a\u8f66",
|
551 |
+
"\u7ec4\u5408\u7535\u89c6\u67dc",
|
552 |
+
"\u4fe1\u5c01",
|
553 |
+
"\u6d53\u7f29\u5496\u5561\u673a",
|
554 |
+
"\u6251\u9762\u7c89",
|
555 |
+
"\u5973\u7528\u957f\u56f4\u5dfe",
|
556 |
+
"\u6587\u4ef6",
|
557 |
+
"\u6d88\u9632\u8239",
|
558 |
+
"\u6d88\u9632\u8f66",
|
559 |
+
"\u706b\u7089\u680f",
|
560 |
+
"\u65d7\u6746",
|
561 |
+
"\u957f\u7b1b",
|
562 |
+
"\u6298\u53e0\u6905",
|
563 |
+
"\u6a44\u6984\u7403\u5934\u76d4",
|
564 |
+
"\u53c9\u8f66",
|
565 |
+
"\u55b7\u6cc9",
|
566 |
+
"\u94a2\u7b14",
|
567 |
+
"\u6709\u56db\u6839\u5e37\u67f1\u7684\u5e8a",
|
568 |
+
"\u8fd0\u8d27\u8f66\u53a2",
|
569 |
+
"\u5706\u53f7",
|
570 |
+
"\u714e\u9505",
|
571 |
+
"\u88d8\u76ae\u5927\u8863",
|
572 |
+
"\u5783\u573e\u8f66",
|
573 |
+
"\u9632\u6bd2\u9762\u5177",
|
574 |
+
"\u6c7d\u6cb9\u6cf5",
|
575 |
+
"\u9ad8\u811a\u676f",
|
576 |
+
"\u5361\u4e01\u8f66",
|
577 |
+
"\u9ad8\u5c14\u592b\u7403",
|
578 |
+
"\u9ad8\u5c14\u592b\u7403\u8f66",
|
579 |
+
"\u72ed\u957f\u5c0f\u8239",
|
580 |
+
"\u9523",
|
581 |
+
"\u793c\u670d",
|
582 |
+
"\u94a2\u7434",
|
583 |
+
"\u6e29\u5ba4",
|
584 |
+
"\u6563\u70ed\u5668\u683c\u6805",
|
585 |
+
"\u6742\u8d27\u5e97",
|
586 |
+
"\u65ad\u5934\u53f0",
|
587 |
+
"\u5c0f\u53d1\u5939",
|
588 |
+
"\u5934\u53d1\u55b7\u96fe",
|
589 |
+
"\u534a\u5c65\u5e26\u88c5\u7532\u8f66",
|
590 |
+
"\u9524\u5b50",
|
591 |
+
"\u5927\u7bee\u5b50",
|
592 |
+
"\u624b\u6447\u9f13\u98ce\u673a",
|
593 |
+
"\u624b\u63d0\u7535\u8111",
|
594 |
+
"\u624b\u5e15",
|
595 |
+
"\u786c\u76d8",
|
596 |
+
"\u53e3\u7434",
|
597 |
+
"\u7ad6\u7434",
|
598 |
+
"\u6536\u5272\u673a",
|
599 |
+
"\u65a7\u5934",
|
600 |
+
"\u624b\u67aa\u76ae\u5957",
|
601 |
+
"\u5bb6\u5ead\u5f71\u9662",
|
602 |
+
"\u8702\u7a9d",
|
603 |
+
"\u94a9\u722a",
|
604 |
+
"\u886c\u88d9",
|
605 |
+
"\u5355\u6760",
|
606 |
+
"\u9a6c\u8f66",
|
607 |
+
"\u6c99\u6f0f",
|
608 |
+
"iPod",
|
609 |
+
"\u71a8\u6597",
|
610 |
+
"\u5357\u74dc\u706f\u7b3c",
|
611 |
+
"\u725b\u4ed4\u88e4",
|
612 |
+
"\u5409\u666e\u8f66",
|
613 |
+
"T\u6064\u886b",
|
614 |
+
"\u62fc\u56fe",
|
615 |
+
"\u4eba\u529b\u8f66",
|
616 |
+
"\u64cd\u7eb5\u6746",
|
617 |
+
"\u548c\u670d",
|
618 |
+
"\u62a4\u819d",
|
619 |
+
"\u8774\u8776\u7ed3",
|
620 |
+
"\u5927\u8902",
|
621 |
+
"\u957f\u67c4\u52fa",
|
622 |
+
"\u706f\u7f69",
|
623 |
+
"\u7b14\u8bb0\u672c\u7535\u8111",
|
624 |
+
"\u5272\u8349\u673a",
|
625 |
+
"\u955c\u5934\u76d6",
|
626 |
+
"\u5f00\u4fe1\u5200\uff1b\u62c6\u4fe1\u5200",
|
627 |
+
"\u56fe\u4e66\u9986",
|
628 |
+
"\u6551\u751f\u8247",
|
629 |
+
"\u70b9\u706b\u5668",
|
630 |
+
"\u8c6a\u534e\u8f7f\u8f66",
|
631 |
+
"\u8fdc\u6d0b\u73ed\u8f6e",
|
632 |
+
"\u5507\u818f",
|
633 |
+
"\u5e73\u5e95\u4fbf\u978b",
|
634 |
+
"\u6d17\u5242",
|
635 |
+
"\u626c\u58f0\u5668",
|
636 |
+
"\u653e\u5927\u955c",
|
637 |
+
"\u952f\u6728\u5382",
|
638 |
+
"\u78c1\u7f57\u76d8",
|
639 |
+
"\u90ae\u888b",
|
640 |
+
"\u4fe1\u7bb1",
|
641 |
+
"\u5973\u6e38\u6cf3\u8863",
|
642 |
+
"\u6709\u80a9\u5e26\u6d74\u8863",
|
643 |
+
"\u7aa8\u4e95\u76d6",
|
644 |
+
"\u6c99\u7403\uff08\u4e00\u79cd\u6253\u51fb\u4e50\u5668\uff09",
|
645 |
+
"\u9a6c\u6797\u5df4\u6728\u7434",
|
646 |
+
"\u9762\u819c",
|
647 |
+
"\u706b\u67f4",
|
648 |
+
"\u82b1\u67f1",
|
649 |
+
"\u8ff7\u5bab",
|
650 |
+
"\u91cf\u676f",
|
651 |
+
"\u836f\u7bb1",
|
652 |
+
"\u5de8\u77f3",
|
653 |
+
"\u9ea6\u514b\u98ce",
|
654 |
+
"\u5fae\u6ce2\u7089",
|
655 |
+
"\u519b\u88c5",
|
656 |
+
"\u5976\u6876",
|
657 |
+
"\u8ff7\u4f60\u5df4\u58eb",
|
658 |
+
"\u8ff7\u4f60\u88d9",
|
659 |
+
"\u9762\u5305\u8f66\uff1b\u5c0f\u578b\u8d27\u8f66",
|
660 |
+
"\u5bfc\u5f39",
|
661 |
+
"\u8fde\u6307\u624b\u5957",
|
662 |
+
"\u6405\u62cc\u94b5",
|
663 |
+
"\u6d3b\u52a8\u623f\u5c4b\uff08\u7531\u6c7d\u8f66\u62d6\u62c9\u7684\uff09",
|
664 |
+
"\u798f\u7279T\u578b\u8f66",
|
665 |
+
"\u8c03\u5236\u89e3\u8c03\u5668\uff1b\u5149\u732b",
|
666 |
+
"\u4fee\u9053\u9662",
|
667 |
+
"\u663e\u793a\u5668",
|
668 |
+
"\u7535\u74f6\u8f66",
|
669 |
+
"\u7802\u6d46",
|
670 |
+
"\u5b66\u58eb",
|
671 |
+
"\u6e05\u771f\u5bfa",
|
672 |
+
"\u868a\u5e10",
|
673 |
+
"\u6469\u6258\u8f66",
|
674 |
+
"\u5c71\u5730\u81ea\u884c\u8f66",
|
675 |
+
"\u767b\u5c71\u5e10",
|
676 |
+
"\u9f20\u6807",
|
677 |
+
"\u6355\u9f20\u5668",
|
678 |
+
"\u642c\u5bb6\u8d27\u8f66",
|
679 |
+
"\u52a8\u7269\u7684\u53e3\u5957",
|
680 |
+
"\u91d1\u5c5e\u9489\u5b50",
|
681 |
+
"\u9888\u6258",
|
682 |
+
"\u9879\u94fe",
|
683 |
+
"\u4e73\u5934\uff08\u74f6\uff09",
|
684 |
+
"\u5e73\u677f\u7535\u8111",
|
685 |
+
"\u65b9\u5c16\u7891",
|
686 |
+
"\u53cc\u7c27\u7ba1",
|
687 |
+
"\u5c0f\u9e45\u7b1b\uff1b\u7403\u5f62\u7b1b(\u7ba1\u8eab\u692d\u5706\u5f62)",
|
688 |
+
"\u91cc\u7a0b\u8868",
|
689 |
+
"\u6ee4\u6cb9\u5668",
|
690 |
+
"\u98ce\u7434",
|
691 |
+
"\u793a\u6ce2\u5668",
|
692 |
+
"\u7f69\u88d9",
|
693 |
+
"\u725b\u8f66",
|
694 |
+
"\u6c27\u6c14\u9762\u7f69",
|
695 |
+
"\u5305\u88c5",
|
696 |
+
"\u8239\u6868",
|
697 |
+
"\u660e\u8f6e",
|
698 |
+
"\u6302\u9501",
|
699 |
+
"\u753b\u7b14",
|
700 |
+
"\u7761\u8863",
|
701 |
+
"\u5bab\u6bbf",
|
702 |
+
"\u6392\u7bab",
|
703 |
+
"\u7eb8\u5dfe",
|
704 |
+
"\u964d\u843d\u4f1e",
|
705 |
+
"\u53cc\u6760",
|
706 |
+
"\u516c\u56ed\u957f\u6905",
|
707 |
+
"\u505c\u8f66\u6536\u8d39\u8868",
|
708 |
+
"\u5ba2\u8f66",
|
709 |
+
"\u9732\u53f0",
|
710 |
+
"\u4ed8\u8d39\u7535\u8bdd",
|
711 |
+
"\u57fa\u5ea7",
|
712 |
+
"\u94c5\u7b14\u76d2",
|
713 |
+
"\u5377\u7b14\u5200",
|
714 |
+
"\u9999\u6c34\uff08\u74f6\uff09",
|
715 |
+
"\u57f9\u517b\u76bf",
|
716 |
+
"\u590d\u5370\u673a",
|
717 |
+
"\u62e8\u5f26\u7247",
|
718 |
+
"\u5c16\u9876\u5934\u76d4",
|
719 |
+
"\u7528\u5c16\u677f\u6761\u8fde\u6210\u7684\u5c16\u6869\u7bf1\u6805",
|
720 |
+
"\u76ae\u5361",
|
721 |
+
"\u6865\u58a9",
|
722 |
+
"\u5b58\u94b1\u7f50",
|
723 |
+
"\u836f\u74f6",
|
724 |
+
"\u6795\u5934",
|
725 |
+
"\u4e52\u4e53\u7403",
|
726 |
+
"\u98ce\u8f66",
|
727 |
+
"\u6d77\u76d7\u8239",
|
728 |
+
"\u6c34\u7f50",
|
729 |
+
"\u6728\u5de5\u5228",
|
730 |
+
"\u5929\u6587\u9986",
|
731 |
+
"\u5851\u6599\u888b",
|
732 |
+
"\u677f\u67b6",
|
733 |
+
"\u7281\u578b\u94f2\u96ea\u673a",
|
734 |
+
"\u624b\u538b\u76ae\u7897\u6cf5",
|
735 |
+
"\u5b9d\u4e3d\u6765\u76f8\u673a",
|
736 |
+
"\u7535\u7ebf\u6746",
|
737 |
+
"\u8b66\u8f66",
|
738 |
+
"\u96e8\u62ab",
|
739 |
+
"\u53f0\u7403\u684c",
|
740 |
+
"\u5145\u6c14\u996e\u6599\u74f6",
|
741 |
+
"\u82b1\u76c6",
|
742 |
+
"\u9676\u5de5\u65cb\u76d8",
|
743 |
+
"\u7535\u94bb",
|
744 |
+
"\u7948\u7977\u57ab",
|
745 |
+
"\u6253\u5370\u673a",
|
746 |
+
"\u76d1\u72f1",
|
747 |
+
"\u70ae\u5f39",
|
748 |
+
"\u6295\u5f71\u4eea",
|
749 |
+
"\u51b0\u7403",
|
750 |
+
"\u6c99\u5305",
|
751 |
+
"\u5c0f\u94b1\u888b\uff1b\u624b\u888b",
|
752 |
+
"\u7fbd\u7ba1\u7b14",
|
753 |
+
"\u88ab\u5b50",
|
754 |
+
"\u8d5b\u8f66",
|
755 |
+
"\u7403\u62cd",
|
756 |
+
"\u6563\u70ed\u5668",
|
757 |
+
"\u6536\u97f3\u673a",
|
758 |
+
"\u5c04\u7535\u671b\u8fdc\u955c",
|
759 |
+
"\u96e8\u6876",
|
760 |
+
"\u4f11\u95f2\u8f66",
|
761 |
+
"\u5377\u8f74",
|
762 |
+
"\u53cd\u5c04\u5f0f\u7167\u76f8\u673a",
|
763 |
+
"\u51b0\u7bb1",
|
764 |
+
"\u9065\u63a7\u5668",
|
765 |
+
"\u9910\u5385",
|
766 |
+
"\u5de6\u8f6e\u624b\u67aa",
|
767 |
+
"\u6b65\u67aa",
|
768 |
+
"\u6447\u6905",
|
769 |
+
"\u7535\u8f6c\u70e4\u8089\u67b6",
|
770 |
+
"\u6a61\u76ae",
|
771 |
+
"\u6a44\u6984\u7403",
|
772 |
+
"\u76f4\u5c3a",
|
773 |
+
"\u8dd1\u6b65\u978b",
|
774 |
+
"\u4fdd\u9669\u67dc",
|
775 |
+
"\u5b89\u5168\u522b\u9488",
|
776 |
+
"\u76d0\u74f6\uff08\u8c03\u5473\u7528\uff09",
|
777 |
+
"\u51c9\u978b",
|
778 |
+
"\u7eb1\u7b3c",
|
779 |
+
"\u8428\u514b\u65af\u7ba1",
|
780 |
+
"\u5251\u9798",
|
781 |
+
"\u79e4",
|
782 |
+
"\u6821\u8f66",
|
783 |
+
"\u5e06\u8239",
|
784 |
+
"\u8bb0\u5206\u724c",
|
785 |
+
"\u5c4f\u5e55",
|
786 |
+
"\u87ba\u4e1d",
|
787 |
+
"\u87ba\u4e1d\u5200",
|
788 |
+
"\u5b89\u5168\u5e26",
|
789 |
+
"\u7f1d\u7eab\u673a",
|
790 |
+
"\u76fe\u724c",
|
791 |
+
"\u76ae\u978b\u5e97",
|
792 |
+
"\u969c\u5b50",
|
793 |
+
"\u8d2d\u7269\u7bee",
|
794 |
+
"\u8d2d\u7269\u8f66",
|
795 |
+
"\u94c1\u9539",
|
796 |
+
"\u6d74\u5e3d",
|
797 |
+
"\u6d74\u5e18",
|
798 |
+
"\u6ed1\u96ea\u677f",
|
799 |
+
"\u6ed1\u96ea\u9762\u7f69",
|
800 |
+
"\u7761\u888b",
|
801 |
+
"\u6ed1\u5c3a",
|
802 |
+
"\u6ed1\u52a8\u95e8",
|
803 |
+
"\u89d2\u5b50\u8001\u864e\u673a",
|
804 |
+
"\u6f5c\u6c34\u901a\u6c14\u7ba1",
|
805 |
+
"\u6469\u6258\u96ea\u6a47\uff1b\u96ea\u5730\u673a\u52a8\u8f66",
|
806 |
+
"\u626b\u96ea\u673a",
|
807 |
+
"\u7682\u6db2\u5668",
|
808 |
+
"\u8db3\u7403",
|
809 |
+
"\u889c\u5b50",
|
810 |
+
"\u789f\u5f0f\u592a\u9633\u80fd",
|
811 |
+
"\u5bbd\u8fb9\u5e3d",
|
812 |
+
"\u6c64\u7897",
|
813 |
+
"\u7a7a\u683c\u952e",
|
814 |
+
"\u7a7a\u95f4\u52a0\u70ed\u5668",
|
815 |
+
"\u822a\u5929\u98de\u673a",
|
816 |
+
"\u9505\u94f2\uff1b\u505a\u996d\u7684\u94f2\u5b50",
|
817 |
+
"\u5feb\u8247",
|
818 |
+
"\u8718\u86db\u7f51",
|
819 |
+
"\u7eba\u9524\uff1b\u624b\u7eba\u7528\u7684\u7ed5\u7ebf\u6746",
|
820 |
+
"\u8dd1\u8f66",
|
821 |
+
"\u805a\u5149\u706f",
|
822 |
+
"\u821e\u53f0",
|
823 |
+
"\u84b8\u6c7d\u673a\u8f66",
|
824 |
+
"\u94a2\u62f1\u6865",
|
825 |
+
"\u94a2\u6eda\u7b52",
|
826 |
+
"\u542c\u8bca\u5668",
|
827 |
+
"\u5973\u7528\u62ab\u80a9",
|
828 |
+
"\u77f3\u5934\u5899",
|
829 |
+
"\u79d2\u8868",
|
830 |
+
"\u706b\u7089",
|
831 |
+
"\u8fc7\u6ee4\u5668",
|
832 |
+
"\u6709\u8f68\u7535\u8f66",
|
833 |
+
"\u62c5\u67b6",
|
834 |
+
"\u6c99\u53d1\u5e8a",
|
835 |
+
"\u4f5b\u5854",
|
836 |
+
"\u6f5c\u8247",
|
837 |
+
"\u5957\u88c5",
|
838 |
+
"\u65e5\u6677",
|
839 |
+
"\u592a\u9633\u955c",
|
840 |
+
"\u592a\u9633\u955c",
|
841 |
+
"\u9632\u6652\u971c",
|
842 |
+
"\u60ac\u7d22\u6865",
|
843 |
+
"\u62d6\u628a",
|
844 |
+
"\u8fd0\u52a8\u886b",
|
845 |
+
"\u6e38\u6cf3\u88e4",
|
846 |
+
"\u79cb\u5343",
|
847 |
+
"\u5f00\u5173",
|
848 |
+
"\u6ce8\u5c04\u5668\uff1b\u5438\u7ba1",
|
849 |
+
"\u53f0\u706f",
|
850 |
+
"\u5766\u514b",
|
851 |
+
"\u5f55\u97f3\u673a",
|
852 |
+
"\u8336\u58f6",
|
853 |
+
"\u6cf0\u8fea",
|
854 |
+
"\u7535\u89c6",
|
855 |
+
"\u7f51\u7403\uff1b\u6253\u7f51\u7403\u7684\u7403",
|
856 |
+
"\u8305\u8349",
|
857 |
+
"\u5e55\u5e03",
|
858 |
+
"\u9876\u9488",
|
859 |
+
"\u6253\u8c37\u673a\uff1b\u8131\u7c92\u673a",
|
860 |
+
"\u5b9d\u5ea7",
|
861 |
+
"\u74e6\u5c4b\u9876",
|
862 |
+
"\u70e4\u9762\u5305\u673a",
|
863 |
+
"\u70df\u8349\u5e97",
|
864 |
+
"\u9a6c\u6876",
|
865 |
+
"\u706b\u70ac",
|
866 |
+
"\u56fe\u817e\u67f1",
|
867 |
+
"\u62d6\u8f66\uff1b\u7275\u5f15\u8f66",
|
868 |
+
"\u73a9\u5177\u5e97",
|
869 |
+
"\u62d6\u62c9\u673a",
|
870 |
+
"\u534a\u6302\u6c7d\u8f66",
|
871 |
+
"\u6258\u76d8",
|
872 |
+
"\u98ce\u8863",
|
873 |
+
"\u4e09\u8f6e\u8f66",
|
874 |
+
"\u4e09\u4f53\u8239",
|
875 |
+
"\u4e09\u811a\u67b6",
|
876 |
+
"\u51ef\u65cb\u95e8",
|
877 |
+
"\u65e0\u8f68\u7535\u8f66",
|
878 |
+
"\u957f\u53f7",
|
879 |
+
"\u6d74\u76c6",
|
880 |
+
"\u65cb\u8f6c\u5f0f\u6805\u95e8",
|
881 |
+
"\u6253\u5b57\u673a\u952e\u76d8",
|
882 |
+
"\u4f1e",
|
883 |
+
"\u72ec\u8f6e\u8f66",
|
884 |
+
"\u76f4\u7acb\u5f0f\u94a2\u7434",
|
885 |
+
"\u5438\u5c18\u5668",
|
886 |
+
"\u82b1\u74f6\uff1b\u88c5\u9970\u74f6",
|
887 |
+
"\u62f1\u9876",
|
888 |
+
"\u5929\u9e45\u7ed2",
|
889 |
+
"\u81ea\u52a8\u552e\u8d27\u673a",
|
890 |
+
"\u6cd5\u8863\uff1b\u796d\u8863\uff1b\u796d\u670d",
|
891 |
+
"\u9ad8\u67b6\u6865",
|
892 |
+
"\u5c0f\u63d0\u7434",
|
893 |
+
"\u6392\u7403",
|
894 |
+
"\u677e\u997c\u673a",
|
895 |
+
"\u6302\u949f",
|
896 |
+
"\u94b1\u5305\uff1b\u94b1\u5939",
|
897 |
+
"\u8863\u67dc\u8863\u6a71",
|
898 |
+
"\u519b\u7528\u98de\u673a",
|
899 |
+
"\u6d17\u8138\u76c6",
|
900 |
+
"\u6d17\u8863\u673a",
|
901 |
+
"\u6c34\u74f6",
|
902 |
+
"\u6c34\u58f6",
|
903 |
+
"\u6c34\u5854",
|
904 |
+
"\u5a01\u58eb\u5fcc\u58f6",
|
905 |
+
"\u54e8\u5b50",
|
906 |
+
"\u5047\u53d1",
|
907 |
+
"\u7eb1\u7a97",
|
908 |
+
"\u767e\u53f6\u7a97",
|
909 |
+
"\u6e29\u838e\u9886\u5e26",
|
910 |
+
"\u8461\u8404\u9152\u74f6",
|
911 |
+
"\u98de\u673a\u7fc5\u8180",
|
912 |
+
"\u7092\u83dc\u9505",
|
913 |
+
"\u6728\u52fa\u5b50\uff1b\u6728\u5934\u52fa\u5b50",
|
914 |
+
"\u6bdb\u7ec7\u54c1",
|
915 |
+
"\u539f\u6728\u6805\u680f",
|
916 |
+
"\u6c89\u8239",
|
917 |
+
"\u53cc\u6845\u8239",
|
918 |
+
"\u8499\u53e4\u5305",
|
919 |
+
"\u7f51\u7ad9\uff1b\u7f51\u9875",
|
920 |
+
"\u6f2b\u753b",
|
921 |
+
"\u7eb5\u6a2a\u5b57\u8c1c",
|
922 |
+
"\u8def\u6807",
|
923 |
+
"\u4ea4\u901a\u4fe1\u53f7\u706f",
|
924 |
+
"\u9632\u5c18\u7f69",
|
925 |
+
"\u83dc\u5355",
|
926 |
+
"\u76d8\u5b50",
|
927 |
+
"\u58a8\u897f\u54e5\u9cc4\u68a8\u9171\uff1b\u58a8\u897f\u54e5\u725b\u6cb9\u679c\u9171",
|
928 |
+
"\u6e05\u7096\u8089\u6c64",
|
929 |
+
"\u706b\u9505",
|
930 |
+
"\u4e73\u8102\u86cb\u7cd5\uff1b\u82f1\u56fd\u751c\u70b9",
|
931 |
+
"\u51b0\u6dc7\u6dcb",
|
932 |
+
"\u51b0\u68cd\uff1b\u96ea\u7cd5",
|
933 |
+
"\u6cd5\u5f0f\u9762\u5305",
|
934 |
+
"\u767e\u5409\u997c",
|
935 |
+
"\u6912\u76d0\u8106\u997c",
|
936 |
+
"\u829d\u58eb\u6c49\u5821",
|
937 |
+
"\u70ed\u72d7",
|
938 |
+
"\u571f\u8c46\u6ce5",
|
939 |
+
"\u7ed3\u7403\u7518\u84dd",
|
940 |
+
"\u897f\u5170\u82b1\uff1b\u7eff\u83dc\u82b1",
|
941 |
+
"\u83dc\u82b1\uff1b\u82b1\u6930\u83dc",
|
942 |
+
"\u897f\u846b\u82a6",
|
943 |
+
"\u91d1\u4e1d\u74dc\uff1b\u610f\u9762\u5357\u74dc\uff1b\u9762\u6761\u74dc",
|
944 |
+
"\u7eff\u8272\u5c0f\u5357\u74dc\uff1b\u9752\u5357\u74dc",
|
945 |
+
"\u5357\u74dc",
|
946 |
+
"\u9ec4\u74dc",
|
947 |
+
"\u6d0b\u84df\uff1b\u7403\u84df",
|
948 |
+
"\u751c\u6912",
|
949 |
+
"\u523a\u68d8\u84df",
|
950 |
+
"\u8611\u83c7",
|
951 |
+
"\u7eff\u82f9\u679c",
|
952 |
+
"\u8349\u8393",
|
953 |
+
"\u6a58\u5b50",
|
954 |
+
"\u67e0\u6aac",
|
955 |
+
"\u65e0\u82b1\u679c",
|
956 |
+
"\u83e0\u841d",
|
957 |
+
"\u9999\u8549",
|
958 |
+
"\u83e0\u841d\u871c",
|
959 |
+
"\u756a\u8354\u679d",
|
960 |
+
"\u77f3\u69b4",
|
961 |
+
"\u5e72\u8349",
|
962 |
+
"\u57f9\u6839\u86cb\u9171\u610f\u5927\u5229\u9762",
|
963 |
+
"\u5de7\u514b\u529b\u9171",
|
964 |
+
"\u751f\u9762\uff1b\u9762\u56e2",
|
965 |
+
"\u745e\u58eb\u8089\u5305",
|
966 |
+
"\u62ab\u8428",
|
967 |
+
"\u9985\u997c",
|
968 |
+
"\u5377\u997c",
|
969 |
+
"\u7ea2\u8461\u8404\u9152",
|
970 |
+
"\u610f\u5f0f\u6d53\u7f29\u5496\u5561",
|
971 |
+
"\u676f\u5b50",
|
972 |
+
"\u86cb\u9152",
|
973 |
+
"\u9ad8\u5c71",
|
974 |
+
"\u6ce1\u6ce1",
|
975 |
+
"\u60ac\u5d16",
|
976 |
+
"\u73ca\u745a\u7901",
|
977 |
+
"\u95f4\u6b47\u6cc9\uff1b\u95f4\u65ad\u55b7\u53d1\u7684\u6e29\u6cc9",
|
978 |
+
"\u6e56\u8fb9",
|
979 |
+
"\u5cac\u89d2\uff1b\u6df1\u5165\u6d77\u4e2d\u7684\u72ed\u957f\u9ad8\u5730",
|
980 |
+
"\u6c99\u6d32",
|
981 |
+
"\u6c99\u6ee9",
|
982 |
+
"\u5ce1\u8c37",
|
983 |
+
"\u706b\u5c71",
|
984 |
+
"\u68d2\u7403\u8fd0\u52a8\u5458",
|
985 |
+
"\u65b0\u90ce",
|
986 |
+
"\u6f5c\u6c34\u5458",
|
987 |
+
"\u6cb9\u83dc",
|
988 |
+
"\u96cf\u83ca",
|
989 |
+
"\u9ec4\u8272\u6753\u5170",
|
990 |
+
"\u7389\u7c73",
|
991 |
+
"\u6a61\u5b50",
|
992 |
+
"\u73ab\u7470\u679c",
|
993 |
+
"\u4e03\u53f6\u6811\u679c\u5b9e",
|
994 |
+
"\u73ca\u745a\u83cc",
|
995 |
+
"\u6728\u8033",
|
996 |
+
"\u9e7f\u82b1\u83cc",
|
997 |
+
"\u81ed\u89d2\u83c7",
|
998 |
+
"\u5730\u661f",
|
999 |
+
"\u591a\u53f6\u5947\u679c\u83cc",
|
1000 |
+
"\u725b\u809d\u83cc",
|
1001 |
+
"\u7389\u7c73\u68d2\u5b50",
|
1002 |
+
"\u536b\u751f\u7eb8"
|
1003 |
+
]
|
1004 |
+
}
|
CLIP_benchmark/clip_benchmark/datasets/cn_zeroshot_classification_templates.json
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imagenet1k": [
|
3 |
+
"{c}\u7684\u7167\u7247\u3002",
|
4 |
+
"\u8d28\u91cf\u5dee\u7684{c}\u7684\u7167\u7247\u3002",
|
5 |
+
"\u8bb8\u591a{c}\u7684\u7167\u7247\u3002",
|
6 |
+
"{c}\u7684\u96d5\u5851\u3002",
|
7 |
+
"\u96be\u4ee5\u770b\u5230{c}\u7684\u7167\u7247\u3002",
|
8 |
+
"{c}\u7684\u4f4e\u5206\u8fa8\u7387\u7167\u7247\u3002",
|
9 |
+
"{c}\u7684\u6e32\u67d3\u3002",
|
10 |
+
"\u6d82\u9e26{c}\u3002",
|
11 |
+
"{c}\u7684\u7cdf\u7cd5\u7167\u7247\u3002",
|
12 |
+
"{c}\u7684\u88c1\u526a\u7167\u7247\u3002",
|
13 |
+
"{c}\u7684\u7eb9\u8eab\u3002",
|
14 |
+
"{c}\u7684\u523a\u7ee3\u7167\u7247\u3002",
|
15 |
+
"\u5f88\u96be\u770b\u5230{c}\u7684\u7167\u7247\u3002",
|
16 |
+
"{c}\u7684\u660e\u4eae\u7167\u7247\u3002",
|
17 |
+
"\u4e00\u5f20\u5e72\u51c0\u7684{c}\u7684\u7167\u7247\u3002",
|
18 |
+
"\u4e00\u5f20\u5305\u542b{c}\u7684\u7167\u7247\u3002",
|
19 |
+
"{c}\u7684\u6df1\u8272\u7167\u7247\u3002",
|
20 |
+
"{c}\u7684\u624b\u7ed8\u753b\u3002",
|
21 |
+
"\u6211\u7684{c}\u7684\u7167\u7247\u3002",
|
22 |
+
"\u4e0d\u81ea\u7136\u7684{c}\u7684\u7167\u7247\u3002",
|
23 |
+
"\u4e00\u5f20\u9177\u7684{c}\u7684\u7167\u7247\u3002",
|
24 |
+
"{c}\u7684\u7279\u5199\u7167\u7247\u3002",
|
25 |
+
"{c}\u7684\u9ed1\u767d\u7167\u7247\u3002",
|
26 |
+
"\u4e00\u5e45{c}\u7684\u753b\u3002",
|
27 |
+
"\u4e00\u5e45{c}\u7684\u7ed8\u753b\u3002",
|
28 |
+
"\u4e00\u5f20{c}\u7684\u50cf\u7d20\u7167\u7247\u3002",
|
29 |
+
"{c}\u7684\u96d5\u50cf\u3002",
|
30 |
+
"\u4e00\u5f20{c}\u7684\u660e\u4eae\u7167\u7247\u3002",
|
31 |
+
"{c}\u7684\u88c1\u526a\u7167\u7247\u3002",
|
32 |
+
"\u4eba\u9020\u7684{c}\u7684\u7167\u7247\u3002",
|
33 |
+
"\u4e00\u5f20\u5173\u4e8e{c}\u7684\u7167\u7247\u3002",
|
34 |
+
"\u635f\u574f\u7684{c}\u7684jpeg\u7167\u7247\u3002",
|
35 |
+
"{c}\u7684\u6a21\u7cca\u7167\u7247\u3002",
|
36 |
+
"{c}\u7684\u76f8\u7247\u3002",
|
37 |
+
"\u4e00\u5f20{c}\u7684\u597d\u7167\u7247\u3002",
|
38 |
+
"{c}\u7684\u6e32\u67d3\u7167\u3002",
|
39 |
+
"\u89c6\u9891\u6e38\u620f\u4e2d\u7684{c}\u3002",
|
40 |
+
"\u4e00\u5f20{c}\u7684\u7167\u7247\u3002",
|
41 |
+
"{c}\u7684\u6d82\u9e26\u3002",
|
42 |
+
"{c}\u7684\u8fd1\u8ddd\u79bb\u7167\u7247\u3002",
|
43 |
+
"{c}\u7684\u6298\u7eb8\u3002",
|
44 |
+
"{c}\u5728\u89c6\u9891\u6e38\u620f\u4e2d\u3002",
|
45 |
+
"{c}\u7684\u8349\u56fe\u3002",
|
46 |
+
"{c}\u7684\u6d82\u9e26\u7167\u3002",
|
47 |
+
"{c}\u7684\u6298\u7eb8\u5f62\u72b6\u3002",
|
48 |
+
"\u4f4e\u5206\u8fa8\u7387\u7684{c}\u7684\u7167\u7247\u3002",
|
49 |
+
"\u73a9\u5177{c}\u3002",
|
50 |
+
"{c}\u7684\u526f\u672c\u3002",
|
51 |
+
"{c}\u7684\u5e72\u51c0\u7684\u7167\u7247\u3002",
|
52 |
+
"\u4e00\u5f20\u5927{c}\u7684\u7167\u7247\u3002",
|
53 |
+
"{c}\u7684\u91cd\u73b0\u3002",
|
54 |
+
"\u4e00\u5f20\u6f02\u4eae\u7684{c}\u7684\u7167\u7247\u3002",
|
55 |
+
"\u4e00\u5f20\u5947\u602a\u7684{c}\u7684\u7167\u7247\u3002",
|
56 |
+
"\u6a21\u7cca\u7684{c}\u7684\u7167\u7247\u3002",
|
57 |
+
"\u5361\u901a{c}\u3002",
|
58 |
+
"{c}\u7684\u827a\u672f\u4f5c\u54c1\u3002",
|
59 |
+
"{c}\u7684\u7d20\u63cf\u3002",
|
60 |
+
"\u523a\u7ee3{c}\u3002",
|
61 |
+
"{c}\u7684\u50cf\u7d20\u7167\u3002",
|
62 |
+
"{c}\u7684\u62cd\u7167\u3002",
|
63 |
+
"{c}\u7684\u635f\u574f\u7684\u7167\u7247\u3002",
|
64 |
+
"\u9ad8\u8d28\u91cf\u7684{c}\u7684\u7167\u7247\u3002",
|
65 |
+
"\u6bdb\u7ed2\u73a9\u5177{c}\u3002",
|
66 |
+
"\u6f02\u4eae\u7684{c}\u7684\u7167\u7247\u3002",
|
67 |
+
"\u5c0f{c}\u7684\u7167\u7247\u3002",
|
68 |
+
"\u7167\u7247\u662f\u5947\u602a\u7684{c}\u3002",
|
69 |
+
"\u6f2b\u753b{c}\u3002",
|
70 |
+
"{c}\u7684\u827a\u672f\u7167\u3002",
|
71 |
+
"{c}\u7684\u56fe\u5f62\u3002",
|
72 |
+
"\u5927{c}\u7684\u7167\u7247\u3002",
|
73 |
+
"\u9ed1\u767d\u7684{c}\u7684\u7167\u7247\u3002",
|
74 |
+
"{c}\u6bdb\u7ed2\u73a9\u5177\u3002",
|
75 |
+
"\u4e00\u5f20{c}\u7684\u6df1\u8272\u7167\u7247\u3002",
|
76 |
+
"{c}\u7684\u6444\u5f71\u56fe\u3002",
|
77 |
+
"{c}\u7684\u6d82\u9e26\u7167\u3002",
|
78 |
+
"\u73a9\u5177\u5f62\u72b6\u7684{c}\u3002",
|
79 |
+
"\u62cd\u4e86{c}\u7684\u7167\u7247\u3002",
|
80 |
+
"\u9177\u9177\u7684{c}\u7684\u7167\u7247\u3002",
|
81 |
+
"\u7167\u7247\u91cc\u7684\u5c0f{c}\u3002",
|
82 |
+
"{c}\u7684\u523a\u9752\u3002"
|
83 |
+
]
|
84 |
+
}
|
CLIP_benchmark/clip_benchmark/datasets/cupl_prompts.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
CLIP_benchmark/clip_benchmark/datasets/en_classnames.json
ADDED
@@ -0,0 +1,1701 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"flowers": [
|
3 |
+
"pink primrose",
|
4 |
+
"hard-leaved pocket orchid",
|
5 |
+
"canterbury bells",
|
6 |
+
"sweet pea",
|
7 |
+
"english marigold",
|
8 |
+
"tiger lily",
|
9 |
+
"moon orchid",
|
10 |
+
"bird of paradise",
|
11 |
+
"monkshood",
|
12 |
+
"globe thistle",
|
13 |
+
"snapdragon",
|
14 |
+
"colt's foot",
|
15 |
+
"king protea",
|
16 |
+
"spear thistle",
|
17 |
+
"yellow iris",
|
18 |
+
"globe flower",
|
19 |
+
"purple coneflower",
|
20 |
+
"peruvian lily",
|
21 |
+
"balloon flower",
|
22 |
+
"giant white arum lily",
|
23 |
+
"fire lily",
|
24 |
+
"pincushion flower",
|
25 |
+
"fritillary",
|
26 |
+
"red ginger",
|
27 |
+
"grape hyacinth",
|
28 |
+
"corn poppy",
|
29 |
+
"prince of wales feathers",
|
30 |
+
"stemless gentian",
|
31 |
+
"artichoke",
|
32 |
+
"sweet william",
|
33 |
+
"carnation",
|
34 |
+
"garden phlox",
|
35 |
+
"love in the mist",
|
36 |
+
"mexican aster",
|
37 |
+
"alpine sea holly",
|
38 |
+
"ruby-lipped cattleya",
|
39 |
+
"cape flower",
|
40 |
+
"great masterwort",
|
41 |
+
"siam tulip",
|
42 |
+
"lenten rose",
|
43 |
+
"barbeton daisy",
|
44 |
+
"daffodil",
|
45 |
+
"sword lily",
|
46 |
+
"poinsettia",
|
47 |
+
"bolero deep blue",
|
48 |
+
"wallflower",
|
49 |
+
"marigold",
|
50 |
+
"buttercup",
|
51 |
+
"oxeye daisy",
|
52 |
+
"common dandelion",
|
53 |
+
"petunia",
|
54 |
+
"wild pansy",
|
55 |
+
"primula",
|
56 |
+
"sunflower",
|
57 |
+
"pelargonium",
|
58 |
+
"bishop of llandaff",
|
59 |
+
"gaura",
|
60 |
+
"geranium",
|
61 |
+
"orange dahlia",
|
62 |
+
"pink and yellow dahlia",
|
63 |
+
"cautleya spicata",
|
64 |
+
"japanese anemone",
|
65 |
+
"black-eyed susan",
|
66 |
+
"silverbush",
|
67 |
+
"californian poppy",
|
68 |
+
"osteospermum",
|
69 |
+
"spring crocus",
|
70 |
+
"bearded iris",
|
71 |
+
"windflower",
|
72 |
+
"tree poppy",
|
73 |
+
"gazania",
|
74 |
+
"azalea",
|
75 |
+
"water lily",
|
76 |
+
"rose",
|
77 |
+
"thorn apple",
|
78 |
+
"morning glory",
|
79 |
+
"passion flower",
|
80 |
+
"lotus",
|
81 |
+
"toad lily",
|
82 |
+
"anthurium",
|
83 |
+
"frangipani",
|
84 |
+
"clematis",
|
85 |
+
"hibiscus",
|
86 |
+
"columbine",
|
87 |
+
"desert-rose",
|
88 |
+
"tree mallow",
|
89 |
+
"magnolia",
|
90 |
+
"cyclamen",
|
91 |
+
"watercress",
|
92 |
+
"canna lily",
|
93 |
+
"hippeastrum",
|
94 |
+
"bee balm",
|
95 |
+
"air plant",
|
96 |
+
"foxglove",
|
97 |
+
"bougainvillea",
|
98 |
+
"camellia",
|
99 |
+
"mallow",
|
100 |
+
"mexican petunia",
|
101 |
+
"bromelia",
|
102 |
+
"blanket flower",
|
103 |
+
"trumpet creeper",
|
104 |
+
"blackberry lily"
|
105 |
+
],
|
106 |
+
"gtsrb": [
|
107 |
+
"red and white circle 20 kph speed limit",
|
108 |
+
"red and white circle 30 kph speed limit",
|
109 |
+
"red and white circle 50 kph speed limit",
|
110 |
+
"red and white circle 60 kph speed limit",
|
111 |
+
"red and white circle 70 kph speed limit",
|
112 |
+
"red and white circle 80 kph speed limit",
|
113 |
+
"end / de-restriction of 80 kph speed limit",
|
114 |
+
"red and white circle 100 kph speed limit",
|
115 |
+
"red and white circle 120 kph speed limit",
|
116 |
+
"red and white circle red car and black car no passing",
|
117 |
+
"red and white circle red truck and black car no passing",
|
118 |
+
"red and white triangle road intersection warning",
|
119 |
+
"white and yellow diamond priority road",
|
120 |
+
"red and white upside down triangle yield right-of-way",
|
121 |
+
"stop",
|
122 |
+
"empty red and white circle",
|
123 |
+
"red and white circle no truck entry",
|
124 |
+
"red circle with white horizonal stripe no entry",
|
125 |
+
"red and white triangle with exclamation mark warning",
|
126 |
+
"red and white triangle with black left curve approaching warning",
|
127 |
+
"red and white triangle with black right curve approaching warning",
|
128 |
+
"red and white triangle with black double curve approaching warning",
|
129 |
+
"red and white triangle rough / bumpy road warning",
|
130 |
+
"red and white triangle car skidding / slipping warning",
|
131 |
+
"red and white triangle with merging / narrow lanes warning",
|
132 |
+
"red and white triangle with person digging / construction / road work warning",
|
133 |
+
"red and white triangle with traffic light approaching warning",
|
134 |
+
"red and white triangle with person walking warning",
|
135 |
+
"red and white triangle with child and person walking warning",
|
136 |
+
"red and white triangle with bicyle warning",
|
137 |
+
"red and white triangle with snowflake / ice warning",
|
138 |
+
"red and white triangle with deer warning",
|
139 |
+
"white circle with gray strike bar no speed limit",
|
140 |
+
"blue circle with white right turn arrow mandatory",
|
141 |
+
"blue circle with white left turn arrow mandatory",
|
142 |
+
"blue circle with white forward arrow mandatory",
|
143 |
+
"blue circle with white forward or right turn arrow mandatory",
|
144 |
+
"blue circle with white forward or left turn arrow mandatory",
|
145 |
+
"blue circle with white keep right arrow mandatory",
|
146 |
+
"blue circle with white keep left arrow mandatory",
|
147 |
+
"blue circle with white arrows indicating a traffic circle",
|
148 |
+
"white circle with gray strike bar indicating no passing for cars has ended",
|
149 |
+
"white circle with gray strike bar indicating no passing for trucks has ended"
|
150 |
+
],
|
151 |
+
"country211": [
|
152 |
+
"Andorra",
|
153 |
+
"United Arab Emirates",
|
154 |
+
"Afghanistan",
|
155 |
+
"Antigua and Barbuda",
|
156 |
+
"Anguilla",
|
157 |
+
"Albania",
|
158 |
+
"Armenia",
|
159 |
+
"Angola",
|
160 |
+
"Antarctica",
|
161 |
+
"Argentina",
|
162 |
+
"Austria",
|
163 |
+
"Australia",
|
164 |
+
"Aruba",
|
165 |
+
"Aland Islands",
|
166 |
+
"Azerbaijan",
|
167 |
+
"Bosnia and Herzegovina",
|
168 |
+
"Barbados",
|
169 |
+
"Bangladesh",
|
170 |
+
"Belgium",
|
171 |
+
"Burkina Faso",
|
172 |
+
"Bulgaria",
|
173 |
+
"Bahrain",
|
174 |
+
"Benin",
|
175 |
+
"Bermuda",
|
176 |
+
"Brunei Darussalam",
|
177 |
+
"Bolivia",
|
178 |
+
"Bonaire, Saint Eustatius and Saba",
|
179 |
+
"Brazil",
|
180 |
+
"Bahamas",
|
181 |
+
"Bhutan",
|
182 |
+
"Botswana",
|
183 |
+
"Belarus",
|
184 |
+
"Belize",
|
185 |
+
"Canada",
|
186 |
+
"DR Congo",
|
187 |
+
"Central African Republic",
|
188 |
+
"Switzerland",
|
189 |
+
"Cote d'Ivoire",
|
190 |
+
"Cook Islands",
|
191 |
+
"Chile",
|
192 |
+
"Cameroon",
|
193 |
+
"China",
|
194 |
+
"Colombia",
|
195 |
+
"Costa Rica",
|
196 |
+
"Cuba",
|
197 |
+
"Cabo Verde",
|
198 |
+
"Curacao",
|
199 |
+
"Cyprus",
|
200 |
+
"Czech Republic",
|
201 |
+
"Germany",
|
202 |
+
"Denmark",
|
203 |
+
"Dominica",
|
204 |
+
"Dominican Republic",
|
205 |
+
"Algeria",
|
206 |
+
"Ecuador",
|
207 |
+
"Estonia",
|
208 |
+
"Egypt",
|
209 |
+
"Spain",
|
210 |
+
"Ethiopia",
|
211 |
+
"Finland",
|
212 |
+
"Fiji",
|
213 |
+
"Falkland Islands",
|
214 |
+
"Faeroe Islands",
|
215 |
+
"France",
|
216 |
+
"Gabon",
|
217 |
+
"United Kingdom",
|
218 |
+
"Grenada",
|
219 |
+
"Georgia",
|
220 |
+
"French Guiana",
|
221 |
+
"Guernsey",
|
222 |
+
"Ghana",
|
223 |
+
"Gibraltar",
|
224 |
+
"Greenland",
|
225 |
+
"Gambia",
|
226 |
+
"Guadeloupe",
|
227 |
+
"Greece",
|
228 |
+
"South Georgia and South Sandwich Is.",
|
229 |
+
"Guatemala",
|
230 |
+
"Guam",
|
231 |
+
"Guyana",
|
232 |
+
"Hong Kong",
|
233 |
+
"Honduras",
|
234 |
+
"Croatia",
|
235 |
+
"Haiti",
|
236 |
+
"Hungary",
|
237 |
+
"Indonesia",
|
238 |
+
"Ireland",
|
239 |
+
"Israel",
|
240 |
+
"Isle of Man",
|
241 |
+
"India",
|
242 |
+
"Iraq",
|
243 |
+
"Iran",
|
244 |
+
"Iceland",
|
245 |
+
"Italy",
|
246 |
+
"Jersey",
|
247 |
+
"Jamaica",
|
248 |
+
"Jordan",
|
249 |
+
"Japan",
|
250 |
+
"Kenya",
|
251 |
+
"Kyrgyz Republic",
|
252 |
+
"Cambodia",
|
253 |
+
"St. Kitts and Nevis",
|
254 |
+
"North Korea",
|
255 |
+
"South Korea",
|
256 |
+
"Kuwait",
|
257 |
+
"Cayman Islands",
|
258 |
+
"Kazakhstan",
|
259 |
+
"Laos",
|
260 |
+
"Lebanon",
|
261 |
+
"St. Lucia",
|
262 |
+
"Liechtenstein",
|
263 |
+
"Sri Lanka",
|
264 |
+
"Liberia",
|
265 |
+
"Lithuania",
|
266 |
+
"Luxembourg",
|
267 |
+
"Latvia",
|
268 |
+
"Libya",
|
269 |
+
"Morocco",
|
270 |
+
"Monaco",
|
271 |
+
"Moldova",
|
272 |
+
"Montenegro",
|
273 |
+
"Saint-Martin",
|
274 |
+
"Madagascar",
|
275 |
+
"Macedonia",
|
276 |
+
"Mali",
|
277 |
+
"Myanmar",
|
278 |
+
"Mongolia",
|
279 |
+
"Macau",
|
280 |
+
"Martinique",
|
281 |
+
"Mauritania",
|
282 |
+
"Malta",
|
283 |
+
"Mauritius",
|
284 |
+
"Maldives",
|
285 |
+
"Malawi",
|
286 |
+
"Mexico",
|
287 |
+
"Malaysia",
|
288 |
+
"Mozambique",
|
289 |
+
"Namibia",
|
290 |
+
"New Caledonia",
|
291 |
+
"Nigeria",
|
292 |
+
"Nicaragua",
|
293 |
+
"Netherlands",
|
294 |
+
"Norway",
|
295 |
+
"Nepal",
|
296 |
+
"New Zealand",
|
297 |
+
"Oman",
|
298 |
+
"Panama",
|
299 |
+
"Peru",
|
300 |
+
"French Polynesia",
|
301 |
+
"Papua New Guinea",
|
302 |
+
"Philippines",
|
303 |
+
"Pakistan",
|
304 |
+
"Poland",
|
305 |
+
"Puerto Rico",
|
306 |
+
"Palestine",
|
307 |
+
"Portugal",
|
308 |
+
"Palau",
|
309 |
+
"Paraguay",
|
310 |
+
"Qatar",
|
311 |
+
"Reunion",
|
312 |
+
"Romania",
|
313 |
+
"Serbia",
|
314 |
+
"Russia",
|
315 |
+
"Rwanda",
|
316 |
+
"Saudi Arabia",
|
317 |
+
"Solomon Islands",
|
318 |
+
"Seychelles",
|
319 |
+
"Sudan",
|
320 |
+
"Sweden",
|
321 |
+
"Singapore",
|
322 |
+
"St. Helena",
|
323 |
+
"Slovenia",
|
324 |
+
"Svalbard and Jan Mayen Islands",
|
325 |
+
"Slovakia",
|
326 |
+
"Sierra Leone",
|
327 |
+
"San Marino",
|
328 |
+
"Senegal",
|
329 |
+
"Somalia",
|
330 |
+
"South Sudan",
|
331 |
+
"El Salvador",
|
332 |
+
"Sint Maarten",
|
333 |
+
"Syria",
|
334 |
+
"Eswatini",
|
335 |
+
"Togo",
|
336 |
+
"Thailand",
|
337 |
+
"Tajikistan",
|
338 |
+
"Timor-Leste",
|
339 |
+
"Turkmenistan",
|
340 |
+
"Tunisia",
|
341 |
+
"Tonga",
|
342 |
+
"Turkey",
|
343 |
+
"Trinidad and Tobago",
|
344 |
+
"Taiwan",
|
345 |
+
"Tanzania",
|
346 |
+
"Ukraine",
|
347 |
+
"Uganda",
|
348 |
+
"United States",
|
349 |
+
"Uruguay",
|
350 |
+
"Uzbekistan",
|
351 |
+
"Vatican",
|
352 |
+
"Venezuela",
|
353 |
+
"British Virgin Islands",
|
354 |
+
"United States Virgin Islands",
|
355 |
+
"Vietnam",
|
356 |
+
"Vanuatu",
|
357 |
+
"Samoa",
|
358 |
+
"Kosovo",
|
359 |
+
"Yemen",
|
360 |
+
"South Africa",
|
361 |
+
"Zambia",
|
362 |
+
"Zimbabwe"
|
363 |
+
],
|
364 |
+
"eurosat": [
|
365 |
+
"annual crop land",
|
366 |
+
"forest",
|
367 |
+
"brushland or shrubland",
|
368 |
+
"highway or road",
|
369 |
+
"industrial buildings or commercial buildings",
|
370 |
+
"pasture land",
|
371 |
+
"permanent crop land",
|
372 |
+
"residential buildings or homes or apartments",
|
373 |
+
"river",
|
374 |
+
"lake or sea"
|
375 |
+
],
|
376 |
+
"fer2013": [
|
377 |
+
"angry",
|
378 |
+
"disgusted",
|
379 |
+
"fearful",
|
380 |
+
"happy",
|
381 |
+
"neutral",
|
382 |
+
"sad",
|
383 |
+
"surprised"
|
384 |
+
],
|
385 |
+
"caltech101": [
|
386 |
+
"background",
|
387 |
+
"off-center face",
|
388 |
+
"centered face",
|
389 |
+
"leopard",
|
390 |
+
"motorbike",
|
391 |
+
"accordion",
|
392 |
+
"airplane",
|
393 |
+
"anchor",
|
394 |
+
"ant",
|
395 |
+
"barrel",
|
396 |
+
"bass",
|
397 |
+
"beaver",
|
398 |
+
"binocular",
|
399 |
+
"bonsai",
|
400 |
+
"brain",
|
401 |
+
"brontosaurus",
|
402 |
+
"buddha",
|
403 |
+
"butterfly",
|
404 |
+
"camera",
|
405 |
+
"cannon",
|
406 |
+
"side of a car",
|
407 |
+
"ceiling fan",
|
408 |
+
"cellphone",
|
409 |
+
"chair",
|
410 |
+
"chandelier",
|
411 |
+
"body of a cougar cat",
|
412 |
+
"face of a cougar cat",
|
413 |
+
"crab",
|
414 |
+
"crayfish",
|
415 |
+
"crocodile",
|
416 |
+
"head of a crocodile",
|
417 |
+
"cup",
|
418 |
+
"dalmatian",
|
419 |
+
"dollar bill",
|
420 |
+
"dolphin",
|
421 |
+
"dragonfly",
|
422 |
+
"electric guitar",
|
423 |
+
"elephant",
|
424 |
+
"emu",
|
425 |
+
"euphonium",
|
426 |
+
"ewer",
|
427 |
+
"ferry",
|
428 |
+
"flamingo",
|
429 |
+
"head of a flamingo",
|
430 |
+
"garfield",
|
431 |
+
"gerenuk",
|
432 |
+
"gramophone",
|
433 |
+
"grand piano",
|
434 |
+
"hawksbill",
|
435 |
+
"headphone",
|
436 |
+
"hedgehog",
|
437 |
+
"helicopter",
|
438 |
+
"ibis",
|
439 |
+
"inline skate",
|
440 |
+
"joshua tree",
|
441 |
+
"kangaroo",
|
442 |
+
"ketch",
|
443 |
+
"lamp",
|
444 |
+
"laptop",
|
445 |
+
"llama",
|
446 |
+
"lobster",
|
447 |
+
"lotus",
|
448 |
+
"mandolin",
|
449 |
+
"mayfly",
|
450 |
+
"menorah",
|
451 |
+
"metronome",
|
452 |
+
"minaret",
|
453 |
+
"nautilus",
|
454 |
+
"octopus",
|
455 |
+
"okapi",
|
456 |
+
"pagoda",
|
457 |
+
"panda",
|
458 |
+
"pigeon",
|
459 |
+
"pizza",
|
460 |
+
"platypus",
|
461 |
+
"pyramid",
|
462 |
+
"revolver",
|
463 |
+
"rhino",
|
464 |
+
"rooster",
|
465 |
+
"saxophone",
|
466 |
+
"schooner",
|
467 |
+
"scissors",
|
468 |
+
"scorpion",
|
469 |
+
"sea horse",
|
470 |
+
"snoopy (cartoon beagle)",
|
471 |
+
"soccer ball",
|
472 |
+
"stapler",
|
473 |
+
"starfish",
|
474 |
+
"stegosaurus",
|
475 |
+
"stop sign",
|
476 |
+
"strawberry",
|
477 |
+
"sunflower",
|
478 |
+
"tick",
|
479 |
+
"trilobite",
|
480 |
+
"umbrella",
|
481 |
+
"watch",
|
482 |
+
"water lilly",
|
483 |
+
"wheelchair",
|
484 |
+
"wild cat",
|
485 |
+
"windsor chair",
|
486 |
+
"wrench",
|
487 |
+
"yin and yang symbol"
|
488 |
+
],
|
489 |
+
"caltech101_vtab": [
|
490 |
+
"accordion",
|
491 |
+
"airplane",
|
492 |
+
"anchor",
|
493 |
+
"ant",
|
494 |
+
"background",
|
495 |
+
"barrel",
|
496 |
+
"bass",
|
497 |
+
"beaver",
|
498 |
+
"binocular",
|
499 |
+
"bonsai",
|
500 |
+
"brain",
|
501 |
+
"brontosaurus",
|
502 |
+
"buddha",
|
503 |
+
"butterfly",
|
504 |
+
"camera",
|
505 |
+
"cannon",
|
506 |
+
"side of a car",
|
507 |
+
"ceiling fan",
|
508 |
+
"cellphone",
|
509 |
+
"chair",
|
510 |
+
"chandelier",
|
511 |
+
"body of a cougar cat",
|
512 |
+
"face of a cougar cat",
|
513 |
+
"crab",
|
514 |
+
"crayfish",
|
515 |
+
"crocodile",
|
516 |
+
"head of a crocodile",
|
517 |
+
"cup",
|
518 |
+
"dalmatian",
|
519 |
+
"dollar bill",
|
520 |
+
"dolphin",
|
521 |
+
"dragonfly",
|
522 |
+
"electric guitar",
|
523 |
+
"elephant",
|
524 |
+
"emu",
|
525 |
+
"euphonium",
|
526 |
+
"ewer",
|
527 |
+
"off-center face",
|
528 |
+
"centered face",
|
529 |
+
"ferry",
|
530 |
+
"flamingo",
|
531 |
+
"head of a flamingo",
|
532 |
+
"garfield",
|
533 |
+
"gerenuk",
|
534 |
+
"gramophone",
|
535 |
+
"grand piano",
|
536 |
+
"hawksbill",
|
537 |
+
"headphone",
|
538 |
+
"hedgehog",
|
539 |
+
"helicopter",
|
540 |
+
"ibis",
|
541 |
+
"inline skate",
|
542 |
+
"joshua tree",
|
543 |
+
"kangaroo",
|
544 |
+
"ketch",
|
545 |
+
"lamp",
|
546 |
+
"laptop",
|
547 |
+
"leopard",
|
548 |
+
"llama",
|
549 |
+
"lobster",
|
550 |
+
"lotus",
|
551 |
+
"mandolin",
|
552 |
+
"mayfly",
|
553 |
+
"menorah",
|
554 |
+
"metronome",
|
555 |
+
"minaret",
|
556 |
+
"motorbike",
|
557 |
+
"nautilus",
|
558 |
+
"octopus",
|
559 |
+
"okapi",
|
560 |
+
"pagoda",
|
561 |
+
"panda",
|
562 |
+
"pigeon",
|
563 |
+
"pizza",
|
564 |
+
"platypus",
|
565 |
+
"pyramid",
|
566 |
+
"revolver",
|
567 |
+
"rhino",
|
568 |
+
"rooster",
|
569 |
+
"saxophone",
|
570 |
+
"schooner",
|
571 |
+
"scissors",
|
572 |
+
"scorpion",
|
573 |
+
"sea horse",
|
574 |
+
"snoopy (cartoon beagle)",
|
575 |
+
"soccer ball",
|
576 |
+
"stapler",
|
577 |
+
"starfish",
|
578 |
+
"stegosaurus",
|
579 |
+
"stop sign",
|
580 |
+
"strawberry",
|
581 |
+
"sunflower",
|
582 |
+
"tick",
|
583 |
+
"trilobite",
|
584 |
+
"umbrella",
|
585 |
+
"watch",
|
586 |
+
"water lilly",
|
587 |
+
"wheelchair",
|
588 |
+
"wild cat",
|
589 |
+
"windsor chair",
|
590 |
+
"wrench",
|
591 |
+
"yin and yang symbol"
|
592 |
+
],
|
593 |
+
"imagenet1k": [
|
594 |
+
"tench",
|
595 |
+
"goldfish",
|
596 |
+
"great white shark",
|
597 |
+
"tiger shark",
|
598 |
+
"hammerhead shark",
|
599 |
+
"electric ray",
|
600 |
+
"stingray",
|
601 |
+
"rooster",
|
602 |
+
"hen",
|
603 |
+
"ostrich",
|
604 |
+
"brambling",
|
605 |
+
"goldfinch",
|
606 |
+
"house finch",
|
607 |
+
"junco",
|
608 |
+
"indigo bunting",
|
609 |
+
"American robin",
|
610 |
+
"bulbul",
|
611 |
+
"jay",
|
612 |
+
"magpie",
|
613 |
+
"chickadee",
|
614 |
+
"American dipper",
|
615 |
+
"kite (bird of prey)",
|
616 |
+
"bald eagle",
|
617 |
+
"vulture",
|
618 |
+
"great grey owl",
|
619 |
+
"fire salamander",
|
620 |
+
"smooth newt",
|
621 |
+
"newt",
|
622 |
+
"spotted salamander",
|
623 |
+
"axolotl",
|
624 |
+
"American bullfrog",
|
625 |
+
"tree frog",
|
626 |
+
"tailed frog",
|
627 |
+
"loggerhead sea turtle",
|
628 |
+
"leatherback sea turtle",
|
629 |
+
"mud turtle",
|
630 |
+
"terrapin",
|
631 |
+
"box turtle",
|
632 |
+
"banded gecko",
|
633 |
+
"green iguana",
|
634 |
+
"Carolina anole",
|
635 |
+
"desert grassland whiptail lizard",
|
636 |
+
"agama",
|
637 |
+
"frilled-necked lizard",
|
638 |
+
"alligator lizard",
|
639 |
+
"Gila monster",
|
640 |
+
"European green lizard",
|
641 |
+
"chameleon",
|
642 |
+
"Komodo dragon",
|
643 |
+
"Nile crocodile",
|
644 |
+
"American alligator",
|
645 |
+
"triceratops",
|
646 |
+
"worm snake",
|
647 |
+
"ring-necked snake",
|
648 |
+
"eastern hog-nosed snake",
|
649 |
+
"smooth green snake",
|
650 |
+
"kingsnake",
|
651 |
+
"garter snake",
|
652 |
+
"water snake",
|
653 |
+
"vine snake",
|
654 |
+
"night snake",
|
655 |
+
"boa constrictor",
|
656 |
+
"African rock python",
|
657 |
+
"Indian cobra",
|
658 |
+
"green mamba",
|
659 |
+
"sea snake",
|
660 |
+
"Saharan horned viper",
|
661 |
+
"eastern diamondback rattlesnake",
|
662 |
+
"sidewinder rattlesnake",
|
663 |
+
"trilobite",
|
664 |
+
"harvestman",
|
665 |
+
"scorpion",
|
666 |
+
"yellow garden spider",
|
667 |
+
"barn spider",
|
668 |
+
"European garden spider",
|
669 |
+
"southern black widow",
|
670 |
+
"tarantula",
|
671 |
+
"wolf spider",
|
672 |
+
"tick",
|
673 |
+
"centipede",
|
674 |
+
"black grouse",
|
675 |
+
"ptarmigan",
|
676 |
+
"ruffed grouse",
|
677 |
+
"prairie grouse",
|
678 |
+
"peafowl",
|
679 |
+
"quail",
|
680 |
+
"partridge",
|
681 |
+
"african grey parrot",
|
682 |
+
"macaw",
|
683 |
+
"sulphur-crested cockatoo",
|
684 |
+
"lorikeet",
|
685 |
+
"coucal",
|
686 |
+
"bee eater",
|
687 |
+
"hornbill",
|
688 |
+
"hummingbird",
|
689 |
+
"jacamar",
|
690 |
+
"toucan",
|
691 |
+
"duck",
|
692 |
+
"red-breasted merganser",
|
693 |
+
"goose",
|
694 |
+
"black swan",
|
695 |
+
"tusker",
|
696 |
+
"echidna",
|
697 |
+
"platypus",
|
698 |
+
"wallaby",
|
699 |
+
"koala",
|
700 |
+
"wombat",
|
701 |
+
"jellyfish",
|
702 |
+
"sea anemone",
|
703 |
+
"brain coral",
|
704 |
+
"flatworm",
|
705 |
+
"nematode",
|
706 |
+
"conch",
|
707 |
+
"snail",
|
708 |
+
"slug",
|
709 |
+
"sea slug",
|
710 |
+
"chiton",
|
711 |
+
"chambered nautilus",
|
712 |
+
"Dungeness crab",
|
713 |
+
"rock crab",
|
714 |
+
"fiddler crab",
|
715 |
+
"red king crab",
|
716 |
+
"American lobster",
|
717 |
+
"spiny lobster",
|
718 |
+
"crayfish",
|
719 |
+
"hermit crab",
|
720 |
+
"isopod",
|
721 |
+
"white stork",
|
722 |
+
"black stork",
|
723 |
+
"spoonbill",
|
724 |
+
"flamingo",
|
725 |
+
"little blue heron",
|
726 |
+
"great egret",
|
727 |
+
"bittern bird",
|
728 |
+
"crane bird",
|
729 |
+
"limpkin",
|
730 |
+
"common gallinule",
|
731 |
+
"American coot",
|
732 |
+
"bustard",
|
733 |
+
"ruddy turnstone",
|
734 |
+
"dunlin",
|
735 |
+
"common redshank",
|
736 |
+
"dowitcher",
|
737 |
+
"oystercatcher",
|
738 |
+
"pelican",
|
739 |
+
"king penguin",
|
740 |
+
"albatross",
|
741 |
+
"grey whale",
|
742 |
+
"killer whale",
|
743 |
+
"dugong",
|
744 |
+
"sea lion",
|
745 |
+
"Chihuahua",
|
746 |
+
"Japanese Chin",
|
747 |
+
"Maltese",
|
748 |
+
"Pekingese",
|
749 |
+
"Shih Tzu",
|
750 |
+
"King Charles Spaniel",
|
751 |
+
"Papillon",
|
752 |
+
"toy terrier",
|
753 |
+
"Rhodesian Ridgeback",
|
754 |
+
"Afghan Hound",
|
755 |
+
"Basset Hound",
|
756 |
+
"Beagle",
|
757 |
+
"Bloodhound",
|
758 |
+
"Bluetick Coonhound",
|
759 |
+
"Black and Tan Coonhound",
|
760 |
+
"Treeing Walker Coonhound",
|
761 |
+
"English foxhound",
|
762 |
+
"Redbone Coonhound",
|
763 |
+
"borzoi",
|
764 |
+
"Irish Wolfhound",
|
765 |
+
"Italian Greyhound",
|
766 |
+
"Whippet",
|
767 |
+
"Ibizan Hound",
|
768 |
+
"Norwegian Elkhound",
|
769 |
+
"Otterhound",
|
770 |
+
"Saluki",
|
771 |
+
"Scottish Deerhound",
|
772 |
+
"Weimaraner",
|
773 |
+
"Staffordshire Bull Terrier",
|
774 |
+
"American Staffordshire Terrier",
|
775 |
+
"Bedlington Terrier",
|
776 |
+
"Border Terrier",
|
777 |
+
"Kerry Blue Terrier",
|
778 |
+
"Irish Terrier",
|
779 |
+
"Norfolk Terrier",
|
780 |
+
"Norwich Terrier",
|
781 |
+
"Yorkshire Terrier",
|
782 |
+
"Wire Fox Terrier",
|
783 |
+
"Lakeland Terrier",
|
784 |
+
"Sealyham Terrier",
|
785 |
+
"Airedale Terrier",
|
786 |
+
"Cairn Terrier",
|
787 |
+
"Australian Terrier",
|
788 |
+
"Dandie Dinmont Terrier",
|
789 |
+
"Boston Terrier",
|
790 |
+
"Miniature Schnauzer",
|
791 |
+
"Giant Schnauzer",
|
792 |
+
"Standard Schnauzer",
|
793 |
+
"Scottish Terrier",
|
794 |
+
"Tibetan Terrier",
|
795 |
+
"Australian Silky Terrier",
|
796 |
+
"Soft-coated Wheaten Terrier",
|
797 |
+
"West Highland White Terrier",
|
798 |
+
"Lhasa Apso",
|
799 |
+
"Flat-Coated Retriever",
|
800 |
+
"Curly-coated Retriever",
|
801 |
+
"Golden Retriever",
|
802 |
+
"Labrador Retriever",
|
803 |
+
"Chesapeake Bay Retriever",
|
804 |
+
"German Shorthaired Pointer",
|
805 |
+
"Vizsla",
|
806 |
+
"English Setter",
|
807 |
+
"Irish Setter",
|
808 |
+
"Gordon Setter",
|
809 |
+
"Brittany dog",
|
810 |
+
"Clumber Spaniel",
|
811 |
+
"English Springer Spaniel",
|
812 |
+
"Welsh Springer Spaniel",
|
813 |
+
"Cocker Spaniel",
|
814 |
+
"Sussex Spaniel",
|
815 |
+
"Irish Water Spaniel",
|
816 |
+
"Kuvasz",
|
817 |
+
"Schipperke",
|
818 |
+
"Groenendael dog",
|
819 |
+
"Malinois",
|
820 |
+
"Briard",
|
821 |
+
"Australian Kelpie",
|
822 |
+
"Komondor",
|
823 |
+
"Old English Sheepdog",
|
824 |
+
"Shetland Sheepdog",
|
825 |
+
"collie",
|
826 |
+
"Border Collie",
|
827 |
+
"Bouvier des Flandres dog",
|
828 |
+
"Rottweiler",
|
829 |
+
"German Shepherd Dog",
|
830 |
+
"Dobermann",
|
831 |
+
"Miniature Pinscher",
|
832 |
+
"Greater Swiss Mountain Dog",
|
833 |
+
"Bernese Mountain Dog",
|
834 |
+
"Appenzeller Sennenhund",
|
835 |
+
"Entlebucher Sennenhund",
|
836 |
+
"Boxer",
|
837 |
+
"Bullmastiff",
|
838 |
+
"Tibetan Mastiff",
|
839 |
+
"French Bulldog",
|
840 |
+
"Great Dane",
|
841 |
+
"St. Bernard",
|
842 |
+
"husky",
|
843 |
+
"Alaskan Malamute",
|
844 |
+
"Siberian Husky",
|
845 |
+
"Dalmatian",
|
846 |
+
"Affenpinscher",
|
847 |
+
"Basenji",
|
848 |
+
"pug",
|
849 |
+
"Leonberger",
|
850 |
+
"Newfoundland dog",
|
851 |
+
"Great Pyrenees dog",
|
852 |
+
"Samoyed",
|
853 |
+
"Pomeranian",
|
854 |
+
"Chow Chow",
|
855 |
+
"Keeshond",
|
856 |
+
"brussels griffon",
|
857 |
+
"Pembroke Welsh Corgi",
|
858 |
+
"Cardigan Welsh Corgi",
|
859 |
+
"Toy Poodle",
|
860 |
+
"Miniature Poodle",
|
861 |
+
"Standard Poodle",
|
862 |
+
"Mexican hairless dog (xoloitzcuintli)",
|
863 |
+
"grey wolf",
|
864 |
+
"Alaskan tundra wolf",
|
865 |
+
"red wolf or maned wolf",
|
866 |
+
"coyote",
|
867 |
+
"dingo",
|
868 |
+
"dhole",
|
869 |
+
"African wild dog",
|
870 |
+
"hyena",
|
871 |
+
"red fox",
|
872 |
+
"kit fox",
|
873 |
+
"Arctic fox",
|
874 |
+
"grey fox",
|
875 |
+
"tabby cat",
|
876 |
+
"tiger cat",
|
877 |
+
"Persian cat",
|
878 |
+
"Siamese cat",
|
879 |
+
"Egyptian Mau",
|
880 |
+
"cougar",
|
881 |
+
"lynx",
|
882 |
+
"leopard",
|
883 |
+
"snow leopard",
|
884 |
+
"jaguar",
|
885 |
+
"lion",
|
886 |
+
"tiger",
|
887 |
+
"cheetah",
|
888 |
+
"brown bear",
|
889 |
+
"American black bear",
|
890 |
+
"polar bear",
|
891 |
+
"sloth bear",
|
892 |
+
"mongoose",
|
893 |
+
"meerkat",
|
894 |
+
"tiger beetle",
|
895 |
+
"ladybug",
|
896 |
+
"ground beetle",
|
897 |
+
"longhorn beetle",
|
898 |
+
"leaf beetle",
|
899 |
+
"dung beetle",
|
900 |
+
"rhinoceros beetle",
|
901 |
+
"weevil",
|
902 |
+
"fly",
|
903 |
+
"bee",
|
904 |
+
"ant",
|
905 |
+
"grasshopper",
|
906 |
+
"cricket insect",
|
907 |
+
"stick insect",
|
908 |
+
"cockroach",
|
909 |
+
"praying mantis",
|
910 |
+
"cicada",
|
911 |
+
"leafhopper",
|
912 |
+
"lacewing",
|
913 |
+
"dragonfly",
|
914 |
+
"damselfly",
|
915 |
+
"red admiral butterfly",
|
916 |
+
"ringlet butterfly",
|
917 |
+
"monarch butterfly",
|
918 |
+
"small white butterfly",
|
919 |
+
"sulphur butterfly",
|
920 |
+
"gossamer-winged butterfly",
|
921 |
+
"starfish",
|
922 |
+
"sea urchin",
|
923 |
+
"sea cucumber",
|
924 |
+
"cottontail rabbit",
|
925 |
+
"hare",
|
926 |
+
"Angora rabbit",
|
927 |
+
"hamster",
|
928 |
+
"porcupine",
|
929 |
+
"fox squirrel",
|
930 |
+
"marmot",
|
931 |
+
"beaver",
|
932 |
+
"guinea pig",
|
933 |
+
"common sorrel horse",
|
934 |
+
"zebra",
|
935 |
+
"pig",
|
936 |
+
"wild boar",
|
937 |
+
"warthog",
|
938 |
+
"hippopotamus",
|
939 |
+
"ox",
|
940 |
+
"water buffalo",
|
941 |
+
"bison",
|
942 |
+
"ram (adult male sheep)",
|
943 |
+
"bighorn sheep",
|
944 |
+
"Alpine ibex",
|
945 |
+
"hartebeest",
|
946 |
+
"impala (antelope)",
|
947 |
+
"gazelle",
|
948 |
+
"arabian camel",
|
949 |
+
"llama",
|
950 |
+
"weasel",
|
951 |
+
"mink",
|
952 |
+
"European polecat",
|
953 |
+
"black-footed ferret",
|
954 |
+
"otter",
|
955 |
+
"skunk",
|
956 |
+
"badger",
|
957 |
+
"armadillo",
|
958 |
+
"three-toed sloth",
|
959 |
+
"orangutan",
|
960 |
+
"gorilla",
|
961 |
+
"chimpanzee",
|
962 |
+
"gibbon",
|
963 |
+
"siamang",
|
964 |
+
"guenon",
|
965 |
+
"patas monkey",
|
966 |
+
"baboon",
|
967 |
+
"macaque",
|
968 |
+
"langur",
|
969 |
+
"black-and-white colobus",
|
970 |
+
"proboscis monkey",
|
971 |
+
"marmoset",
|
972 |
+
"white-headed capuchin",
|
973 |
+
"howler monkey",
|
974 |
+
"titi monkey",
|
975 |
+
"Geoffroy's spider monkey",
|
976 |
+
"common squirrel monkey",
|
977 |
+
"ring-tailed lemur",
|
978 |
+
"indri",
|
979 |
+
"Asian elephant",
|
980 |
+
"African bush elephant",
|
981 |
+
"red panda",
|
982 |
+
"giant panda",
|
983 |
+
"snoek fish",
|
984 |
+
"eel",
|
985 |
+
"silver salmon",
|
986 |
+
"rock beauty fish",
|
987 |
+
"clownfish",
|
988 |
+
"sturgeon",
|
989 |
+
"gar fish",
|
990 |
+
"lionfish",
|
991 |
+
"pufferfish",
|
992 |
+
"abacus",
|
993 |
+
"abaya",
|
994 |
+
"academic gown",
|
995 |
+
"accordion",
|
996 |
+
"acoustic guitar",
|
997 |
+
"aircraft carrier",
|
998 |
+
"airliner",
|
999 |
+
"airship",
|
1000 |
+
"altar",
|
1001 |
+
"ambulance",
|
1002 |
+
"amphibious vehicle",
|
1003 |
+
"analog clock",
|
1004 |
+
"apiary",
|
1005 |
+
"apron",
|
1006 |
+
"trash can",
|
1007 |
+
"assault rifle",
|
1008 |
+
"backpack",
|
1009 |
+
"bakery",
|
1010 |
+
"balance beam",
|
1011 |
+
"balloon",
|
1012 |
+
"ballpoint pen",
|
1013 |
+
"Band-Aid",
|
1014 |
+
"banjo",
|
1015 |
+
"baluster / handrail",
|
1016 |
+
"barbell",
|
1017 |
+
"barber chair",
|
1018 |
+
"barbershop",
|
1019 |
+
"barn",
|
1020 |
+
"barometer",
|
1021 |
+
"barrel",
|
1022 |
+
"wheelbarrow",
|
1023 |
+
"baseball",
|
1024 |
+
"basketball",
|
1025 |
+
"bassinet",
|
1026 |
+
"bassoon",
|
1027 |
+
"swimming cap",
|
1028 |
+
"bath towel",
|
1029 |
+
"bathtub",
|
1030 |
+
"station wagon",
|
1031 |
+
"lighthouse",
|
1032 |
+
"beaker",
|
1033 |
+
"military hat (bearskin or shako)",
|
1034 |
+
"beer bottle",
|
1035 |
+
"beer glass",
|
1036 |
+
"bell tower",
|
1037 |
+
"baby bib",
|
1038 |
+
"tandem bicycle",
|
1039 |
+
"bikini",
|
1040 |
+
"ring binder",
|
1041 |
+
"binoculars",
|
1042 |
+
"birdhouse",
|
1043 |
+
"boathouse",
|
1044 |
+
"bobsleigh",
|
1045 |
+
"bolo tie",
|
1046 |
+
"poke bonnet",
|
1047 |
+
"bookcase",
|
1048 |
+
"bookstore",
|
1049 |
+
"bottle cap",
|
1050 |
+
"hunting bow",
|
1051 |
+
"bow tie",
|
1052 |
+
"brass memorial plaque",
|
1053 |
+
"bra",
|
1054 |
+
"breakwater",
|
1055 |
+
"breastplate",
|
1056 |
+
"broom",
|
1057 |
+
"bucket",
|
1058 |
+
"buckle",
|
1059 |
+
"bulletproof vest",
|
1060 |
+
"high-speed train",
|
1061 |
+
"butcher shop",
|
1062 |
+
"taxicab",
|
1063 |
+
"cauldron",
|
1064 |
+
"candle",
|
1065 |
+
"cannon",
|
1066 |
+
"canoe",
|
1067 |
+
"can opener",
|
1068 |
+
"cardigan",
|
1069 |
+
"car mirror",
|
1070 |
+
"carousel",
|
1071 |
+
"tool kit",
|
1072 |
+
"cardboard box / carton",
|
1073 |
+
"car wheel",
|
1074 |
+
"automated teller machine",
|
1075 |
+
"cassette",
|
1076 |
+
"cassette player",
|
1077 |
+
"castle",
|
1078 |
+
"catamaran",
|
1079 |
+
"CD player",
|
1080 |
+
"cello",
|
1081 |
+
"mobile phone",
|
1082 |
+
"chain",
|
1083 |
+
"chain-link fence",
|
1084 |
+
"chain mail",
|
1085 |
+
"chainsaw",
|
1086 |
+
"storage chest",
|
1087 |
+
"chiffonier",
|
1088 |
+
"bell or wind chime",
|
1089 |
+
"china cabinet",
|
1090 |
+
"Christmas stocking",
|
1091 |
+
"church",
|
1092 |
+
"movie theater",
|
1093 |
+
"cleaver",
|
1094 |
+
"cliff dwelling",
|
1095 |
+
"cloak",
|
1096 |
+
"clogs",
|
1097 |
+
"cocktail shaker",
|
1098 |
+
"coffee mug",
|
1099 |
+
"coffeemaker",
|
1100 |
+
"spiral or coil",
|
1101 |
+
"combination lock",
|
1102 |
+
"computer keyboard",
|
1103 |
+
"candy store",
|
1104 |
+
"container ship",
|
1105 |
+
"convertible",
|
1106 |
+
"corkscrew",
|
1107 |
+
"cornet",
|
1108 |
+
"cowboy boot",
|
1109 |
+
"cowboy hat",
|
1110 |
+
"cradle",
|
1111 |
+
"construction crane",
|
1112 |
+
"crash helmet",
|
1113 |
+
"crate",
|
1114 |
+
"infant bed",
|
1115 |
+
"Crock Pot",
|
1116 |
+
"croquet ball",
|
1117 |
+
"crutch",
|
1118 |
+
"cuirass",
|
1119 |
+
"dam",
|
1120 |
+
"desk",
|
1121 |
+
"desktop computer",
|
1122 |
+
"rotary dial telephone",
|
1123 |
+
"diaper",
|
1124 |
+
"digital clock",
|
1125 |
+
"digital watch",
|
1126 |
+
"dining table",
|
1127 |
+
"dishcloth",
|
1128 |
+
"dishwasher",
|
1129 |
+
"disc brake",
|
1130 |
+
"dock",
|
1131 |
+
"dog sled",
|
1132 |
+
"dome",
|
1133 |
+
"doormat",
|
1134 |
+
"drilling rig",
|
1135 |
+
"drum",
|
1136 |
+
"drumstick",
|
1137 |
+
"dumbbell",
|
1138 |
+
"Dutch oven",
|
1139 |
+
"electric fan",
|
1140 |
+
"electric guitar",
|
1141 |
+
"electric locomotive",
|
1142 |
+
"entertainment center",
|
1143 |
+
"envelope",
|
1144 |
+
"espresso machine",
|
1145 |
+
"face powder",
|
1146 |
+
"feather boa",
|
1147 |
+
"filing cabinet",
|
1148 |
+
"fireboat",
|
1149 |
+
"fire truck",
|
1150 |
+
"fire screen",
|
1151 |
+
"flagpole",
|
1152 |
+
"flute",
|
1153 |
+
"folding chair",
|
1154 |
+
"football helmet",
|
1155 |
+
"forklift",
|
1156 |
+
"fountain",
|
1157 |
+
"fountain pen",
|
1158 |
+
"four-poster bed",
|
1159 |
+
"freight car",
|
1160 |
+
"French horn",
|
1161 |
+
"frying pan",
|
1162 |
+
"fur coat",
|
1163 |
+
"garbage truck",
|
1164 |
+
"gas mask or respirator",
|
1165 |
+
"gas pump",
|
1166 |
+
"goblet",
|
1167 |
+
"go-kart",
|
1168 |
+
"golf ball",
|
1169 |
+
"golf cart",
|
1170 |
+
"gondola",
|
1171 |
+
"gong",
|
1172 |
+
"gown",
|
1173 |
+
"grand piano",
|
1174 |
+
"greenhouse",
|
1175 |
+
"radiator grille",
|
1176 |
+
"grocery store",
|
1177 |
+
"guillotine",
|
1178 |
+
"hair clip",
|
1179 |
+
"hair spray",
|
1180 |
+
"half-track",
|
1181 |
+
"hammer",
|
1182 |
+
"hamper",
|
1183 |
+
"hair dryer",
|
1184 |
+
"hand-held computer",
|
1185 |
+
"handkerchief",
|
1186 |
+
"hard disk drive",
|
1187 |
+
"harmonica",
|
1188 |
+
"harp",
|
1189 |
+
"combine harvester",
|
1190 |
+
"hatchet",
|
1191 |
+
"holster",
|
1192 |
+
"home theater",
|
1193 |
+
"honeycomb",
|
1194 |
+
"hook",
|
1195 |
+
"hoop skirt",
|
1196 |
+
"gymnastic horizontal bar",
|
1197 |
+
"horse-drawn vehicle",
|
1198 |
+
"hourglass",
|
1199 |
+
"iPod",
|
1200 |
+
"clothes iron",
|
1201 |
+
"carved pumpkin",
|
1202 |
+
"jeans",
|
1203 |
+
"jeep",
|
1204 |
+
"T-shirt",
|
1205 |
+
"jigsaw puzzle",
|
1206 |
+
"rickshaw",
|
1207 |
+
"joystick",
|
1208 |
+
"kimono",
|
1209 |
+
"knee pad",
|
1210 |
+
"knot",
|
1211 |
+
"lab coat",
|
1212 |
+
"ladle",
|
1213 |
+
"lampshade",
|
1214 |
+
"laptop computer",
|
1215 |
+
"lawn mower",
|
1216 |
+
"lens cap",
|
1217 |
+
"letter opener",
|
1218 |
+
"library",
|
1219 |
+
"lifeboat",
|
1220 |
+
"lighter",
|
1221 |
+
"limousine",
|
1222 |
+
"ocean liner",
|
1223 |
+
"lipstick",
|
1224 |
+
"slip-on shoe",
|
1225 |
+
"lotion",
|
1226 |
+
"music speaker",
|
1227 |
+
"loupe magnifying glass",
|
1228 |
+
"sawmill",
|
1229 |
+
"magnetic compass",
|
1230 |
+
"messenger bag",
|
1231 |
+
"mailbox",
|
1232 |
+
"tights",
|
1233 |
+
"one-piece bathing suit",
|
1234 |
+
"manhole cover",
|
1235 |
+
"maraca",
|
1236 |
+
"marimba",
|
1237 |
+
"mask",
|
1238 |
+
"matchstick",
|
1239 |
+
"maypole",
|
1240 |
+
"maze",
|
1241 |
+
"measuring cup",
|
1242 |
+
"medicine cabinet",
|
1243 |
+
"megalith",
|
1244 |
+
"microphone",
|
1245 |
+
"microwave oven",
|
1246 |
+
"military uniform",
|
1247 |
+
"milk can",
|
1248 |
+
"minibus",
|
1249 |
+
"miniskirt",
|
1250 |
+
"minivan",
|
1251 |
+
"missile",
|
1252 |
+
"mitten",
|
1253 |
+
"mixing bowl",
|
1254 |
+
"mobile home",
|
1255 |
+
"ford model t",
|
1256 |
+
"modem",
|
1257 |
+
"monastery",
|
1258 |
+
"monitor",
|
1259 |
+
"moped",
|
1260 |
+
"mortar and pestle",
|
1261 |
+
"graduation cap",
|
1262 |
+
"mosque",
|
1263 |
+
"mosquito net",
|
1264 |
+
"vespa",
|
1265 |
+
"mountain bike",
|
1266 |
+
"tent",
|
1267 |
+
"computer mouse",
|
1268 |
+
"mousetrap",
|
1269 |
+
"moving van",
|
1270 |
+
"muzzle",
|
1271 |
+
"metal nail",
|
1272 |
+
"neck brace",
|
1273 |
+
"necklace",
|
1274 |
+
"baby pacifier",
|
1275 |
+
"notebook computer",
|
1276 |
+
"obelisk",
|
1277 |
+
"oboe",
|
1278 |
+
"ocarina",
|
1279 |
+
"odometer",
|
1280 |
+
"oil filter",
|
1281 |
+
"pipe organ",
|
1282 |
+
"oscilloscope",
|
1283 |
+
"overskirt",
|
1284 |
+
"bullock cart",
|
1285 |
+
"oxygen mask",
|
1286 |
+
"product packet / packaging",
|
1287 |
+
"paddle",
|
1288 |
+
"paddle wheel",
|
1289 |
+
"padlock",
|
1290 |
+
"paintbrush",
|
1291 |
+
"pajamas",
|
1292 |
+
"palace",
|
1293 |
+
"pan flute",
|
1294 |
+
"paper towel",
|
1295 |
+
"parachute",
|
1296 |
+
"parallel bars",
|
1297 |
+
"park bench",
|
1298 |
+
"parking meter",
|
1299 |
+
"railroad car",
|
1300 |
+
"patio",
|
1301 |
+
"payphone",
|
1302 |
+
"pedestal",
|
1303 |
+
"pencil case",
|
1304 |
+
"pencil sharpener",
|
1305 |
+
"perfume",
|
1306 |
+
"Petri dish",
|
1307 |
+
"photocopier",
|
1308 |
+
"plectrum",
|
1309 |
+
"Pickelhaube",
|
1310 |
+
"picket fence",
|
1311 |
+
"pickup truck",
|
1312 |
+
"pier",
|
1313 |
+
"piggy bank",
|
1314 |
+
"pill bottle",
|
1315 |
+
"pillow",
|
1316 |
+
"ping-pong ball",
|
1317 |
+
"pinwheel",
|
1318 |
+
"pirate ship",
|
1319 |
+
"drink pitcher",
|
1320 |
+
"block plane",
|
1321 |
+
"planetarium",
|
1322 |
+
"plastic bag",
|
1323 |
+
"plate rack",
|
1324 |
+
"farm plow",
|
1325 |
+
"plunger",
|
1326 |
+
"Polaroid camera",
|
1327 |
+
"pole",
|
1328 |
+
"police van",
|
1329 |
+
"poncho",
|
1330 |
+
"pool table",
|
1331 |
+
"soda bottle",
|
1332 |
+
"plant pot",
|
1333 |
+
"potter's wheel",
|
1334 |
+
"power drill",
|
1335 |
+
"prayer rug",
|
1336 |
+
"printer",
|
1337 |
+
"prison",
|
1338 |
+
"missile",
|
1339 |
+
"projector",
|
1340 |
+
"hockey puck",
|
1341 |
+
"punching bag",
|
1342 |
+
"purse",
|
1343 |
+
"quill",
|
1344 |
+
"quilt",
|
1345 |
+
"race car",
|
1346 |
+
"racket",
|
1347 |
+
"radiator",
|
1348 |
+
"radio",
|
1349 |
+
"radio telescope",
|
1350 |
+
"rain barrel",
|
1351 |
+
"recreational vehicle",
|
1352 |
+
"fishing casting reel",
|
1353 |
+
"reflex camera",
|
1354 |
+
"refrigerator",
|
1355 |
+
"remote control",
|
1356 |
+
"restaurant",
|
1357 |
+
"revolver",
|
1358 |
+
"rifle",
|
1359 |
+
"rocking chair",
|
1360 |
+
"rotisserie",
|
1361 |
+
"eraser",
|
1362 |
+
"rugby ball",
|
1363 |
+
"ruler measuring stick",
|
1364 |
+
"sneaker",
|
1365 |
+
"safe",
|
1366 |
+
"safety pin",
|
1367 |
+
"salt shaker",
|
1368 |
+
"sandal",
|
1369 |
+
"sarong",
|
1370 |
+
"saxophone",
|
1371 |
+
"scabbard",
|
1372 |
+
"weighing scale",
|
1373 |
+
"school bus",
|
1374 |
+
"schooner",
|
1375 |
+
"scoreboard",
|
1376 |
+
"CRT monitor",
|
1377 |
+
"screw",
|
1378 |
+
"screwdriver",
|
1379 |
+
"seat belt",
|
1380 |
+
"sewing machine",
|
1381 |
+
"shield",
|
1382 |
+
"shoe store",
|
1383 |
+
"shoji screen / room divider",
|
1384 |
+
"shopping basket",
|
1385 |
+
"shopping cart",
|
1386 |
+
"shovel",
|
1387 |
+
"shower cap",
|
1388 |
+
"shower curtain",
|
1389 |
+
"ski",
|
1390 |
+
"balaclava ski mask",
|
1391 |
+
"sleeping bag",
|
1392 |
+
"slide rule",
|
1393 |
+
"sliding door",
|
1394 |
+
"slot machine",
|
1395 |
+
"snorkel",
|
1396 |
+
"snowmobile",
|
1397 |
+
"snowplow",
|
1398 |
+
"soap dispenser",
|
1399 |
+
"soccer ball",
|
1400 |
+
"sock",
|
1401 |
+
"solar thermal collector",
|
1402 |
+
"sombrero",
|
1403 |
+
"soup bowl",
|
1404 |
+
"keyboard space bar",
|
1405 |
+
"space heater",
|
1406 |
+
"space shuttle",
|
1407 |
+
"spatula",
|
1408 |
+
"motorboat",
|
1409 |
+
"spider web",
|
1410 |
+
"spindle",
|
1411 |
+
"sports car",
|
1412 |
+
"spotlight",
|
1413 |
+
"stage",
|
1414 |
+
"steam locomotive",
|
1415 |
+
"through arch bridge",
|
1416 |
+
"steel drum",
|
1417 |
+
"stethoscope",
|
1418 |
+
"scarf",
|
1419 |
+
"stone wall",
|
1420 |
+
"stopwatch",
|
1421 |
+
"stove",
|
1422 |
+
"strainer",
|
1423 |
+
"tram",
|
1424 |
+
"stretcher",
|
1425 |
+
"couch",
|
1426 |
+
"stupa",
|
1427 |
+
"submarine",
|
1428 |
+
"suit",
|
1429 |
+
"sundial",
|
1430 |
+
"sunglasses",
|
1431 |
+
"sunglasses",
|
1432 |
+
"sunscreen",
|
1433 |
+
"suspension bridge",
|
1434 |
+
"mop",
|
1435 |
+
"sweatshirt",
|
1436 |
+
"swim trunks / shorts",
|
1437 |
+
"swing",
|
1438 |
+
"electrical switch",
|
1439 |
+
"syringe",
|
1440 |
+
"table lamp",
|
1441 |
+
"tank",
|
1442 |
+
"tape player",
|
1443 |
+
"teapot",
|
1444 |
+
"teddy bear",
|
1445 |
+
"television",
|
1446 |
+
"tennis ball",
|
1447 |
+
"thatched roof",
|
1448 |
+
"front curtain",
|
1449 |
+
"thimble",
|
1450 |
+
"threshing machine",
|
1451 |
+
"throne",
|
1452 |
+
"tile roof",
|
1453 |
+
"toaster",
|
1454 |
+
"tobacco shop",
|
1455 |
+
"toilet seat",
|
1456 |
+
"torch",
|
1457 |
+
"totem pole",
|
1458 |
+
"tow truck",
|
1459 |
+
"toy store",
|
1460 |
+
"tractor",
|
1461 |
+
"semi-trailer truck",
|
1462 |
+
"tray",
|
1463 |
+
"trench coat",
|
1464 |
+
"tricycle",
|
1465 |
+
"trimaran",
|
1466 |
+
"tripod",
|
1467 |
+
"triumphal arch",
|
1468 |
+
"trolleybus",
|
1469 |
+
"trombone",
|
1470 |
+
"hot tub",
|
1471 |
+
"turnstile",
|
1472 |
+
"typewriter keyboard",
|
1473 |
+
"umbrella",
|
1474 |
+
"unicycle",
|
1475 |
+
"upright piano",
|
1476 |
+
"vacuum cleaner",
|
1477 |
+
"vase",
|
1478 |
+
"vaulted or arched ceiling",
|
1479 |
+
"velvet fabric",
|
1480 |
+
"vending machine",
|
1481 |
+
"vestment",
|
1482 |
+
"viaduct",
|
1483 |
+
"violin",
|
1484 |
+
"volleyball",
|
1485 |
+
"waffle iron",
|
1486 |
+
"wall clock",
|
1487 |
+
"wallet",
|
1488 |
+
"wardrobe",
|
1489 |
+
"military aircraft",
|
1490 |
+
"sink",
|
1491 |
+
"washing machine",
|
1492 |
+
"water bottle",
|
1493 |
+
"water jug",
|
1494 |
+
"water tower",
|
1495 |
+
"whiskey jug",
|
1496 |
+
"whistle",
|
1497 |
+
"hair wig",
|
1498 |
+
"window screen",
|
1499 |
+
"window shade",
|
1500 |
+
"Windsor tie",
|
1501 |
+
"wine bottle",
|
1502 |
+
"airplane wing",
|
1503 |
+
"wok",
|
1504 |
+
"wooden spoon",
|
1505 |
+
"wool",
|
1506 |
+
"split-rail fence",
|
1507 |
+
"shipwreck",
|
1508 |
+
"sailboat",
|
1509 |
+
"yurt",
|
1510 |
+
"website",
|
1511 |
+
"comic book",
|
1512 |
+
"crossword",
|
1513 |
+
"traffic or street sign",
|
1514 |
+
"traffic light",
|
1515 |
+
"dust jacket",
|
1516 |
+
"menu",
|
1517 |
+
"plate",
|
1518 |
+
"guacamole",
|
1519 |
+
"consomme",
|
1520 |
+
"hot pot",
|
1521 |
+
"trifle",
|
1522 |
+
"ice cream",
|
1523 |
+
"popsicle",
|
1524 |
+
"baguette",
|
1525 |
+
"bagel",
|
1526 |
+
"pretzel",
|
1527 |
+
"cheeseburger",
|
1528 |
+
"hot dog",
|
1529 |
+
"mashed potatoes",
|
1530 |
+
"cabbage",
|
1531 |
+
"broccoli",
|
1532 |
+
"cauliflower",
|
1533 |
+
"zucchini",
|
1534 |
+
"spaghetti squash",
|
1535 |
+
"acorn squash",
|
1536 |
+
"butternut squash",
|
1537 |
+
"cucumber",
|
1538 |
+
"artichoke",
|
1539 |
+
"bell pepper",
|
1540 |
+
"cardoon",
|
1541 |
+
"mushroom",
|
1542 |
+
"Granny Smith apple",
|
1543 |
+
"strawberry",
|
1544 |
+
"orange",
|
1545 |
+
"lemon",
|
1546 |
+
"fig",
|
1547 |
+
"pineapple",
|
1548 |
+
"banana",
|
1549 |
+
"jackfruit",
|
1550 |
+
"cherimoya (custard apple)",
|
1551 |
+
"pomegranate",
|
1552 |
+
"hay",
|
1553 |
+
"carbonara",
|
1554 |
+
"chocolate syrup",
|
1555 |
+
"dough",
|
1556 |
+
"meatloaf",
|
1557 |
+
"pizza",
|
1558 |
+
"pot pie",
|
1559 |
+
"burrito",
|
1560 |
+
"red wine",
|
1561 |
+
"espresso",
|
1562 |
+
"tea cup",
|
1563 |
+
"eggnog",
|
1564 |
+
"mountain",
|
1565 |
+
"bubble",
|
1566 |
+
"cliff",
|
1567 |
+
"coral reef",
|
1568 |
+
"geyser",
|
1569 |
+
"lakeshore",
|
1570 |
+
"promontory",
|
1571 |
+
"sandbar",
|
1572 |
+
"beach",
|
1573 |
+
"valley",
|
1574 |
+
"volcano",
|
1575 |
+
"baseball player",
|
1576 |
+
"bridegroom",
|
1577 |
+
"scuba diver",
|
1578 |
+
"rapeseed",
|
1579 |
+
"daisy",
|
1580 |
+
"yellow lady's slipper",
|
1581 |
+
"corn",
|
1582 |
+
"acorn",
|
1583 |
+
"rose hip",
|
1584 |
+
"horse chestnut seed",
|
1585 |
+
"coral fungus",
|
1586 |
+
"agaric",
|
1587 |
+
"gyromitra",
|
1588 |
+
"stinkhorn mushroom",
|
1589 |
+
"earth star fungus",
|
1590 |
+
"hen of the woods mushroom",
|
1591 |
+
"bolete",
|
1592 |
+
"corn cob",
|
1593 |
+
"toilet paper"
|
1594 |
+
],
|
1595 |
+
"clevr_count_all": [
|
1596 |
+
"three",
|
1597 |
+
"four",
|
1598 |
+
"five",
|
1599 |
+
"six",
|
1600 |
+
"seven",
|
1601 |
+
"eight",
|
1602 |
+
"nine",
|
1603 |
+
"ten"
|
1604 |
+
],
|
1605 |
+
"clevr_closest_object_distance": [
|
1606 |
+
"very nearby",
|
1607 |
+
"nearby",
|
1608 |
+
"near",
|
1609 |
+
"",
|
1610 |
+
"distant",
|
1611 |
+
"very distant"
|
1612 |
+
],
|
1613 |
+
"mnist": [
|
1614 |
+
"0",
|
1615 |
+
"1",
|
1616 |
+
"2",
|
1617 |
+
"3",
|
1618 |
+
"4",
|
1619 |
+
"5",
|
1620 |
+
"6",
|
1621 |
+
"7",
|
1622 |
+
"8",
|
1623 |
+
"9"
|
1624 |
+
],
|
1625 |
+
"svhn": [
|
1626 |
+
"zero",
|
1627 |
+
"one",
|
1628 |
+
"two",
|
1629 |
+
"three",
|
1630 |
+
"four",
|
1631 |
+
"five",
|
1632 |
+
"six",
|
1633 |
+
"seven",
|
1634 |
+
"eight",
|
1635 |
+
"nine"
|
1636 |
+
],
|
1637 |
+
"kitti_closest_vehicle_distance": [
|
1638 |
+
"a photo i took of a car on my left or right side.",
|
1639 |
+
"a photo i took with a car nearby.",
|
1640 |
+
"a photo i took with a car in the distance.",
|
1641 |
+
"a photo i took with no car."
|
1642 |
+
],
|
1643 |
+
"dmlab": [
|
1644 |
+
"nearby apple/melon",
|
1645 |
+
"far apple/melon",
|
1646 |
+
"very far apple/melon",
|
1647 |
+
"nearby lemon",
|
1648 |
+
"far lemon",
|
1649 |
+
"very far lemon"
|
1650 |
+
],
|
1651 |
+
"pets": [
|
1652 |
+
"Abyssinian",
|
1653 |
+
"American Bulldog",
|
1654 |
+
"American Pit Bull Terrier",
|
1655 |
+
"Basset Hound",
|
1656 |
+
"Beagle",
|
1657 |
+
"Bengal",
|
1658 |
+
"Birman",
|
1659 |
+
"Bombay",
|
1660 |
+
"Boxer",
|
1661 |
+
"British Shorthair",
|
1662 |
+
"Chihuahua",
|
1663 |
+
"Egyptian Mau",
|
1664 |
+
"English Cocker Spaniel",
|
1665 |
+
"English Setter",
|
1666 |
+
"German Shorthaired",
|
1667 |
+
"Great Pyrenees",
|
1668 |
+
"Havanese",
|
1669 |
+
"Japanese Chin",
|
1670 |
+
"Keeshond",
|
1671 |
+
"Leonberger",
|
1672 |
+
"Maine Coon",
|
1673 |
+
"Miniature Pinscher",
|
1674 |
+
"Newfoundland",
|
1675 |
+
"Persian",
|
1676 |
+
"Pomeranian",
|
1677 |
+
"Pug",
|
1678 |
+
"Ragdoll",
|
1679 |
+
"Russian Blue",
|
1680 |
+
"Saint Bernard",
|
1681 |
+
"Samoyed",
|
1682 |
+
"Scottish Terrier",
|
1683 |
+
"Shiba Inu",
|
1684 |
+
"Siamese",
|
1685 |
+
"Sphynx",
|
1686 |
+
"Staffordshire Bull Terrier",
|
1687 |
+
"Wheaten Terrier",
|
1688 |
+
"Yorkshire Terrier"
|
1689 |
+
],
|
1690 |
+
"pcam": [
|
1691 |
+
"lymph node",
|
1692 |
+
"lymph node containing metastatic tumor tissue"
|
1693 |
+
],
|
1694 |
+
"diabetic_retinopathy": [
|
1695 |
+
"no diabetic retinopathy",
|
1696 |
+
"mild diabetic retinopathy",
|
1697 |
+
"moderate diabetic retinopathy",
|
1698 |
+
"severe diabetic retinopathy",
|
1699 |
+
"proliferative diabetic retinopathy"
|
1700 |
+
]
|
1701 |
+
}
|
CLIP_benchmark/clip_benchmark/datasets/en_zeroshot_classification_templates.json
ADDED
@@ -0,0 +1,295 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cifar10": [
|
3 |
+
"a photo of a {c}.",
|
4 |
+
"a blurry photo of a {c}.",
|
5 |
+
"a black and white photo of a {c}.",
|
6 |
+
"a low contrast photo of a {c}.",
|
7 |
+
"a high contrast photo of a {c}.",
|
8 |
+
"a bad photo of a {c}.",
|
9 |
+
"a good photo of a {c}.",
|
10 |
+
"a photo of a small {c}.",
|
11 |
+
"a photo of a big {c}.",
|
12 |
+
"a photo of the {c}.",
|
13 |
+
"a blurry photo of the {c}.",
|
14 |
+
"a black and white photo of the {c}.",
|
15 |
+
"a low contrast photo of the {c}.",
|
16 |
+
"a high contrast photo of the {c}.",
|
17 |
+
"a bad photo of the {c}.",
|
18 |
+
"a good photo of the {c}.",
|
19 |
+
"a photo of the small {c}.",
|
20 |
+
"a photo of the big {c}."
|
21 |
+
],
|
22 |
+
"cifar100": [
|
23 |
+
"a photo of a {c}.",
|
24 |
+
"a blurry photo of a {c}.",
|
25 |
+
"a black and white photo of a {c}.",
|
26 |
+
"a low contrast photo of a {c}.",
|
27 |
+
"a high contrast photo of a {c}.",
|
28 |
+
"a bad photo of a {c}.",
|
29 |
+
"a good photo of a {c}.",
|
30 |
+
"a photo of a small {c}.",
|
31 |
+
"a photo of a big {c}.",
|
32 |
+
"a photo of the {c}.",
|
33 |
+
"a blurry photo of the {c}.",
|
34 |
+
"a black and white photo of the {c}.",
|
35 |
+
"a low contrast photo of the {c}.",
|
36 |
+
"a high contrast photo of the {c}.",
|
37 |
+
"a bad photo of the {c}.",
|
38 |
+
"a good photo of the {c}.",
|
39 |
+
"a photo of the small {c}.",
|
40 |
+
"a photo of the big {c}."
|
41 |
+
],
|
42 |
+
"imagenet1k": [
|
43 |
+
"a bad photo of a {c}.",
|
44 |
+
"a photo of many {c}.",
|
45 |
+
"a sculpture of a {c}.",
|
46 |
+
"a photo of the hard to see {c}.",
|
47 |
+
"a low resolution photo of the {c}.",
|
48 |
+
"a rendering of a {c}.",
|
49 |
+
"graffiti of a {c}.",
|
50 |
+
"a bad photo of the {c}.",
|
51 |
+
"a cropped photo of the {c}.",
|
52 |
+
"a tattoo of a {c}.",
|
53 |
+
"the embroidered {c}.",
|
54 |
+
"a photo of a hard to see {c}.",
|
55 |
+
"a bright photo of a {c}.",
|
56 |
+
"a photo of a clean {c}.",
|
57 |
+
"a photo of a dirty {c}.",
|
58 |
+
"a dark photo of the {c}.",
|
59 |
+
"a drawing of a {c}.",
|
60 |
+
"a photo of my {c}.",
|
61 |
+
"the plastic {c}.",
|
62 |
+
"a photo of the cool {c}.",
|
63 |
+
"a close-up photo of a {c}.",
|
64 |
+
"a black and white photo of the {c}.",
|
65 |
+
"a painting of the {c}.",
|
66 |
+
"a painting of a {c}.",
|
67 |
+
"a pixelated photo of the {c}.",
|
68 |
+
"a sculpture of the {c}.",
|
69 |
+
"a bright photo of the {c}.",
|
70 |
+
"a cropped photo of a {c}.",
|
71 |
+
"a plastic {c}.",
|
72 |
+
"a photo of the dirty {c}.",
|
73 |
+
"a jpeg corrupted photo of a {c}.",
|
74 |
+
"a blurry photo of the {c}.",
|
75 |
+
"a photo of the {c}.",
|
76 |
+
"a good photo of the {c}.",
|
77 |
+
"a rendering of the {c}.",
|
78 |
+
"a {c} in a video game.",
|
79 |
+
"a photo of one {c}.",
|
80 |
+
"a doodle of a {c}.",
|
81 |
+
"a close-up photo of the {c}.",
|
82 |
+
"a photo of a {c}.",
|
83 |
+
"the origami {c}.",
|
84 |
+
"the {c} in a video game.",
|
85 |
+
"a sketch of a {c}.",
|
86 |
+
"a doodle of the {c}.",
|
87 |
+
"a origami {c}.",
|
88 |
+
"a low resolution photo of a {c}.",
|
89 |
+
"the toy {c}.",
|
90 |
+
"a rendition of the {c}.",
|
91 |
+
"a photo of the clean {c}.",
|
92 |
+
"a photo of a large {c}.",
|
93 |
+
"a rendition of a {c}.",
|
94 |
+
"a photo of a nice {c}.",
|
95 |
+
"a photo of a weird {c}.",
|
96 |
+
"a blurry photo of a {c}.",
|
97 |
+
"a cartoon {c}.",
|
98 |
+
"art of a {c}.",
|
99 |
+
"a sketch of the {c}.",
|
100 |
+
"a embroidered {c}.",
|
101 |
+
"a pixelated photo of a {c}.",
|
102 |
+
"itap of the {c}.",
|
103 |
+
"a jpeg corrupted photo of the {c}.",
|
104 |
+
"a good photo of a {c}.",
|
105 |
+
"a plushie {c}.",
|
106 |
+
"a photo of the nice {c}.",
|
107 |
+
"a photo of the small {c}.",
|
108 |
+
"a photo of the weird {c}.",
|
109 |
+
"the cartoon {c}.",
|
110 |
+
"art of the {c}.",
|
111 |
+
"a drawing of the {c}.",
|
112 |
+
"a photo of the large {c}.",
|
113 |
+
"a black and white photo of a {c}.",
|
114 |
+
"the plushie {c}.",
|
115 |
+
"a dark photo of a {c}.",
|
116 |
+
"itap of a {c}.",
|
117 |
+
"graffiti of the {c}.",
|
118 |
+
"a toy {c}.",
|
119 |
+
"itap of my {c}.",
|
120 |
+
"a photo of a cool {c}.",
|
121 |
+
"a photo of a small {c}.",
|
122 |
+
"a tattoo of the {c}."
|
123 |
+
],
|
124 |
+
"food101": [
|
125 |
+
"a photo of {c}, a type of food."
|
126 |
+
],
|
127 |
+
"sun397": [
|
128 |
+
"a photo of a {c}.",
|
129 |
+
"a photo of the {c}."
|
130 |
+
],
|
131 |
+
"cars": [
|
132 |
+
"a photo of a {c}.",
|
133 |
+
"a photo of the {c}.",
|
134 |
+
"a photo of my {c}.",
|
135 |
+
"i love my {c}!",
|
136 |
+
"a photo of my dirty {c}.",
|
137 |
+
"a photo of my clean {c}.",
|
138 |
+
"a photo of my new {c}.",
|
139 |
+
"a photo of my old {c}."
|
140 |
+
],
|
141 |
+
"fgvc_aircraft": [
|
142 |
+
"a photo of a {c}, a type of aircraft.",
|
143 |
+
"a photo of the {c}, a type of aircraft."
|
144 |
+
],
|
145 |
+
"dtd": [
|
146 |
+
"a photo of a {c} texture.",
|
147 |
+
"a photo of a {c} pattern.",
|
148 |
+
"a photo of a {c} thing.",
|
149 |
+
"a photo of a {c} object.",
|
150 |
+
"a photo of the {c} texture.",
|
151 |
+
"a photo of the {c} pattern.",
|
152 |
+
"a photo of the {c} thing.",
|
153 |
+
"a photo of the {c} object."
|
154 |
+
],
|
155 |
+
"pets": [
|
156 |
+
"a photo of a {c}, a type of pet."
|
157 |
+
],
|
158 |
+
"caltech101": [
|
159 |
+
"a photo of a {c}.",
|
160 |
+
"a painting of a {c}.",
|
161 |
+
"a plastic {c}.",
|
162 |
+
"a sculpture of a {c}.",
|
163 |
+
"a sketch of a {c}.",
|
164 |
+
"a tattoo of a {c}.",
|
165 |
+
"a toy {c}.",
|
166 |
+
"a rendition of a {c}.",
|
167 |
+
"a embroidered {c}.",
|
168 |
+
"a cartoon {c}.",
|
169 |
+
"a {c} in a video game.",
|
170 |
+
"a plushie {c}.",
|
171 |
+
"a origami {c}.",
|
172 |
+
"art of a {c}.",
|
173 |
+
"graffiti of a {c}.",
|
174 |
+
"a drawing of a {c}.",
|
175 |
+
"a doodle of a {c}.",
|
176 |
+
"a photo of the {c}.",
|
177 |
+
"a painting of the {c}.",
|
178 |
+
"the plastic {c}.",
|
179 |
+
"a sculpture of the {c}.",
|
180 |
+
"a sketch of the {c}.",
|
181 |
+
"a tattoo of the {c}.",
|
182 |
+
"the toy {c}.",
|
183 |
+
"a rendition of the {c}.",
|
184 |
+
"the embroidered {c}.",
|
185 |
+
"the cartoon {c}.",
|
186 |
+
"the {c} in a video game.",
|
187 |
+
"the plushie {c}.",
|
188 |
+
"the origami {c}.",
|
189 |
+
"art of the {c}.",
|
190 |
+
"graffiti of the {c}.",
|
191 |
+
"a drawing of the {c}.",
|
192 |
+
"a doodle of the {c}."
|
193 |
+
],
|
194 |
+
"flowers": [
|
195 |
+
"a photo of a {c}, a type of flower."
|
196 |
+
],
|
197 |
+
"mnist": [
|
198 |
+
"a photo of the number: \"{c}\"."
|
199 |
+
],
|
200 |
+
"stl10": [
|
201 |
+
"a photo of a {c}.",
|
202 |
+
"a photo of the {c}."
|
203 |
+
],
|
204 |
+
"eurosat": [
|
205 |
+
"a centered satellite photo of {c}.",
|
206 |
+
"a centered satellite photo of a {c}.",
|
207 |
+
"a centered satellite photo of the {c}."
|
208 |
+
],
|
209 |
+
"gtsrb": [
|
210 |
+
"a zoomed in photo of a \"{c}\" traffic sign.",
|
211 |
+
"a centered photo of a \"{c}\" traffic sign.",
|
212 |
+
"a close up photo of a \"{c}\" traffic sign."
|
213 |
+
],
|
214 |
+
"country211": [
|
215 |
+
"a photo i took in {c}.",
|
216 |
+
"a photo i took while visiting {c}.",
|
217 |
+
"a photo from my home country of {c}.",
|
218 |
+
"a photo from my visit to {c}.",
|
219 |
+
"a photo showing the country of {c}."
|
220 |
+
],
|
221 |
+
"renderedsst2": [
|
222 |
+
"a {c} review of a movie."
|
223 |
+
],
|
224 |
+
"voc2007": [
|
225 |
+
"a photo of a {c}."
|
226 |
+
],
|
227 |
+
"voc2007_multilabel": [
|
228 |
+
"a photo of a {c}."
|
229 |
+
],
|
230 |
+
"fer2013": [
|
231 |
+
"a photo of a {c} looking face.",
|
232 |
+
"a photo of a face showing the emotion: {c}.",
|
233 |
+
"a photo of a face looking {c}.",
|
234 |
+
"a face that looks {c}.",
|
235 |
+
"they look {c}.",
|
236 |
+
"look at how {c} they are."
|
237 |
+
],
|
238 |
+
"clevr_count_all": [
|
239 |
+
"a picture of {c} objects"
|
240 |
+
],
|
241 |
+
"clevr_closest_object_distance": [
|
242 |
+
"{c} shapes."
|
243 |
+
],
|
244 |
+
"pcam": [
|
245 |
+
"a histopathology slide showing {c}",
|
246 |
+
"histopathology image of {c}"
|
247 |
+
],
|
248 |
+
"svhn": [
|
249 |
+
"a photo of the number {c} written on a sign",
|
250 |
+
"an outdoor house number {c}",
|
251 |
+
"the number {c} in the center of the image",
|
252 |
+
"an outdoor number {c} writte on a sign",
|
253 |
+
"an outdoor number {c}",
|
254 |
+
"a centered image of the number {c}"
|
255 |
+
],
|
256 |
+
"resisc45": [
|
257 |
+
"a sattelite image of {c}",
|
258 |
+
"an aerial view of {c}",
|
259 |
+
"a sattelite photo of {c}",
|
260 |
+
"{c} from above"
|
261 |
+
],
|
262 |
+
"kitti_closest_vehicle_distance": [
|
263 |
+
"{c}"
|
264 |
+
],
|
265 |
+
"smallnorb_label_azimuth": [
|
266 |
+
"an object rotated at {c}",
|
267 |
+
"something rotated at {c}",
|
268 |
+
"{c} rotation",
|
269 |
+
"something at a {c} angle"
|
270 |
+
],
|
271 |
+
"smallnorb_label_elevation": [
|
272 |
+
"an object rotated at {c}",
|
273 |
+
"something rotated at {c}",
|
274 |
+
"{c} rotation",
|
275 |
+
"something at a {c} angle"
|
276 |
+
],
|
277 |
+
"dsprites_label_x_position": [
|
278 |
+
"an object located at position {c}% on the horizontal axis"
|
279 |
+
],
|
280 |
+
"dsprites_label_orientation": [
|
281 |
+
"an object rotated at {c}",
|
282 |
+
"something rotated at {c}",
|
283 |
+
"{c} rotation",
|
284 |
+
"something at a {c} angle"
|
285 |
+
],
|
286 |
+
"dmlab": [
|
287 |
+
"{c}"
|
288 |
+
],
|
289 |
+
"diabetic_retinopathy": [
|
290 |
+
"a retinal image with {c}"
|
291 |
+
],
|
292 |
+
"dummy": [
|
293 |
+
"a photo of a {c}"
|
294 |
+
]
|
295 |
+
}
|
CLIP_benchmark/clip_benchmark/datasets/flickr.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adapted from https://github.com/pytorch/vision/blob/main/torchvision/datasets/flickr.py
|
3 |
+
Thanks to the authors of torchvision
|
4 |
+
"""
|
5 |
+
from collections import defaultdict
|
6 |
+
import glob
|
7 |
+
import os
|
8 |
+
from collections import defaultdict
|
9 |
+
from html.parser import HTMLParser
|
10 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple
|
11 |
+
|
12 |
+
from PIL import Image
|
13 |
+
from torchvision.datasets import VisionDataset
|
14 |
+
|
15 |
+
class Flickr(VisionDataset):
|
16 |
+
|
17 |
+
def __init__(
|
18 |
+
self,
|
19 |
+
root: str,
|
20 |
+
ann_file: str,
|
21 |
+
transform: Optional[Callable] = None,
|
22 |
+
target_transform: Optional[Callable] = None,
|
23 |
+
) -> None:
|
24 |
+
super().__init__(root, transform=transform, target_transform=target_transform)
|
25 |
+
self.ann_file = os.path.expanduser(ann_file)
|
26 |
+
data = defaultdict(list)
|
27 |
+
with open(ann_file) as fd:
|
28 |
+
fd.readline()
|
29 |
+
for line in fd:
|
30 |
+
line = line.strip()
|
31 |
+
if line:
|
32 |
+
# some lines have comma in the caption, se we make sure we do the split correctly
|
33 |
+
img, caption = line.strip().split(".jpg,")
|
34 |
+
img = img + ".jpg"
|
35 |
+
data[img].append(caption)
|
36 |
+
self.data = list(data.items())
|
37 |
+
|
38 |
+
def __getitem__(self, index: int) -> Tuple[Any, Any]:
|
39 |
+
"""
|
40 |
+
Args:
|
41 |
+
index (int): Index
|
42 |
+
|
43 |
+
Returns:
|
44 |
+
tuple: Tuple (image, target). target is a list of captions for the image.
|
45 |
+
"""
|
46 |
+
img, captions = self.data[index]
|
47 |
+
|
48 |
+
# Image
|
49 |
+
img = Image.open(os.path.join(self.root, img)).convert("RGB")
|
50 |
+
if self.transform is not None:
|
51 |
+
img = self.transform(img)
|
52 |
+
|
53 |
+
# Captions
|
54 |
+
target = captions
|
55 |
+
if self.target_transform is not None:
|
56 |
+
target = self.target_transform(target)
|
57 |
+
|
58 |
+
return img, target
|
59 |
+
|
60 |
+
|
61 |
+
def __len__(self) -> int:
|
62 |
+
return len(self.data)
|
CLIP_benchmark/clip_benchmark/datasets/imagenetv2.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Code from https://github.com/mlfoundations/wise-ft/blob/master/src/datasets/imagenetv2.py
|
3 |
+
Thanks to the authors of wise-ft
|
4 |
+
"""
|
5 |
+
import pathlib
|
6 |
+
import tarfile
|
7 |
+
import requests
|
8 |
+
import shutil
|
9 |
+
|
10 |
+
from PIL import Image
|
11 |
+
from tqdm import tqdm
|
12 |
+
from torch.utils.data import Dataset, DataLoader
|
13 |
+
from torchvision.datasets import ImageFolder
|
14 |
+
|
15 |
+
URLS = {"matched-frequency" : "https://imagenetv2public.s3-us-west-2.amazonaws.com/imagenetv2-matched-frequency.tar.gz",
|
16 |
+
"threshold-0.7" : "https://imagenetv2public.s3-us-west-2.amazonaws.com/imagenetv2-threshold0.7.tar.gz",
|
17 |
+
"top-images": "https://imagenetv2public.s3-us-west-2.amazonaws.com/imagenetv2-top-images.tar.gz",
|
18 |
+
"val": "https://imagenetv2public.s3-us-west-2.amazonaws.com/imagenet_validation.tar.gz"}
|
19 |
+
|
20 |
+
FNAMES = {"matched-frequency" : "imagenetv2-matched-frequency-format-val",
|
21 |
+
"threshold-0.7" : "imagenetv2-threshold0.7-format-val",
|
22 |
+
"top-images": "imagenetv2-top-images-format-val",
|
23 |
+
"val": "imagenet_validation"}
|
24 |
+
|
25 |
+
|
26 |
+
V2_DATASET_SIZE = 10000
|
27 |
+
VAL_DATASET_SIZE = 50000
|
28 |
+
|
29 |
+
class ImageNetValDataset(Dataset):
|
30 |
+
def __init__(self, transform=None, location="."):
|
31 |
+
self.dataset_root = pathlib.Path(f"{location}/imagenet_validation/")
|
32 |
+
self.tar_root = pathlib.Path(f"{location}/imagenet_validation.tar.gz")
|
33 |
+
self.fnames = list(self.dataset_root.glob("**/*.JPEG"))
|
34 |
+
self.transform = transform
|
35 |
+
if not self.dataset_root.exists() or len(self.fnames) != VAL_DATASET_SIZE:
|
36 |
+
if not self.tar_root.exists():
|
37 |
+
print(f"Dataset imagenet-val not found on disk, downloading....")
|
38 |
+
response = requests.get(URLS["val"], stream=True)
|
39 |
+
total_size_in_bytes= int(response.headers.get('content-length', 0))
|
40 |
+
block_size = 1024 #1 Kibibyte
|
41 |
+
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
|
42 |
+
with open(self.tar_root, 'wb') as f:
|
43 |
+
for data in response.iter_content(block_size):
|
44 |
+
progress_bar.update(len(data))
|
45 |
+
f.write(data)
|
46 |
+
progress_bar.close()
|
47 |
+
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
|
48 |
+
assert False, f"Downloading from {URLS[variant]} failed"
|
49 |
+
print("Extracting....")
|
50 |
+
tarfile.open(self.tar_root).extractall(f"{location}")
|
51 |
+
shutil.move(f"{location}/{FNAMES['val']}", self.dataset_root)
|
52 |
+
|
53 |
+
self.dataset = ImageFolder(self.dataset_root)
|
54 |
+
|
55 |
+
def __len__(self):
|
56 |
+
return len(self.dataset)
|
57 |
+
|
58 |
+
def __getitem__(self, i):
|
59 |
+
img, label = self.dataset[i]
|
60 |
+
if self.transform is not None:
|
61 |
+
img = self.transform(img)
|
62 |
+
return img, label
|
63 |
+
|
64 |
+
class ImageNetV2Dataset(Dataset):
|
65 |
+
def __init__(self, variant="matched-frequency", transform=None, location="."):
|
66 |
+
self.dataset_root = pathlib.Path(f"{location}/ImageNetV2-{variant}/")
|
67 |
+
self.tar_root = pathlib.Path(f"{location}/ImageNetV2-{variant}.tar.gz")
|
68 |
+
self.fnames = list(self.dataset_root.glob("**/*.jpeg"))
|
69 |
+
self.transform = transform
|
70 |
+
assert variant in URLS, f"unknown V2 Variant: {variant}"
|
71 |
+
if not self.dataset_root.exists() or len(self.fnames) != V2_DATASET_SIZE:
|
72 |
+
if not self.tar_root.exists():
|
73 |
+
print(f"Dataset {variant} not found on disk, downloading....")
|
74 |
+
response = requests.get(URLS[variant], stream=True)
|
75 |
+
total_size_in_bytes= int(response.headers.get('content-length', 0))
|
76 |
+
block_size = 1024 #1 Kibibyte
|
77 |
+
progress_bar = tqdm(total=total_size_in_bytes, unit='iB', unit_scale=True)
|
78 |
+
with open(self.tar_root, 'wb') as f:
|
79 |
+
for data in response.iter_content(block_size):
|
80 |
+
progress_bar.update(len(data))
|
81 |
+
f.write(data)
|
82 |
+
progress_bar.close()
|
83 |
+
if total_size_in_bytes != 0 and progress_bar.n != total_size_in_bytes:
|
84 |
+
assert False, f"Downloading from {URLS[variant]} failed"
|
85 |
+
print("Extracting....")
|
86 |
+
tarfile.open(self.tar_root).extractall(f"{location}")
|
87 |
+
shutil.move(f"{location}/{FNAMES[variant]}", self.dataset_root)
|
88 |
+
self.fnames = list(self.dataset_root.glob("**/*.jpeg"))
|
89 |
+
|
90 |
+
|
91 |
+
def __len__(self):
|
92 |
+
return len(self.fnames)
|
93 |
+
|
94 |
+
def __getitem__(self, i):
|
95 |
+
img, label = Image.open(self.fnames[i]), int(self.fnames[i].parent.name)
|
96 |
+
if self.transform is not None:
|
97 |
+
img = self.transform(img)
|
98 |
+
return img, label
|
CLIP_benchmark/clip_benchmark/datasets/it_classnames.json
ADDED
@@ -0,0 +1,1004 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imagenet1k": [
|
3 |
+
"una tinca",
|
4 |
+
"un pesce rosso",
|
5 |
+
"un grande squalo bianco",
|
6 |
+
"uno squalo tigre",
|
7 |
+
"un pesce martello",
|
8 |
+
"un raggio elettrico",
|
9 |
+
"una pastinaca",
|
10 |
+
"un gallo",
|
11 |
+
"una gallina",
|
12 |
+
"uno struzzo",
|
13 |
+
"un rovo",
|
14 |
+
"un cardellino",
|
15 |
+
"un fringuello di casa",
|
16 |
+
"un giunco",
|
17 |
+
"uno zigolo indaco",
|
18 |
+
"un pettirosso",
|
19 |
+
"un bulbul",
|
20 |
+
"una ghiandaia",
|
21 |
+
"una gazza",
|
22 |
+
"una cinciallegra",
|
23 |
+
"un'ouzel d'acqua",
|
24 |
+
"un aquilone",
|
25 |
+
"un'aquila calva",
|
26 |
+
"un avvoltoio",
|
27 |
+
"un grande gufo grigio",
|
28 |
+
"una salamandra da fuoco europea",
|
29 |
+
"un tritone comune",
|
30 |
+
"a eft",
|
31 |
+
"una salamandra pezzata",
|
32 |
+
"un axolotl",
|
33 |
+
"una rana toro",
|
34 |
+
"una raganella",
|
35 |
+
"una rana con la coda",
|
36 |
+
"una testa di toro",
|
37 |
+
"una tartaruga di cuoio",
|
38 |
+
"una tartaruga di fango",
|
39 |
+
"una tartaruga",
|
40 |
+
"una tartaruga di scatola",
|
41 |
+
"un geco a bande",
|
42 |
+
"un'iguana comune",
|
43 |
+
"un camaleonte americano",
|
44 |
+
"una coda di frusta",
|
45 |
+
"a agama",
|
46 |
+
"una lucertola con le ali",
|
47 |
+
"una lucertola alligatore",
|
48 |
+
"un mostro di Gila",
|
49 |
+
"una lucertola verde",
|
50 |
+
"un camaleonte africano",
|
51 |
+
"un drago di Komodo",
|
52 |
+
"un coccodrillo africano",
|
53 |
+
"un alligatore americano",
|
54 |
+
"un triceratopo",
|
55 |
+
"un serpente di tuono",
|
56 |
+
"un serpente ringneck",
|
57 |
+
"un serpente hognose",
|
58 |
+
"un serpente verde",
|
59 |
+
"un serpente re",
|
60 |
+
"un serpente giarrettiera",
|
61 |
+
"un serpente d'acqua",
|
62 |
+
"un serpente a forma di vite",
|
63 |
+
"un serpente notturno",
|
64 |
+
"un boa constrictor",
|
65 |
+
"un pitone delle rocce",
|
66 |
+
"un cobra indiano",
|
67 |
+
"un mamba verde",
|
68 |
+
"un serpente di mare",
|
69 |
+
"una vipera cornuta",
|
70 |
+
"un diamondback",
|
71 |
+
"un sidewinder",
|
72 |
+
"un trilobite",
|
73 |
+
"un raccoglitore",
|
74 |
+
"uno scorpione",
|
75 |
+
"un ragno da giardino nero e oro",
|
76 |
+
"un ragno da fienile",
|
77 |
+
"un ragno del giardino",
|
78 |
+
"una vedova nera",
|
79 |
+
"una tarantola",
|
80 |
+
"un ragno lupo",
|
81 |
+
"un segno di spunta",
|
82 |
+
"un millepiedi",
|
83 |
+
"un fagiano di monte",
|
84 |
+
"pernice bianca",
|
85 |
+
"un gallo cedrone",
|
86 |
+
"un pollo della prateria",
|
87 |
+
"un pavone",
|
88 |
+
"una quaglia",
|
89 |
+
"una pernice",
|
90 |
+
"un grigio africano",
|
91 |
+
"un'ara",
|
92 |
+
"un cacatua dalla cresta sulfurea",
|
93 |
+
"un lorichetto",
|
94 |
+
"una coucal",
|
95 |
+
"un mangiatore di api",
|
96 |
+
"un bucerotide",
|
97 |
+
"un colibr\u00ec",
|
98 |
+
"un jacamar",
|
99 |
+
"un tucano",
|
100 |
+
"un drake",
|
101 |
+
"un merganser dal petto rosso",
|
102 |
+
"un'oca",
|
103 |
+
"un cigno nero",
|
104 |
+
"un tusker",
|
105 |
+
"un echidna",
|
106 |
+
"un ornitorinco",
|
107 |
+
"un wallaby",
|
108 |
+
"un koala",
|
109 |
+
"un vombato",
|
110 |
+
"una medusa",
|
111 |
+
"un anemone di mare",
|
112 |
+
"un corallo del cervello",
|
113 |
+
"un verme piatto",
|
114 |
+
"un nematode",
|
115 |
+
"uno strombo",
|
116 |
+
"una lumaca",
|
117 |
+
"una lumaca",
|
118 |
+
"una lumaca di mare",
|
119 |
+
"un chitone",
|
120 |
+
"un nautilus a camera",
|
121 |
+
"un granchio di Dungeness",
|
122 |
+
"un granchio di roccia",
|
123 |
+
"un granchio violinista",
|
124 |
+
"un granchio reale",
|
125 |
+
"un'aragosta americana",
|
126 |
+
"un'aragosta spinosa",
|
127 |
+
"un gambero di fiume",
|
128 |
+
"un paguro",
|
129 |
+
"un isopode",
|
130 |
+
"una cicogna bianca",
|
131 |
+
"una cicogna nera",
|
132 |
+
"una spatola",
|
133 |
+
"un fenicottero",
|
134 |
+
"un piccolo airone blu",
|
135 |
+
"una garzetta americana",
|
136 |
+
"un tarabuso",
|
137 |
+
"una gru",
|
138 |
+
"un moscerino",
|
139 |
+
"un gallinaccio europeo",
|
140 |
+
"una folaga americana",
|
141 |
+
"un'otarda",
|
142 |
+
"una pietra focaia rubiconda",
|
143 |
+
"un piovanello dal dorso rosso",
|
144 |
+
"una pettegola",
|
145 |
+
"una dowitcher",
|
146 |
+
"una beccaccia di mare",
|
147 |
+
"un pellicano",
|
148 |
+
"un pinguino reale",
|
149 |
+
"un albatros",
|
150 |
+
"una balena grigia",
|
151 |
+
"un'orca assassina",
|
152 |
+
"un dugongo",
|
153 |
+
"un leone marino",
|
154 |
+
"un chihuahua",
|
155 |
+
"uno spaniel giapponese",
|
156 |
+
"un cane maltese",
|
157 |
+
"un pechinese",
|
158 |
+
"uno Shih-Tzu",
|
159 |
+
"uno spaniel Blenheim",
|
160 |
+
"un papillon",
|
161 |
+
"un terrier giocattolo",
|
162 |
+
"un Rhodesian ridgeback",
|
163 |
+
"un segugio afgano",
|
164 |
+
"un bassotto",
|
165 |
+
"un beagle",
|
166 |
+
"un segugio",
|
167 |
+
"un bluetick",
|
168 |
+
"un coonhound nero e marrone",
|
169 |
+
"un segugio Walker",
|
170 |
+
"un foxhound inglese",
|
171 |
+
"un osso rosso",
|
172 |
+
"un borzoi",
|
173 |
+
"un cane lupo irlandese",
|
174 |
+
"un levriero italiano",
|
175 |
+
"un whippet",
|
176 |
+
"un segugio ibizenco",
|
177 |
+
"un elkhound norvegese",
|
178 |
+
"una lontra",
|
179 |
+
"un Saluki",
|
180 |
+
"un deerhound scozzese",
|
181 |
+
"un Weimaraner",
|
182 |
+
"uno Staffordshire bullterrier",
|
183 |
+
"un American Staffordshire terrier",
|
184 |
+
"un Bedlington terrier",
|
185 |
+
"un Border terrier",
|
186 |
+
"un Kerry blue terrier",
|
187 |
+
"un terrier irlandese",
|
188 |
+
"un Norfolk terrier",
|
189 |
+
"un Norwich terrier",
|
190 |
+
"uno Yorkshire terrier",
|
191 |
+
"un fox terrier a pelo corto",
|
192 |
+
"un Lakeland terrier",
|
193 |
+
"un Sealyham terrier",
|
194 |
+
"un Airedale",
|
195 |
+
"un tumulo",
|
196 |
+
"un terrier australiano",
|
197 |
+
"un Dandie Dinmont",
|
198 |
+
"un toro di Boston",
|
199 |
+
"uno schnauzer in miniatura",
|
200 |
+
"uno schnauzer gigante",
|
201 |
+
"uno schnauzer standard",
|
202 |
+
"un terrier scozzese",
|
203 |
+
"un terrier tibetano",
|
204 |
+
"un terrier di seta",
|
205 |
+
"un wheaten terrier a pelo morbido",
|
206 |
+
"un West Highland white terrier",
|
207 |
+
"a Lhasa",
|
208 |
+
"un flat-coated retriever",
|
209 |
+
"un retriever a pelo riccio",
|
210 |
+
"un golden retriever",
|
211 |
+
"un Labrador retriever",
|
212 |
+
"un Chesapeake Bay retriever",
|
213 |
+
"un pointer tedesco a pelo corto",
|
214 |
+
"un vizsla",
|
215 |
+
"un setter inglese",
|
216 |
+
"un setter irlandese",
|
217 |
+
"un setter Gordon",
|
218 |
+
"un Brittany spaniel",
|
219 |
+
"un idraulico",
|
220 |
+
"uno springer inglese",
|
221 |
+
"uno springer spaniel gallese",
|
222 |
+
"un cocker spaniel",
|
223 |
+
"uno spaniel del Sussex",
|
224 |
+
"uno spaniel d'acqua irlandese",
|
225 |
+
"un kuvasz",
|
226 |
+
"uno schipperke",
|
227 |
+
"una groenendael",
|
228 |
+
"un malinois",
|
229 |
+
"una briarda",
|
230 |
+
"un kelpie",
|
231 |
+
"un komondor",
|
232 |
+
"un vecchio cane da pastore inglese",
|
233 |
+
"un cane da pastore Shetland",
|
234 |
+
"un collie",
|
235 |
+
"un Border collie",
|
236 |
+
"un Bouvier des Flandres",
|
237 |
+
"un Rottweiler",
|
238 |
+
"un pastore tedesco",
|
239 |
+
"un dobermann",
|
240 |
+
"un pinscher in miniatura",
|
241 |
+
"un cane da montagna svizzero maggiore",
|
242 |
+
"un cane di montagna bernese",
|
243 |
+
"un Appenzeller",
|
244 |
+
"a EntleBucher",
|
245 |
+
"un pugile",
|
246 |
+
"un mastino toro",
|
247 |
+
"un mastino tibetano",
|
248 |
+
"un bulldog francese",
|
249 |
+
"un alano",
|
250 |
+
"un San Bernardo",
|
251 |
+
"un cane eschimese",
|
252 |
+
"un malamute",
|
253 |
+
"un Siberian husky",
|
254 |
+
"un dalmata",
|
255 |
+
"un affenpinscher",
|
256 |
+
"un basenji",
|
257 |
+
"un carlino",
|
258 |
+
"a Leonberg",
|
259 |
+
"un Terranova",
|
260 |
+
"un Grande Pireneo",
|
261 |
+
"un samoiedo",
|
262 |
+
"un Pomerania",
|
263 |
+
"un chow",
|
264 |
+
"un keeshond",
|
265 |
+
"un grifone di Brabancon",
|
266 |
+
"un Pembroke",
|
267 |
+
"un cardigan",
|
268 |
+
"un barboncino giocattolo",
|
269 |
+
"un barboncino in miniatura",
|
270 |
+
"un barboncino standard",
|
271 |
+
"un messicano senza capelli",
|
272 |
+
"un lupo di legno",
|
273 |
+
"un lupo bianco",
|
274 |
+
"un lupo rosso",
|
275 |
+
"un coyote",
|
276 |
+
"un dingo",
|
277 |
+
"un dhole",
|
278 |
+
"un cane da caccia africano",
|
279 |
+
"una iena",
|
280 |
+
"una volpe rossa",
|
281 |
+
"una volpe di kit",
|
282 |
+
"una volpe artica",
|
283 |
+
"una volpe grigia",
|
284 |
+
"un soriano",
|
285 |
+
"un gatto tigrato",
|
286 |
+
"un gatto persiano",
|
287 |
+
"un gatto siamese",
|
288 |
+
"un gatto egiziano",
|
289 |
+
"un puma",
|
290 |
+
"una lince",
|
291 |
+
"un leopardo",
|
292 |
+
"un leopardo delle nevi",
|
293 |
+
"un giaguaro",
|
294 |
+
"un leone",
|
295 |
+
"una tigre",
|
296 |
+
"un ghepardo",
|
297 |
+
"un orso bruno",
|
298 |
+
"un orso nero americano",
|
299 |
+
"un orso di ghiaccio",
|
300 |
+
"un orso bradipo",
|
301 |
+
"una mangusta",
|
302 |
+
"un suricato",
|
303 |
+
"uno scarabeo tigre",
|
304 |
+
"una coccinella",
|
305 |
+
"uno scarabeo di terra",
|
306 |
+
"uno scarabeo dalle lunghe corna",
|
307 |
+
"uno scarabeo delle foglie",
|
308 |
+
"uno scarabeo stercorario",
|
309 |
+
"uno scarabeo rinoceronte",
|
310 |
+
"un tonchio",
|
311 |
+
"una mosca",
|
312 |
+
"un'ape",
|
313 |
+
"una formica",
|
314 |
+
"una cavalletta",
|
315 |
+
"un grillo",
|
316 |
+
"un bastone da passeggio",
|
317 |
+
"uno scarafaggio",
|
318 |
+
"una mantide",
|
319 |
+
"una cicala",
|
320 |
+
"una cavalletta",
|
321 |
+
"un pizzo",
|
322 |
+
"una libellula",
|
323 |
+
"una damigella",
|
324 |
+
"un ammiraglio",
|
325 |
+
"un ricciolo",
|
326 |
+
"un monarca",
|
327 |
+
"una farfalla cavolo",
|
328 |
+
"una farfalla sulfurea",
|
329 |
+
"un licaenide",
|
330 |
+
"una stella marina",
|
331 |
+
"un riccio di mare",
|
332 |
+
"un cetriolo di mare",
|
333 |
+
"un coniglio di legno",
|
334 |
+
"una lepre",
|
335 |
+
"un angora",
|
336 |
+
"un criceto",
|
337 |
+
"un porcospino",
|
338 |
+
"uno scoiattolo volpe",
|
339 |
+
"una marmotta",
|
340 |
+
"un castoro",
|
341 |
+
"un porcellino d'India",
|
342 |
+
"un'acetosa",
|
343 |
+
"una zebra",
|
344 |
+
"un maiale",
|
345 |
+
"un cinghiale",
|
346 |
+
"un facocero",
|
347 |
+
"un ippopotamo",
|
348 |
+
"un bue",
|
349 |
+
"un bufalo d'acqua",
|
350 |
+
"un bisonte",
|
351 |
+
"ariete",
|
352 |
+
"un bighorn",
|
353 |
+
"uno stambecco",
|
354 |
+
"un alcefalo",
|
355 |
+
"un impala",
|
356 |
+
"una gazzella",
|
357 |
+
"un cammello arabo",
|
358 |
+
"un lama",
|
359 |
+
"una donnola",
|
360 |
+
"un visone",
|
361 |
+
"una puzzola",
|
362 |
+
"un furetto dai piedi neri",
|
363 |
+
"una lontra",
|
364 |
+
"una puzzola",
|
365 |
+
"un tasso",
|
366 |
+
"un armadillo",
|
367 |
+
"un bradipo a tre dita",
|
368 |
+
"un orango",
|
369 |
+
"un gorilla",
|
370 |
+
"uno scimpanz\u00e9",
|
371 |
+
"un gibbone",
|
372 |
+
"un siamang",
|
373 |
+
"un cercopiteco",
|
374 |
+
"un patas",
|
375 |
+
"un babbuino",
|
376 |
+
"un macaco",
|
377 |
+
"un langur",
|
378 |
+
"un colobo",
|
379 |
+
"una scimmia proboscide",
|
380 |
+
"uno uistit\u00ec",
|
381 |
+
"un cappuccino",
|
382 |
+
"una scimmia urlatrice",
|
383 |
+
"un titi",
|
384 |
+
"una scimmia ragno",
|
385 |
+
"una scimmia scoiattolo",
|
386 |
+
"un gatto del Madagascar",
|
387 |
+
"un indri",
|
388 |
+
"un elefante indiano",
|
389 |
+
"un elefante africano",
|
390 |
+
"un panda minore",
|
391 |
+
"un panda gigante",
|
392 |
+
"un barracuda",
|
393 |
+
"un'anguilla",
|
394 |
+
"un coho",
|
395 |
+
"una bellezza di roccia",
|
396 |
+
"un pesce anemone",
|
397 |
+
"uno storione",
|
398 |
+
"un capo d'abbigliamento",
|
399 |
+
"un pesce leone",
|
400 |
+
"un puffer",
|
401 |
+
"un abaco",
|
402 |
+
"un abaya",
|
403 |
+
"un abito accademico",
|
404 |
+
"una fisarmonica",
|
405 |
+
"una chitarra acustica",
|
406 |
+
"una portaerei",
|
407 |
+
"un aereo di linea",
|
408 |
+
"un dirigibile",
|
409 |
+
"un altare",
|
410 |
+
"un'ambulanza",
|
411 |
+
"un anfibio",
|
412 |
+
"un orologio analogico",
|
413 |
+
"un apiario",
|
414 |
+
"un grembiule",
|
415 |
+
"un frassino",
|
416 |
+
"un fucile d'assalto",
|
417 |
+
"uno zaino",
|
418 |
+
"un panificio",
|
419 |
+
"una trave di equilibrio",
|
420 |
+
"un pallone",
|
421 |
+
"una penna a sfera",
|
422 |
+
"un cerotto",
|
423 |
+
"un banjo",
|
424 |
+
"una balaustra",
|
425 |
+
"un bilanciere",
|
426 |
+
"una sedia da barbiere",
|
427 |
+
"un barbiere",
|
428 |
+
"un fienile",
|
429 |
+
"un barometro",
|
430 |
+
"un barile",
|
431 |
+
"un carretto",
|
432 |
+
"una palla da baseball",
|
433 |
+
"una pallacanestro",
|
434 |
+
"una culla",
|
435 |
+
"un fagotto",
|
436 |
+
"un berretto da bagno",
|
437 |
+
"un asciugamano da bagno",
|
438 |
+
"una vasca da bagno",
|
439 |
+
"un carro da spiaggia",
|
440 |
+
"un faro",
|
441 |
+
"un bicchiere",
|
442 |
+
"una pelle d'orso",
|
443 |
+
"una bottiglia di birra",
|
444 |
+
"un bicchiere di birra",
|
445 |
+
"un campanile",
|
446 |
+
"un bavaglino",
|
447 |
+
"una bicicletta costruita per due",
|
448 |
+
"un bikini",
|
449 |
+
"un raccoglitore",
|
450 |
+
"un binocolo",
|
451 |
+
"una casetta per uccelli",
|
452 |
+
"una rimessa per barche",
|
453 |
+
"un bob",
|
454 |
+
"una cravatta bolo",
|
455 |
+
"un cofano",
|
456 |
+
"una libreria",
|
457 |
+
"una libreria",
|
458 |
+
"un tappo di bottiglia",
|
459 |
+
"un arco",
|
460 |
+
"un papillon",
|
461 |
+
"un ottone",
|
462 |
+
"un reggiseno",
|
463 |
+
"un frangiflutti",
|
464 |
+
"una corazza",
|
465 |
+
"una scopa",
|
466 |
+
"un secchio",
|
467 |
+
"una fibbia",
|
468 |
+
"un giubbotto antiproiettile",
|
469 |
+
"un treno proiettile",
|
470 |
+
"una macelleria",
|
471 |
+
"un taxi",
|
472 |
+
"un calderone",
|
473 |
+
"una candela",
|
474 |
+
"un cannone",
|
475 |
+
"una canoa",
|
476 |
+
"un apriscatole",
|
477 |
+
"un cardigan",
|
478 |
+
"uno specchio per auto",
|
479 |
+
"una giostra",
|
480 |
+
"un kit da falegname",
|
481 |
+
"un cartone",
|
482 |
+
"una ruota di automobile",
|
483 |
+
"un bancomat",
|
484 |
+
"una cassetta",
|
485 |
+
"un lettore di cassette",
|
486 |
+
"un castello",
|
487 |
+
"un catamarano",
|
488 |
+
"un lettore CD",
|
489 |
+
"un violoncello",
|
490 |
+
"un telefono cellulare",
|
491 |
+
"una catena",
|
492 |
+
"una recinzione di rete metallica",
|
493 |
+
"una cotta di maglia",
|
494 |
+
"una motosega",
|
495 |
+
"un petto",
|
496 |
+
"una chiffoniera",
|
497 |
+
"una suoneria",
|
498 |
+
"una vetrina per porcellane",
|
499 |
+
"una calza di Natale",
|
500 |
+
"una chiesa",
|
501 |
+
"un cinema",
|
502 |
+
"una mannaia",
|
503 |
+
"una dimora sulla scogliera",
|
504 |
+
"un mantello",
|
505 |
+
"un intasamento",
|
506 |
+
"uno shaker da cocktail",
|
507 |
+
"una tazza da caff\u00e8",
|
508 |
+
"una caffettiera",
|
509 |
+
"una bobina",
|
510 |
+
"una serratura a combinazione",
|
511 |
+
"una tastiera di computer",
|
512 |
+
"una pasticceria",
|
513 |
+
"una nave container",
|
514 |
+
"una convertibile",
|
515 |
+
"un cavatappi",
|
516 |
+
"una cornetta",
|
517 |
+
"uno stivale da cowboy",
|
518 |
+
"un cappello da cowboy",
|
519 |
+
"una culla",
|
520 |
+
"una gru",
|
521 |
+
"un casco di protezione",
|
522 |
+
"una cassa",
|
523 |
+
"una culla",
|
524 |
+
"una pentola di coccio",
|
525 |
+
"una palla da croquet",
|
526 |
+
"una stampella",
|
527 |
+
"una corazza",
|
528 |
+
"una diga",
|
529 |
+
"una scrivania",
|
530 |
+
"un computer da tavolo",
|
531 |
+
"un telefono a selezione",
|
532 |
+
"un pannolino",
|
533 |
+
"un orologio digitale",
|
534 |
+
"un orologio digitale",
|
535 |
+
"un tavolo da pranzo",
|
536 |
+
"uno strofinaccio",
|
537 |
+
"una lavastoviglie",
|
538 |
+
"un freno a disco",
|
539 |
+
"un molo",
|
540 |
+
"una slitta trainata da cani",
|
541 |
+
"una cupola",
|
542 |
+
"uno zerbino",
|
543 |
+
"una piattaforma di perforazione",
|
544 |
+
"un tamburo",
|
545 |
+
"una bacchetta",
|
546 |
+
"un manubrio",
|
547 |
+
"un forno olandese",
|
548 |
+
"un ventilatore elettrico",
|
549 |
+
"una chitarra elettrica",
|
550 |
+
"una locomotiva elettrica",
|
551 |
+
"un centro di intrattenimento",
|
552 |
+
"una busta",
|
553 |
+
"una macchina per il caff\u00e8 espresso",
|
554 |
+
"una polvere per il viso",
|
555 |
+
"un boa di piume",
|
556 |
+
"un file",
|
557 |
+
"una barca antincendio",
|
558 |
+
"un'autopompa",
|
559 |
+
"uno schermo per il fuoco",
|
560 |
+
"un pennone",
|
561 |
+
"un flauto",
|
562 |
+
"una sedia pieghevole",
|
563 |
+
"un casco da calcio",
|
564 |
+
"un carrello elevatore",
|
565 |
+
"una fontana",
|
566 |
+
"una penna stilografica",
|
567 |
+
"un baldacchino",
|
568 |
+
"un vagone merci",
|
569 |
+
"un corno francese",
|
570 |
+
"una padella",
|
571 |
+
"una pelliccia",
|
572 |
+
"un camion della spazzatura",
|
573 |
+
"una maschera antigas",
|
574 |
+
"una pompa di benzina",
|
575 |
+
"un calice",
|
576 |
+
"un go-kart",
|
577 |
+
"una pallina da golf",
|
578 |
+
"un golfcart",
|
579 |
+
"una gondola",
|
580 |
+
"un gong",
|
581 |
+
"un abito",
|
582 |
+
"un pianoforte a coda",
|
583 |
+
"una serra",
|
584 |
+
"una griglia",
|
585 |
+
"un negozio di alimentari",
|
586 |
+
"una ghigliottina",
|
587 |
+
"uno scivolo per capelli",
|
588 |
+
"una lacca per capelli",
|
589 |
+
"una mezza traccia",
|
590 |
+
"un martello",
|
591 |
+
"un cesto regalo",
|
592 |
+
"un soffiatore a mano",
|
593 |
+
"un computer portatile",
|
594 |
+
"un fazzoletto",
|
595 |
+
"un disco rigido",
|
596 |
+
"un'armonica",
|
597 |
+
"un'arpa",
|
598 |
+
"una mietitrice",
|
599 |
+
"un'accetta",
|
600 |
+
"una fondina",
|
601 |
+
"un home theater",
|
602 |
+
"un nido d'ape",
|
603 |
+
"un gancio",
|
604 |
+
"una gonna a cerchio",
|
605 |
+
"una barra orizzontale",
|
606 |
+
"un carro di cavalli",
|
607 |
+
"una clessidra",
|
608 |
+
"un iPod",
|
609 |
+
"un ferro da stiro",
|
610 |
+
"una zucca",
|
611 |
+
"un jeans",
|
612 |
+
"una jeep",
|
613 |
+
"una maglia",
|
614 |
+
"un puzzle",
|
615 |
+
"a jinrikisha",
|
616 |
+
"un joystick",
|
617 |
+
"un kimono",
|
618 |
+
"una ginocchiera",
|
619 |
+
"un nodo",
|
620 |
+
"un camice da laboratorio",
|
621 |
+
"un mestolo",
|
622 |
+
"un paralume",
|
623 |
+
"un computer portatile",
|
624 |
+
"un tosaerba",
|
625 |
+
"un copriobiettivo",
|
626 |
+
"un tagliacarte",
|
627 |
+
"una biblioteca",
|
628 |
+
"una scialuppa di salvataggio",
|
629 |
+
"un accendino",
|
630 |
+
"una limousine",
|
631 |
+
"una fodera",
|
632 |
+
"un rossetto",
|
633 |
+
"un mocassino",
|
634 |
+
"una lozione",
|
635 |
+
"un altoparlante",
|
636 |
+
"una lente d'ingrandimento",
|
637 |
+
"una segheria",
|
638 |
+
"una bussola magnetica",
|
639 |
+
"una borsa della posta",
|
640 |
+
"una cassetta postale",
|
641 |
+
"un maillot",
|
642 |
+
"un maillot",
|
643 |
+
"un tombino",
|
644 |
+
"una maraca",
|
645 |
+
"una marimba",
|
646 |
+
"una maschera",
|
647 |
+
"un fiammifero",
|
648 |
+
"un palo di maggio",
|
649 |
+
"un labirinto",
|
650 |
+
"un misurino",
|
651 |
+
"una cassetta dei medicinali",
|
652 |
+
"un megalite",
|
653 |
+
"un microfono",
|
654 |
+
"un microonde",
|
655 |
+
"un'uniforme militare",
|
656 |
+
"una lattina di latte",
|
657 |
+
"un minibus",
|
658 |
+
"una minigonna",
|
659 |
+
"un minivan",
|
660 |
+
"un missile",
|
661 |
+
"un guanto",
|
662 |
+
"una ciotola di miscelazione",
|
663 |
+
"una casa mobile",
|
664 |
+
"un Modello T",
|
665 |
+
"un modem",
|
666 |
+
"un monastero",
|
667 |
+
"un monitor",
|
668 |
+
"un ciclomotore",
|
669 |
+
"un mortaio",
|
670 |
+
"una mortarboard",
|
671 |
+
"una moschea",
|
672 |
+
"una zanzariera",
|
673 |
+
"uno scooter",
|
674 |
+
"una bicicletta di montagna",
|
675 |
+
"una tenda di montagna",
|
676 |
+
"un topo",
|
677 |
+
"una trappola per topi",
|
678 |
+
"un furgone per traslochi",
|
679 |
+
"una museruola",
|
680 |
+
"un chiodo",
|
681 |
+
"un tutore per il collo",
|
682 |
+
"una collana",
|
683 |
+
"un capezzolo",
|
684 |
+
"un quaderno",
|
685 |
+
"un obelisco",
|
686 |
+
"un oboe",
|
687 |
+
"un'ocarina",
|
688 |
+
"un contachilometri",
|
689 |
+
"un filtro dell'olio",
|
690 |
+
"un organo",
|
691 |
+
"un oscilloscopio",
|
692 |
+
"una sopragonna",
|
693 |
+
"un carro da buoi",
|
694 |
+
"una maschera di ossigeno",
|
695 |
+
"un pacchetto",
|
696 |
+
"una pagaia",
|
697 |
+
"una ruota a pale",
|
698 |
+
"un lucchetto",
|
699 |
+
"un pennello",
|
700 |
+
"un pigiama",
|
701 |
+
"un palazzo",
|
702 |
+
"una panpipe",
|
703 |
+
"un tovagliolo di carta",
|
704 |
+
"un paracadute",
|
705 |
+
"una barra parallela",
|
706 |
+
"una panchina del parco",
|
707 |
+
"un parchimetro",
|
708 |
+
"un'autovettura",
|
709 |
+
"un patio",
|
710 |
+
"un telefono a pagamento",
|
711 |
+
"un piedistallo",
|
712 |
+
"una scatola di matite",
|
713 |
+
"un temperamatite",
|
714 |
+
"un profumo",
|
715 |
+
"una capsula di Petri",
|
716 |
+
"una fotocopiatrice",
|
717 |
+
"un grimaldello",
|
718 |
+
"un picconatore",
|
719 |
+
"una staccionata",
|
720 |
+
"un prelievo",
|
721 |
+
"un molo",
|
722 |
+
"un salvadanaio",
|
723 |
+
"una bottiglia di pillole",
|
724 |
+
"un cuscino",
|
725 |
+
"una pallina da ping-pong",
|
726 |
+
"una girandola",
|
727 |
+
"un pirata",
|
728 |
+
"un lanciatore",
|
729 |
+
"un aereo",
|
730 |
+
"un planetario",
|
731 |
+
"un sacchetto di plastica",
|
732 |
+
"un portapiatti",
|
733 |
+
"un aratro",
|
734 |
+
"uno stantuffo",
|
735 |
+
"una macchina fotografica Polaroid",
|
736 |
+
"un palo",
|
737 |
+
"un furgone della polizia",
|
738 |
+
"un poncho",
|
739 |
+
"un tavolo da biliardo",
|
740 |
+
"una bottiglia pop",
|
741 |
+
"una pentola",
|
742 |
+
"un tornio da vasaio",
|
743 |
+
"un trapano elettrico",
|
744 |
+
"un tappeto di preghiera",
|
745 |
+
"una stampante",
|
746 |
+
"una prigione",
|
747 |
+
"un proiettile",
|
748 |
+
"un proiettore",
|
749 |
+
"un disco",
|
750 |
+
"un sacco da boxe",
|
751 |
+
"una borsa",
|
752 |
+
"una penna d'oca",
|
753 |
+
"una trapunta",
|
754 |
+
"un corridore",
|
755 |
+
"una racchetta",
|
756 |
+
"un radiatore",
|
757 |
+
"una radio",
|
758 |
+
"un radiotelescopio",
|
759 |
+
"un barile per la pioggia",
|
760 |
+
"un veicolo ricreativo",
|
761 |
+
"una bobina",
|
762 |
+
"una macchina fotografica reflex",
|
763 |
+
"un frigorifero",
|
764 |
+
"un telecomando",
|
765 |
+
"un ristorante",
|
766 |
+
"un revolver",
|
767 |
+
"un fucile",
|
768 |
+
"una sedia a dondolo",
|
769 |
+
"un girarrosto",
|
770 |
+
"una gomma da cancellare",
|
771 |
+
"un pallone da rugby",
|
772 |
+
"una regola",
|
773 |
+
"una scarpa da corsa",
|
774 |
+
"una cassaforte",
|
775 |
+
"una spilla da balia",
|
776 |
+
"una saliera",
|
777 |
+
"un sandalo",
|
778 |
+
"un sarong",
|
779 |
+
"un sassofono",
|
780 |
+
"un fodero",
|
781 |
+
"una scala",
|
782 |
+
"uno scuolabus",
|
783 |
+
"una goletta",
|
784 |
+
"un tabellone segnapunti",
|
785 |
+
"uno schermo",
|
786 |
+
"una vite",
|
787 |
+
"un cacciavite",
|
788 |
+
"una cintura di sicurezza",
|
789 |
+
"una macchina da cucire",
|
790 |
+
"uno scudo",
|
791 |
+
"un negozio di scarpe",
|
792 |
+
"uno shoji",
|
793 |
+
"un cestino della spesa",
|
794 |
+
"un carrello della spesa",
|
795 |
+
"una pala",
|
796 |
+
"una cuffia da doccia",
|
797 |
+
"una tenda da doccia",
|
798 |
+
"uno sci",
|
799 |
+
"un passamontagna",
|
800 |
+
"un sacco a pelo",
|
801 |
+
"un regolo calcolatore",
|
802 |
+
"una porta scorrevole",
|
803 |
+
"una fessura",
|
804 |
+
"un boccaglio",
|
805 |
+
"una motoslitta",
|
806 |
+
"uno spazzaneve",
|
807 |
+
"un distributore di sapone",
|
808 |
+
"un pallone da calcio",
|
809 |
+
"un calzino",
|
810 |
+
"un piatto solare",
|
811 |
+
"un sombrero",
|
812 |
+
"una ciotola per la zuppa",
|
813 |
+
"una barra spaziatrice",
|
814 |
+
"una stufa per ambienti",
|
815 |
+
"una navetta spaziale",
|
816 |
+
"una spatola",
|
817 |
+
"un motoscafo",
|
818 |
+
"una ragnatela",
|
819 |
+
"un mandrino",
|
820 |
+
"un'auto sportiva",
|
821 |
+
"un riflettore",
|
822 |
+
"una fase",
|
823 |
+
"una locomotiva a vapore",
|
824 |
+
"un ponte ad arco in acciaio",
|
825 |
+
"un tamburo d'acciaio",
|
826 |
+
"uno stetoscopio",
|
827 |
+
"una stola",
|
828 |
+
"un muro di pietra",
|
829 |
+
"un cronometro",
|
830 |
+
"una stufa",
|
831 |
+
"un colino",
|
832 |
+
"un tram",
|
833 |
+
"una barella",
|
834 |
+
"un divano da studio",
|
835 |
+
"uno stupa",
|
836 |
+
"un sottomarino",
|
837 |
+
"un vestito",
|
838 |
+
"una meridiana",
|
839 |
+
"un occhiale da sole",
|
840 |
+
"occhiali da sole",
|
841 |
+
"una protezione solare",
|
842 |
+
"un ponte sospeso",
|
843 |
+
"un tampone",
|
844 |
+
"una felpa",
|
845 |
+
"un costume da bagno",
|
846 |
+
"un'altalena",
|
847 |
+
"un interruttore",
|
848 |
+
"una siringa",
|
849 |
+
"una lampada da tavolo",
|
850 |
+
"un carro armato",
|
851 |
+
"un lettore di nastri",
|
852 |
+
"una teiera",
|
853 |
+
"un orsacchiotto",
|
854 |
+
"una televisione",
|
855 |
+
"una palla da tennis",
|
856 |
+
"una paglia",
|
857 |
+
"un sipario teatrale",
|
858 |
+
"un ditale",
|
859 |
+
"una trebbiatrice",
|
860 |
+
"un trono",
|
861 |
+
"un tetto di tegole",
|
862 |
+
"un tostapane",
|
863 |
+
"un negozio di tabacco",
|
864 |
+
"un sedile del water",
|
865 |
+
"una torcia",
|
866 |
+
"un totem",
|
867 |
+
"un carro attrezzi",
|
868 |
+
"un negozio di giocattoli",
|
869 |
+
"un trattore",
|
870 |
+
"un camion con rimorchio",
|
871 |
+
"un vassoio",
|
872 |
+
"un trench",
|
873 |
+
"un triciclo",
|
874 |
+
"un trimarano",
|
875 |
+
"un treppiede",
|
876 |
+
"un arco di trionfo",
|
877 |
+
"un filobus",
|
878 |
+
"un trombone",
|
879 |
+
"una vasca da bagno",
|
880 |
+
"un tornello",
|
881 |
+
"una tastiera per macchina da scrivere",
|
882 |
+
"un ombrello",
|
883 |
+
"un monociclo",
|
884 |
+
"un montante",
|
885 |
+
"un vuoto",
|
886 |
+
"un vaso",
|
887 |
+
"una volta",
|
888 |
+
"un velluto",
|
889 |
+
"un distributore automatico",
|
890 |
+
"un paramento",
|
891 |
+
"un viadotto",
|
892 |
+
"un violino",
|
893 |
+
"una pallavolo",
|
894 |
+
"una piastra per cialde",
|
895 |
+
"un orologio da parete",
|
896 |
+
"un portafoglio",
|
897 |
+
"un armadio",
|
898 |
+
"un aereo da guerra",
|
899 |
+
"un lavandino",
|
900 |
+
"una rondella",
|
901 |
+
"una bottiglia d'acqua",
|
902 |
+
"una brocca d'acqua",
|
903 |
+
"una torre d'acqua",
|
904 |
+
"una brocca di whisky",
|
905 |
+
"un fischio",
|
906 |
+
"una parrucca",
|
907 |
+
"uno schermo per finestre",
|
908 |
+
"una tenda per finestre",
|
909 |
+
"una cravatta Windsor",
|
910 |
+
"una bottiglia di vino",
|
911 |
+
"un'ala",
|
912 |
+
"un wok",
|
913 |
+
"un cucchiaio di legno",
|
914 |
+
"una lana",
|
915 |
+
"un recinto di vermi",
|
916 |
+
"un relitto",
|
917 |
+
"uno yawl",
|
918 |
+
"una yurta",
|
919 |
+
"un sito web",
|
920 |
+
"un fumetto",
|
921 |
+
"un cruciverba",
|
922 |
+
"un cartello stradale",
|
923 |
+
"un semaforo",
|
924 |
+
"una giacca del libro",
|
925 |
+
"un menu",
|
926 |
+
"un piatto",
|
927 |
+
"un guacamole",
|
928 |
+
"un consomme",
|
929 |
+
"una pentola calda",
|
930 |
+
"un'inezia",
|
931 |
+
"un gelato",
|
932 |
+
"un ghiacciolo",
|
933 |
+
"una pagnotta francese",
|
934 |
+
"un bagel",
|
935 |
+
"un pretzel",
|
936 |
+
"un cheeseburger",
|
937 |
+
"un hotdog",
|
938 |
+
"un pur\u00e8 di patate",
|
939 |
+
"una testa di cavolo",
|
940 |
+
"un broccolo",
|
941 |
+
"un cavolfiore",
|
942 |
+
"una zucchina",
|
943 |
+
"una zucca per spaghetti",
|
944 |
+
"una zucca",
|
945 |
+
"una zucca butternut",
|
946 |
+
"un cetriolo",
|
947 |
+
"un carciofo",
|
948 |
+
"un peperone",
|
949 |
+
"un cardo",
|
950 |
+
"un fungo",
|
951 |
+
"una Granny Smith",
|
952 |
+
"una fragola",
|
953 |
+
"un'arancia",
|
954 |
+
"un limone",
|
955 |
+
"un fico",
|
956 |
+
"un ananas",
|
957 |
+
"una banana",
|
958 |
+
"un jackfruit",
|
959 |
+
"una mela custard",
|
960 |
+
"un melograno",
|
961 |
+
"un fieno",
|
962 |
+
"una carbonara",
|
963 |
+
"una salsa al cioccolato",
|
964 |
+
"un impasto",
|
965 |
+
"un polpettone",
|
966 |
+
"una pizza",
|
967 |
+
"una torta salata",
|
968 |
+
"un burrito",
|
969 |
+
"un vino rosso",
|
970 |
+
"un espresso",
|
971 |
+
"una tazza",
|
972 |
+
"uno zabaione",
|
973 |
+
"a alpe",
|
974 |
+
"una bolla",
|
975 |
+
"una scogliera",
|
976 |
+
"una barriera corallina",
|
977 |
+
"un geyser",
|
978 |
+
"un lago",
|
979 |
+
"un promontorio",
|
980 |
+
"un banco di sabbia",
|
981 |
+
"una riva del mare",
|
982 |
+
"una valle",
|
983 |
+
"un vulcano",
|
984 |
+
"un giocatore di pallone",
|
985 |
+
"uno sposo",
|
986 |
+
"un subacqueo",
|
987 |
+
"un seme di colza",
|
988 |
+
"una margherita",
|
989 |
+
"una pantofola gialla da donna",
|
990 |
+
"un mais",
|
991 |
+
"una ghianda",
|
992 |
+
"un'anca",
|
993 |
+
"un buckeye",
|
994 |
+
"un fungo corallino",
|
995 |
+
"un agarico",
|
996 |
+
"un gyromitra",
|
997 |
+
"una spina dorsale",
|
998 |
+
"una stella di terra",
|
999 |
+
"una gallina dei boschi",
|
1000 |
+
"un boleto",
|
1001 |
+
"un orecchio",
|
1002 |
+
"una carta igienica"
|
1003 |
+
]
|
1004 |
+
}
|
CLIP_benchmark/clip_benchmark/datasets/it_zeroshot_classification_templates.json
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imagenet1k": [
|
3 |
+
"una brutta foto di {c}",
|
4 |
+
"una scultura di {c}",
|
5 |
+
"una foto di {c} difficilmente visibile",
|
6 |
+
"una foto a bassa risoluzione di {c}",
|
7 |
+
"un rendering di {c}",
|
8 |
+
"graffiti di {c}",
|
9 |
+
"una pessima foto di {c}",
|
10 |
+
"una foto ritagliata di {c}",
|
11 |
+
"un tatuaggio di {c}",
|
12 |
+
"{c} ricamato",
|
13 |
+
"{c} ricamata",
|
14 |
+
"una foto luminosa di {c}",
|
15 |
+
"una foto di {c} pulito",
|
16 |
+
"una foto di {c} pulita",
|
17 |
+
"una foto di {c} sporco",
|
18 |
+
"una foto di {c} sporca",
|
19 |
+
"una foto di {c}\u00a0carino",
|
20 |
+
"una foto di {c} carina",
|
21 |
+
"una foto di {c} strano",
|
22 |
+
"una foto di {c} strana",
|
23 |
+
"una foto di {c} piccolo",
|
24 |
+
"una foto di {c} piccola",
|
25 |
+
"una foto di {c} largo",
|
26 |
+
"una foto di {c} larga",
|
27 |
+
"una foto di {c} grande",
|
28 |
+
"una foto scura di {c}",
|
29 |
+
"un disegno di {c}",
|
30 |
+
"{c} di plastica",
|
31 |
+
"una foto del {c} bella",
|
32 |
+
"una foto ravvicinata di {c}",
|
33 |
+
"una foto in bianco e nero di {c}",
|
34 |
+
"un dipinto di {c}",
|
35 |
+
"una foto sgranata di {c}",
|
36 |
+
"una foto ritagliata di {c}",
|
37 |
+
"una foto sfocata di {c}",
|
38 |
+
"una buona foto di {c}",
|
39 |
+
"una riproduzione di {c}",
|
40 |
+
"un rendering di {c}",
|
41 |
+
"{c} in un video gioco",
|
42 |
+
"uno scarabocchio di {c}",
|
43 |
+
"un origami di {c}",
|
44 |
+
"uno sketch di {c}",
|
45 |
+
"una bozza di {c}",
|
46 |
+
"una foto a bassa risoluzione di {c}",
|
47 |
+
"un giocattolo di {c}",
|
48 |
+
"una resa di {c}",
|
49 |
+
"{c} come cartone animato",
|
50 |
+
"un'opera di {c}",
|
51 |
+
"un peluche di {c}"
|
52 |
+
]
|
53 |
+
}
|
CLIP_benchmark/clip_benchmark/datasets/jp_classnames.json
ADDED
@@ -0,0 +1,1004 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imagenet1k": [
|
3 |
+
"\u30c6\u30f3\u30c1",
|
4 |
+
"\u91d1\u9b5a",
|
5 |
+
"\u30db\u30db\u30b8\u30ed\u30b6\u30e1",
|
6 |
+
"\u30a4\u30bf\u30c1\u30b6\u30e1",
|
7 |
+
"\u30cf\u30f3\u30de\u30fc\u30d8\u30c3\u30c9",
|
8 |
+
"\u30b7\u30d3\u30ec\u30a8\u30a4",
|
9 |
+
"\u30a2\u30ab\u30a8\u30a4",
|
10 |
+
"\u30b3\u30c3\u30af",
|
11 |
+
"\u3081\u3093\u3069\u308a",
|
12 |
+
"\u30c0\u30c1\u30e7\u30a6",
|
13 |
+
"\u30a2\u30c8\u30ea",
|
14 |
+
"\u30b4\u30b7\u30ad\u30d2\u30ef",
|
15 |
+
"\u30cf\u30a6\u30b9\u30d5\u30a3\u30f3\u30c1",
|
16 |
+
"\u30e6\u30ad\u30d2\u30e1\u30c9\u30ea",
|
17 |
+
"\u30a4\u30f3\u30c7\u30a3\u30b4\u30db\u30aa\u30b8\u30ed",
|
18 |
+
"\u30ed\u30d3\u30f3",
|
19 |
+
"\u30d6\u30eb\u30d6\u30eb",
|
20 |
+
"\u30ab\u30b1\u30b9",
|
21 |
+
"\u30ab\u30b5\u30b5\u30ae",
|
22 |
+
"\u56db\u5341\u96c0",
|
23 |
+
"\u6c34\u30af\u30ed\u30a6\u30bf\u30c9\u30ea",
|
24 |
+
"\u51e7",
|
25 |
+
"\u767d\u982d\u30ef\u30b7",
|
26 |
+
"\u30cf\u30b2\u30ef\u30b7",
|
27 |
+
"\u30ab\u30e9\u30d5\u30c8\u30d5\u30af\u30ed\u30a6",
|
28 |
+
"\u6b27\u5dde\u30d5\u30a1\u30a4\u30a2\u30b5\u30e9\u30de\u30f3\u30c0\u30fc",
|
29 |
+
"\u5171\u901a\u30a4\u30e2\u30ea",
|
30 |
+
"\u30a4\u30e2\u30ea",
|
31 |
+
"\u30b5\u30f3\u30b7\u30e7\u30a6\u30a6\u30aa\u3092\u767a\u898b",
|
32 |
+
"\u30a2\u30db\u30ed\u30fc\u30c8\u30eb",
|
33 |
+
"\u30a6\u30b7\u30ac\u30a8\u30eb",
|
34 |
+
"\u30a2\u30de\u30ac\u30a8\u30eb",
|
35 |
+
"\u3064\u304b\u308c\u305f\u30ab\u30a8\u30eb",
|
36 |
+
"\u3068\u3093\u3061\u304d",
|
37 |
+
"\u30aa\u30b5\u30ac\u30e1",
|
38 |
+
"\u9f08",
|
39 |
+
"\u30c6\u30e9\u30d4\u30f3",
|
40 |
+
"\u30cf\u30b3\u30ac\u30e1",
|
41 |
+
"\u7e1e\u6a21\u69d8\u306e\u30e4\u30e2\u30ea",
|
42 |
+
"\u5171\u901a\u30a4\u30b0\u30a2\u30ca",
|
43 |
+
"\u30a2\u30e1\u30ea\u30ab\u30f3\u30ab\u30e1\u30ec\u30aa\u30f3",
|
44 |
+
"\u30a6\u30a3\u30c3\u30da\u30a4\u30eb",
|
45 |
+
"\u30a2\u30ac\u30de\u30c8\u30ab\u30b2",
|
46 |
+
"\u30d5\u30ea\u30eb\u30c8\u30ab\u30b2",
|
47 |
+
"\u30a2\u30ea\u30b2\u30fc\u30bf\u30fc\u30c8\u30ab\u30b2",
|
48 |
+
"\u30a2\u30e1\u30ea\u30ab\u30c9\u30af\u30c8\u30ab\u30b2",
|
49 |
+
"\u7dd1\u306e\u30c8\u30ab\u30b2",
|
50 |
+
"\u30a2\u30d5\u30ea\u30ab\u306e\u30ab\u30e1\u30ec\u30aa\u30f3",
|
51 |
+
"\u30b3\u30e2\u30c9\u30c9\u30e9\u30b4\u30f3",
|
52 |
+
"\u30a2\u30d5\u30ea\u30ab\u306e\u30ef\u30cb",
|
53 |
+
"\u30a2\u30e1\u30ea\u30ab\u30ef\u30cb",
|
54 |
+
"\u30c8\u30ea\u30b1\u30e9\u30c8\u30d7\u30b9",
|
55 |
+
"\u96f7\u306e\u30d8\u30d3",
|
56 |
+
"\u30ea\u30f3\u30b0\u30cd\u30c3\u30af\u30b9\u30cd\u30fc\u30af",
|
57 |
+
"\u30db\u30fc\u30ce\u30fc\u30b9\u30d8\u30d3",
|
58 |
+
"\u7dd1\u306e\u30d8\u30d3",
|
59 |
+
"\u30ad\u30f3\u30b0\u30b9\u30cd\u30fc\u30af",
|
60 |
+
"\u30ac\u30fc\u30bf\u30fc\u30b9\u30cd\u30fc\u30af",
|
61 |
+
"\u6c34\u86c7",
|
62 |
+
"\u3064\u308b\u30d8\u30d3",
|
63 |
+
"\u591c\u306e\u30d8\u30d3",
|
64 |
+
"\u30dc\u30a2\u30fb\u30b3\u30f3\u30b9\u30c8\u30ea\u30af\u30bf\u30fc",
|
65 |
+
"\u30ed\u30c3\u30af\u30d1\u30a4\u30bd\u30f3",
|
66 |
+
"\u30a4\u30f3\u30c9\u30b3\u30d6\u30e9",
|
67 |
+
"\u30b0\u30ea\u30fc\u30f3\u30de\u30f3\u30d0",
|
68 |
+
"\u30a6\u30df\u30d8\u30d3",
|
69 |
+
"\u30c4\u30ce\u30af\u30b5\u30ea\u30d8\u30d3",
|
70 |
+
"\u30c0\u30a4\u30e4",
|
71 |
+
"\u30b5\u30a4\u30c9\u30ef\u30a4\u30f3\u30c0\u30fc",
|
72 |
+
"\u4e09\u8449\u866b",
|
73 |
+
"\u5208\u308a\u5165\u308c\u4f5c\u696d\u8005",
|
74 |
+
"\u30b5\u30bd\u30ea",
|
75 |
+
"\u9ed2\u3068\u91d1\u306e\u5ead\u30af\u30e2",
|
76 |
+
"\u7d0d\u5c4b\u30af\u30e2",
|
77 |
+
"\u5ead\u30af\u30e2",
|
78 |
+
"\u30af\u30ed\u30b4\u30b1\u30b0\u30e2",
|
79 |
+
"\u30bf\u30e9\u30f3\u30c1\u30e5\u30e9",
|
80 |
+
"\u30aa\u30aa\u30ab\u30df\u306e\u30af\u30e2",
|
81 |
+
"\u30c0\u30cb",
|
82 |
+
"\u767e\u8db3",
|
83 |
+
"\u30af\u30ed\u30e9\u30a4\u30c1\u30e7\u30a6",
|
84 |
+
"\u96f7\u9ce5",
|
85 |
+
"\u3072\u3060\u3048\u308a\u306e\u4ed8\u3044\u305f\u30e9\u30a4\u30c1\u30e7\u30a6",
|
86 |
+
"\u8349\u539f\u30c1\u30ad\u30f3",
|
87 |
+
"\u5b54\u96c0",
|
88 |
+
"\u30a6\u30ba\u30e9",
|
89 |
+
"\u30e4\u30de\u30a6\u30ba\u30e9",
|
90 |
+
"\u30a2\u30d5\u30ea\u30ab\u306e\u7070\u8272",
|
91 |
+
"\u30b3\u30f3\u30b4\u30a6\u30a4\u30f3\u30b3",
|
92 |
+
"\u786b\u9ec4\u30c8\u30ad\u30aa\u30a6\u30e0",
|
93 |
+
"\u30a4\u30f3\u30b3",
|
94 |
+
"\u30d0\u30f3\u30b1\u30f3",
|
95 |
+
"\u8702\u98df\u3079\u308b\u4eba",
|
96 |
+
"\u30b5\u30a4\u30c1\u30e7\u30a6",
|
97 |
+
"\u30cf\u30c1\u30c9\u30ea",
|
98 |
+
"\u9310\u5634",
|
99 |
+
"\u30aa\u30aa\u30cf\u30b7",
|
100 |
+
"\u30c9\u30ec\u30a4\u30af",
|
101 |
+
"\u8d64\u30d6\u30ec\u30b9\u30c8\u30a2\u30a4\u30b5\u5c5e\u306e\u30ac\u30e2",
|
102 |
+
"\u30ac\u30c1\u30e7\u30a6",
|
103 |
+
"\u9ed2\u3044\u767d\u9ce5",
|
104 |
+
"\u30bf\u30b9\u30ab\u30fc\u30d3\u30fc\u30eb",
|
105 |
+
"\u30cf\u30ea\u30e2\u30b0\u30e9",
|
106 |
+
"\u30ab\u30e2\u30ce\u30cf\u30b7",
|
107 |
+
"\u30ef\u30e9\u30d3\u30fc",
|
108 |
+
"\u30b3\u30a2\u30e9",
|
109 |
+
"\u30a6\u30a9\u30f3\u30d0\u30c3\u30c8",
|
110 |
+
"\u30af\u30e9\u30b2",
|
111 |
+
"\u30a4\u30bd\u30ae\u30f3\u30c1\u30e3\u30af",
|
112 |
+
"\u8133\u30b5\u30f3\u30b4",
|
113 |
+
"\u6241\u5f62\u52d5\u7269",
|
114 |
+
"\u7dda\u866b",
|
115 |
+
"\u5dfb\u304d\u8c9d",
|
116 |
+
"\u30ab\u30bf\u30c4\u30e0\u30ea",
|
117 |
+
"\u30ca\u30e1\u30af\u30b8",
|
118 |
+
"\u30a6\u30df\u30a6\u30b7",
|
119 |
+
"\u30ad\u30c8\u30f3",
|
120 |
+
"\u30aa\u30a6\u30e0\u30ac\u30a4",
|
121 |
+
"\u30a2\u30e1\u30ea\u30ab\u30a4\u30c1\u30e7\u30a6\u30ac\u30cb",
|
122 |
+
"\u5ca9\u30ab\u30cb",
|
123 |
+
"\u30b7\u30aa\u30de\u30cd\u30ad",
|
124 |
+
"\u30bf\u30e9\u30d0\u30ac\u30cb",
|
125 |
+
"\u30a2\u30e1\u30ea\u30ab\u30f3\u30ed\u30d6\u30b9\u30bf\u30fc",
|
126 |
+
"\u4f0a\u52e2\u30a8\u30d3",
|
127 |
+
"\u30b6\u30ea\u30ac\u30cb",
|
128 |
+
"\u30e4\u30c9\u30ab\u30ea",
|
129 |
+
"\u7b49\u811a\u985e",
|
130 |
+
"\u30b3\u30a6\u30ce\u30c8\u30ea",
|
131 |
+
"\u30ca\u30d9\u30b3\u30a6",
|
132 |
+
"\u30d8\u30e9\u30b5\u30ae",
|
133 |
+
"\u30d5\u30e9\u30df\u30f3\u30b4",
|
134 |
+
"\u5c0f\u3055\u306a\u9752\u3044\u30b5\u30ae",
|
135 |
+
"\u30a2\u30e1\u30ea\u30ab\u30f3\u767d\u9dfa",
|
136 |
+
"\u306b\u304c\u308a",
|
137 |
+
"\u30af\u30ec\u30fc\u30f3",
|
138 |
+
"\u30c4\u30eb\u30e2\u30c9\u30ad\u79d1\u306e\u9ce5",
|
139 |
+
"\u30e8\u30fc\u30ed\u30d4\u30a2\u30f3\u6c34\u9ce5",
|
140 |
+
"\u30a2\u30e1\u30ea\u30ab\u30aa\u30aa\u30d0\u30f3",
|
141 |
+
"\u30ce\u30ac\u30f3",
|
142 |
+
"\u30ad\u30e7\u30a6\u30b8\u30e7\u30b7\u30ae",
|
143 |
+
"\u8d64\u62c5\u4fdd\u30b7\u30ae",
|
144 |
+
"\u30a2\u30ab\u30a2\u30b7\u30b7\u30ae",
|
145 |
+
"\u30aa\u30aa\u30cf\u30b7\u30b7\u30ae",
|
146 |
+
"\u30df\u30e4\u30b3\u30c9\u30ea",
|
147 |
+
"\u30da\u30ea\u30ab\u30f3",
|
148 |
+
"\u30ad\u30f3\u30b0\u30da\u30f3\u30ae\u30f3",
|
149 |
+
"\u30a2\u30eb\u30d0\u30c8\u30ed\u30b9",
|
150 |
+
"\u30b3\u30af\u30af\u30b8\u30e9",
|
151 |
+
"\u30b7\u30e3\u30c1",
|
152 |
+
"\u30b8\u30e5\u30b4\u30f3",
|
153 |
+
"\u30a2\u30b7\u30ab",
|
154 |
+
"\u30c1\u30ef\u30ef",
|
155 |
+
"\u72c6",
|
156 |
+
"\u30de\u30eb\u30c1\u30fc\u30ba\u72ac",
|
157 |
+
"\u72c6",
|
158 |
+
"\u30b7\u30fc\u30ba\u30fc\u3001\u30b7\u30fc\u30ba\u30fc",
|
159 |
+
"\u30d6\u30ec\u30ca\u30e0\u30b9\u30d1\u30cb\u30a8\u30eb",
|
160 |
+
"\u30d1\u30d4\u30e8\u30f3",
|
161 |
+
"\u30c8\u30a4\u30c6\u30ea\u30a2",
|
162 |
+
"\u30ed\u30fc\u30c7\u30b7\u30a2\u30f3\u30fb\u30ea\u30c3\u30b8\u30d0\u30c3\u30af",
|
163 |
+
"\u30a2\u30d5\u30ac\u30f3\u30cf\u30a6\u30f3\u30c9",
|
164 |
+
"\u30d0\u30bb\u30c3\u30c8\u72ac",
|
165 |
+
"\u30d3\u30fc\u30b0\u30eb",
|
166 |
+
"\u30d6\u30e9\u30c3\u30c9\u30cf\u30a6\u30f3\u30c9",
|
167 |
+
"\u30d6\u30eb\u30fc\u30c6\u30a3\u30c3\u30af",
|
168 |
+
"\u9ed2\u3068\u9ec4\u8910\u8272\u306e\u731f\u72ac",
|
169 |
+
"\u30a6\u30a9\u30fc\u30ab\u30fc\u30cf\u30a6\u30f3\u30c9",
|
170 |
+
"\u30a4\u30f3\u30b0\u30ea\u30c3\u30b7\u30e5\u30d5\u30a9\u30c3\u30af\u30b9\u30cf\u30a6\u30f3\u30c9",
|
171 |
+
"\u30ec\u30c3\u30c9\u30dc\u30fc\u30f3",
|
172 |
+
"\u30dc\u30eb\u30be\u30a4",
|
173 |
+
"\u30a2\u30a4\u30ea\u30c3\u30b7\u30e5\u30fb\u30a6\u30eb\u30d5\u30cf\u30a6\u30f3\u30c9",
|
174 |
+
"\u30a4\u30bf\u30ea\u30a2\u30f3\u30b0\u30ec\u30fc\u30cf\u30a6\u30f3\u30c9",
|
175 |
+
"\u30a6\u30a3\u30da\u30c3\u30c8",
|
176 |
+
"\u30a4\u30d3\u30b5\u30cf\u30a6\u30f3\u30c9",
|
177 |
+
"\u30ce\u30eb\u30a6\u30a7\u30fc\u30a8\u30eb\u30af\u30cf\u30a6\u30f3\u30c9",
|
178 |
+
"\u30aa\u30c3\u30bf\u30fc\u30cf\u30a6\u30f3\u30c9",
|
179 |
+
"\u30b5\u30eb\u30fc\u30ad",
|
180 |
+
"\u30b9\u30b3\u30c6\u30a3\u30c3\u30b7\u30e5\u30fb\u30c7\u30a3\u30a2\u30cf\u30a6\u30f3\u30c9",
|
181 |
+
"\u30ef\u30a4\u30de\u30e9\u30ca\u30fc",
|
182 |
+
"\u30b9\u30bf\u30d5\u30a9\u30fc\u30c9\u30b7\u30e3\u30fc\u30d6\u30eb\u30c6\u30ea\u30a2",
|
183 |
+
"\u30a2\u30e1\u30ea\u30ab\u30f3\u30fb\u30b9\u30bf\u30c3\u30d5\u30a9\u30fc\u30c9\u30b7\u30e3\u30fc\u30fb\u30c6\u30ea\u30a2",
|
184 |
+
"\u30d9\u30c9\u30ea\u30f3\u30c8\u30f3\u30c6\u30ea\u30a2",
|
185 |
+
"\u30dc\u30fc\u30c0\u30fc\u30c6\u30ea\u30a2",
|
186 |
+
"\u30b1\u30ea\u30fc\u30d6\u30eb\u30fc\u30c6\u30ea\u30a2",
|
187 |
+
"\u30a2\u30a4\u30ea\u30c3\u30b7\u30e5\u30c6\u30ea\u30a2",
|
188 |
+
"\u30ce\u30fc\u30d5\u30a9\u30fc\u30af\u30c6\u30ea\u30a2",
|
189 |
+
"\u30ce\u30fc\u30ea\u30c3\u30c1\u30fb\u30c6\u30ea\u30a2",
|
190 |
+
"\u30e8\u30fc\u30af\u30b7\u30e3\u30fc\u30c6\u30ea\u30a2",
|
191 |
+
"\u30ef\u30a4\u30e4\u30fc\u30d8\u30a2\u30fc\u30fb\u30d5\u30a9\u30c3\u30af\u30b9\u30c6\u30ea\u30a2",
|
192 |
+
"\u30ec\u30fc\u30af\u30e9\u30f3\u30c9\u30c6\u30ea\u30a2",
|
193 |
+
"\u30b7\u30fc\u30ea\u30fc\u30cf\u30e0\u30c6\u30ea\u30a2",
|
194 |
+
"\u30a8\u30a2\u30c7\u30fc\u30eb",
|
195 |
+
"\u30b1\u30eb\u30f3",
|
196 |
+
"\u30aa\u30fc\u30b9\u30c8\u30e9\u30ea\u30a2\u30c6\u30ea\u30a2",
|
197 |
+
"\u30c0\u30f3\u30c7\u30a3\u30c7\u30a3\u30f3\u30e2\u30f3\u30c8\u30c6\u30ea\u30a2",
|
198 |
+
"\u30dc\u30b9\u30c8\u30f3\u30d6\u30eb",
|
199 |
+
"\u30df\u30cb\u30c1\u30e5\u30a2\u30b7\u30e5\u30ca\u30a6\u30b6\u30fc",
|
200 |
+
"\u30b8\u30e3\u30a4\u30a2\u30f3\u30c8\u30b7\u30e5\u30ca\u30a6\u30b6\u30fc",
|
201 |
+
"\u30b9\u30bf\u30f3\u30c0\u30fc\u30c9\u30b7\u30e5\u30ca\u30a6\u30b6\u30fc",
|
202 |
+
"\u30b9\u30b3\u30c3\u30c1\u30c6\u30ea\u30a2",
|
203 |
+
"\u30c1\u30d9\u30bf\u30f3\u30c6\u30ea\u30a2",
|
204 |
+
"\u30b7\u30eb\u30ad\u30fc\u30c6\u30ea\u30a2",
|
205 |
+
"\u30bd\u30d5\u30c8\u30b3\u30fc\u30c6\u30c3\u30c9\u30fb\u30a6\u30a3\u30fc\u30c8\u30f3\u30fb\u30c6\u30ea\u30a2",
|
206 |
+
"\u30a6\u30a7\u30b9\u30c8\u30cf\u30a4\u30e9\u30f3\u30c9\u30db\u30ef\u30a4\u30c8\u30c6\u30ea\u30a2",
|
207 |
+
"\u30e9\u30b5",
|
208 |
+
"\u30d5\u30e9\u30c3\u30c8\u30b3\u30fc\u30c6\u30c3\u30c9\u30fb\u30ec\u30c8\u30ea\u30fc\u30d0\u30fc",
|
209 |
+
"\u30ab\u30fc\u30ea\u30fc\u30b3\u30fc\u30c6\u30a3\u30f3\u30b0\u3055\u308c\u305f\u30ec\u30c8\u30ea\u30fc\u30d0\u30fc",
|
210 |
+
"\u30b4\u30fc\u30eb\u30c7\u30f3\u30ec\u30c8\u30ea\u30d0\u30fc",
|
211 |
+
"\u30e9\u30d6\u30e9\u30c9\u30eb\u30fb\u30ec\u30c8\u30ea\u30fc\u30d0\u30fc\u72ac",
|
212 |
+
"\u30c1\u30a7\u30b5\u30d4\u30fc\u30af\u6e7e\u30ec\u30c8\u30ea\u30fc\u30d0\u30fc",
|
213 |
+
"\u30b8\u30e3\u30fc\u30de\u30f3\u30fb\u30b7\u30e7\u30fc\u30c8\u30d8\u30a2\u30fb\u30dd\u30a4\u30f3\u30bf",
|
214 |
+
"\u30d3\u30ba\u30e9",
|
215 |
+
"\u30a4\u30f3\u30b0\u30ea\u30c3\u30b7\u30e5\u30bb\u30c3\u30bf\u30fc",
|
216 |
+
"\u30a2\u30a4\u30ea\u30c3\u30b7\u30e5\u30bb\u30c3\u30bf\u30fc",
|
217 |
+
"\u30b4\u30fc\u30c9\u30f3\u30bb\u30c3\u30bf\u30fc",
|
218 |
+
"\u30d6\u30ea\u30bf\u30cb\u30fc\u30b9\u30d1\u30cb\u30a8\u30eb",
|
219 |
+
"\u30af\u30e9\u30f3\u30d0\u30fc",
|
220 |
+
"\u30a4\u30f3\u30b0\u30ea\u30c3\u30b7\u30e5\u30b9\u30d7\u30ea\u30f3\u30ac\u30fc",
|
221 |
+
"\u30a6\u30a7\u30eb\u30b7\u30e5\u30b9\u30d7\u30ea\u30f3\u30ac\u30fc\u30b9\u30d1\u30cb\u30a8\u30eb",
|
222 |
+
"\u30b3\u30c3\u30ab\u30fc\u30b9\u30d1\u30cb\u30a8\u30eb",
|
223 |
+
"\u30b5\u30bb\u30c3\u30af\u30b9\u30b9\u30d1\u30cb\u30a8\u30eb",
|
224 |
+
"\u30a2\u30a4\u30eb\u30e9\u30f3\u30c9\u306e\u30a6\u30a9\u30fc\u30bf\u30fc\u30b9\u30d1\u30cb\u30a8\u30eb",
|
225 |
+
"\u30af\u30d0\u30fc\u30b9\u72ac",
|
226 |
+
"\u30b9\u30ad\u30c3\u30d1\u30fc\u30ad\u30fc",
|
227 |
+
"\u30d9\u30eb\u30b8\u30a2\u30f3\u30fb\u30b7\u30a7\u30d1\u30fc\u30c9\u30fb\u30c9\u30c3\u30b0\u30fb\u30b0\u30ed\u30fc\u30cd\u30f3\u30c0\u30fc\u30eb",
|
228 |
+
"\u30de\u30ea\u30ce\u30a2",
|
229 |
+
"\u30d6\u30ea\u30a2\u30fc\u30eb",
|
230 |
+
"\u30b1\u30eb\u30d4\u30fc",
|
231 |
+
"\u30b3\u30e2\u30f3\u30c9\u30fc\u30eb",
|
232 |
+
"\u30aa\u30fc\u30eb\u30c9\u30a4\u30f3\u30b0\u30ea\u30c3\u30b7\u30e5\u30b7\u30fc\u30d7\u30c9\u30c3\u30b0",
|
233 |
+
"\u30b7\u30a7\u30c8\u30e9\u30f3\u30c9\u30b7\u30fc\u30d7\u30c9\u30c3\u30b0",
|
234 |
+
"\u30b3\u30ea\u30fc",
|
235 |
+
"\u30dc\u30fc\u30c0\u30fc\u30b3\u30ea\u30fc",
|
236 |
+
"\u30d6\u30fc\u30f4\u30a3\u30a8\u30fb\u30c7\u30fb\u30d5\u30e9\u30f3\u30c9\u30eb",
|
237 |
+
"\u30ed\u30c3\u30c8\u30ef\u30a4\u30e9\u30fc",
|
238 |
+
"\u30b8\u30e3\u30fc\u30de\u30f3\u30b7\u30a7\u30d1\u30fc\u30c9",
|
239 |
+
"\u30c9\u30fc\u30d9\u30eb\u30de\u30f3\u72ac",
|
240 |
+
"\u30df\u30cb\u30c1\u30e5\u30a2\u30d4\u30f3\u30b7\u30e3\u30fc",
|
241 |
+
"\u30b0\u30ec\u30fc\u30bf\u30fc\u30b9\u30a4\u30b9\u30de\u30a6\u30f3\u30c6\u30f3\u30c9\u30c3\u30b0",
|
242 |
+
"\u30d0\u30fc\u30cd\u30fc\u30ba\u30de\u30a6\u30f3\u30c6\u30f3\u30c9\u30c3\u30b0",
|
243 |
+
"\u30a2\u30c3\u30da\u30f3\u30c4\u30a7\u30eb",
|
244 |
+
"\u30a8\u30f3\u30c8\u30ec\u30d6\u30c3\u30b7\u30e3\u30fc",
|
245 |
+
"\u30dc\u30af\u30b5\u30fc",
|
246 |
+
"\u30d6\u30eb\u30de\u30b9\u30c1\u30d5",
|
247 |
+
"\u30c1\u30d9\u30c3\u30c8\u30de\u30b9\u30c1\u30d5",
|
248 |
+
"\u30d5\u30ec\u30f3\u30c1\u30d6\u30eb\u30c9\u30c3\u30b0",
|
249 |
+
"\u30b0\u30ec\u30fc\u30c8\u30c7\u30fc\u30f3",
|
250 |
+
"\u30bb\u30f3\u30c8\u30d0\u30fc\u30ca\u30fc\u30c9",
|
251 |
+
"\u30a8\u30b9\u30ad\u30e2\u30fc\u72ac",
|
252 |
+
"\u30de\u30e9\u30df\u30e5\u30fc\u30c8",
|
253 |
+
"\u30b7\u30d9\u30ea\u30a2\u30f3\u30cf\u30b9\u30ad\u30fc",
|
254 |
+
"\u30c0\u30eb\u30e1\u30b7\u30a2\u30f3",
|
255 |
+
"\u30a2\u30fc\u30d5\u30a7\u30f3\u30d4\u30f3\u30b7\u30e3\u30fc",
|
256 |
+
"\u30d0\u30bb\u30f3\u30b8\u30fc",
|
257 |
+
"\u30d1\u30b0",
|
258 |
+
"\u30ec\u30aa\u30f3\u30d0\u30fc\u30b0",
|
259 |
+
"\u30cb\u30e5\u30fc\u30d5\u30a1\u30f3\u30c9\u30e9\u30f3\u30c9\u5cf6",
|
260 |
+
"\u30b0\u30ec\u30fc\u30c8\u30d4\u30ec\u30cb\u30fc\u30ba",
|
261 |
+
"\u30b5\u30e2\u30a8\u30c9",
|
262 |
+
"\u30dd\u30e1\u30e9\u30cb\u30a2\u30f3",
|
263 |
+
"\u30c1\u30e3\u30a6",
|
264 |
+
"\u30ad\u30fc\u30b9\u30db\u30f3\u30c9",
|
265 |
+
"\u30d6\u30e9\u30d0\u30f3\u30bd\u30f3\u30b0\u30ea\u30d5\u30a9\u30f3",
|
266 |
+
"\u30da\u30f3\u30d6\u30ed\u30fc\u30af",
|
267 |
+
"\u30ab\u30fc\u30c7\u30a3\u30ac\u30f3",
|
268 |
+
"\u30c8\u30a4\u30d7\u30fc\u30c9\u30eb",
|
269 |
+
"\u30df\u30cb\u30c1\u30e5\u30a2\u30d7\u30fc\u30c9\u30eb",
|
270 |
+
"\u30b9\u30bf\u30f3\u30c0\u30fc\u30c9\u30d7\u30fc\u30c9\u30eb",
|
271 |
+
"\u30e1\u30ad\u30b7\u30ab\u30f3\u30fb\u30d8\u30a2\u30fc\u30ec\u30b9",
|
272 |
+
"\u30b7\u30f3\u30ea\u30f3\u30aa\u30aa\u30ab\u30df",
|
273 |
+
"\u767d\u3044\u30aa\u30aa\u30ab\u30df",
|
274 |
+
"\u30ec\u30c3\u30c9\u30a6\u30eb\u30d5",
|
275 |
+
"\u30b3\u30e8\u30fc\u30c6",
|
276 |
+
"\u30c7\u30a3\u30f3\u30b4",
|
277 |
+
"\u30c9\u30fc\u30eb",
|
278 |
+
"\u30ea\u30ab\u30aa\u30f3",
|
279 |
+
"\u30cf\u30a4\u30a8\u30ca",
|
280 |
+
"\u30a2\u30ab\u30ae\u30c4\u30cd",
|
281 |
+
"\u30ad\u30c3\u30c8\u30ad\u30c4\u30cd",
|
282 |
+
"\u30db\u30c3\u30ad\u30e7\u30af\u30ae\u30c4\u30cd",
|
283 |
+
"\u7070\u8272\u306e\u30ad\u30c4\u30cd",
|
284 |
+
"\u30bf\u30d3\u30fc",
|
285 |
+
"\u864e\u732b",
|
286 |
+
"\u30da\u30eb\u30b7\u30e3\u732b",
|
287 |
+
"\u30b7\u30e3\u30e0\u732b",
|
288 |
+
"\u30a8\u30b8\u30d7\u30c8\u306e\u732b",
|
289 |
+
"\u30af\u30fc\u30ac\u30fc",
|
290 |
+
"\u30aa\u30aa\u30e4\u30de\u30cd\u30b3",
|
291 |
+
"\u30d2\u30e7\u30a6",
|
292 |
+
"\u30e6\u30ad\u30d2\u30e7\u30a6",
|
293 |
+
"\u30b8\u30e3\u30ac\u30fc",
|
294 |
+
"\u30e9\u30a4\u30aa\u30f3",
|
295 |
+
"\u864e",
|
296 |
+
"\u30c1\u30fc\u30bf\u30fc",
|
297 |
+
"\u30d2\u30b0\u30de",
|
298 |
+
"\u30a2\u30e1\u30ea\u30ab\u30af\u30ed\u30af\u30de",
|
299 |
+
"\u6c37\u306e\u30af\u30de",
|
300 |
+
"\u30ca\u30de\u30b1\u30b0\u30de",
|
301 |
+
"\u30de\u30f3\u30b0\u30fc\u30b9",
|
302 |
+
"\u30df\u30fc\u30a2\u30ad\u30e3\u30c3\u30c8",
|
303 |
+
"\u30cf\u30f3\u30df\u30e7\u30a6",
|
304 |
+
"\u3066\u3093\u3068\u3046\u866b",
|
305 |
+
"\u30b0\u30e9\u30f3\u30c9\u30d3\u30fc\u30c8\u30eb",
|
306 |
+
"\u30ab\u30df\u30ad\u30ea\u30e0\u30b7",
|
307 |
+
"\u30cf\u30e0\u30b7",
|
308 |
+
"\u30d5\u30f3\u30b3\u30ed\u30ac\u30b7",
|
309 |
+
"\u30b5\u30a4\u30cf\u30e0\u30b7",
|
310 |
+
"\u30be\u30a6\u30e0\u30b7",
|
311 |
+
"\u30cf\u30a8",
|
312 |
+
"\u8702",
|
313 |
+
"\u87fb",
|
314 |
+
"\u30d0\u30c3\u30bf",
|
315 |
+
"\u30af\u30ea\u30b1\u30c3\u30c8",
|
316 |
+
"\u6756",
|
317 |
+
"\u30b4\u30ad\u30d6\u30ea",
|
318 |
+
"\u30ab\u30de\u30ad\u30ea",
|
319 |
+
"\u8749",
|
320 |
+
"\u30e8\u30b3\u30d0\u30a4",
|
321 |
+
"\u30af\u30b5\u30ab\u30b2\u30ed\u30a6",
|
322 |
+
"\u30c8\u30f3\u30dc",
|
323 |
+
"\u30a4\u30c8\u30c8\u30f3\u30dc",
|
324 |
+
"\u63d0\u7763",
|
325 |
+
"\u30ea\u30f3\u30b0\u30ec\u30c3\u30c8",
|
326 |
+
"\u541b\u4e3b",
|
327 |
+
"\u30e2\u30f3\u30b7\u30ed\u30c1\u30e7\u30a6",
|
328 |
+
"\u786b\u9ec4\u8776",
|
329 |
+
"\u30b7\u30b8\u30df\u30c1\u30e7\u30a6",
|
330 |
+
"\u30d2\u30c8\u30c7",
|
331 |
+
"\u3046\u306b",
|
332 |
+
"\u30ca\u30de\u30b3",
|
333 |
+
"\u6728\u306e\u30a6\u30b5\u30ae",
|
334 |
+
"\u91ce\u30a6\u30b5\u30ae",
|
335 |
+
"\u30a2\u30f3\u30b4\u30e9",
|
336 |
+
"\u30cf\u30e0\u30b9\u30bf\u30fc",
|
337 |
+
"\u30e4\u30de\u30a2\u30e9\u30b7",
|
338 |
+
"\u30ad\u30c4\u30cd\u30ea\u30b9",
|
339 |
+
"\u30de\u30fc\u30e2\u30c3\u30c8",
|
340 |
+
"\u30d3\u30fc\u30d0\u30fc",
|
341 |
+
"\u30e2\u30eb\u30e2\u30c3\u30c8",
|
342 |
+
"\u6817\u8272",
|
343 |
+
"\u30b7\u30de\u30a6\u30de",
|
344 |
+
"\u8c5a",
|
345 |
+
"\u30a4\u30ce\u30b7\u30b7",
|
346 |
+
"\u30a4\u30dc\u30a4\u30ce\u30b7\u30b7",
|
347 |
+
"\u30ab\u30d0",
|
348 |
+
"\u96c4\u725b",
|
349 |
+
"\u6c34\u725b",
|
350 |
+
"\u30d0\u30a4\u30bd\u30f3",
|
351 |
+
"\u30e9\u30e0",
|
352 |
+
"\u30d3\u30c3\u30b0\u30db\u30fc\u30f3",
|
353 |
+
"\u30a2\u30a4\u30d9\u30c3\u30af\u30b9",
|
354 |
+
"\u30cf\u30fc\u30c6\u30d3\u30fc\u30b9\u30c8",
|
355 |
+
"\u30a4\u30f3\u30d1\u30e9",
|
356 |
+
"\u30ac\u30bc\u30eb",
|
357 |
+
"\u30a2\u30e9\u30d3\u30a2\u30e9\u30af\u30c0",
|
358 |
+
"\u30e9\u30de",
|
359 |
+
"\u30a4\u30bf\u30c1",
|
360 |
+
"\u30df\u30f3\u30af",
|
361 |
+
"\u30b1\u30ca\u30ac\u30a4\u30bf\u30c1",
|
362 |
+
"\u30af\u30ed\u30a2\u30b7\u30a4\u30bf\u30c1",
|
363 |
+
"\u30ab\u30ef\u30a6\u30bd",
|
364 |
+
"\u30b9\u30ab\u30f3\u30af",
|
365 |
+
"\u72f8",
|
366 |
+
"\u30a2\u30eb\u30de\u30b8\u30ed",
|
367 |
+
"\u30df\u30e6\u30d3\u30ca\u30de\u30b1\u30e2\u30ce",
|
368 |
+
"\u30aa\u30e9\u30f3\u30a6\u30fc\u30bf\u30f3",
|
369 |
+
"\u30b4\u30ea\u30e9",
|
370 |
+
"\u30c1\u30f3\u30d1\u30f3\u30b8\u30fc",
|
371 |
+
"\u30c6\u30ca\u30ac\u30b6\u30eb",
|
372 |
+
"\u30d5\u30af\u30ed\u30c6\u30ca\u30ac\u30b6\u30eb",
|
373 |
+
"\u30aa\u30ca\u30ac\u30b6\u30eb",
|
374 |
+
"\u30d1\u30bf\u30b9",
|
375 |
+
"\u30d2\u30d2",
|
376 |
+
"\u30de\u30ab\u30af",
|
377 |
+
"\u30e4\u30bb\u30b6\u30eb",
|
378 |
+
"\u30b3\u30ed\u30d6\u30b9\u5c5e",
|
379 |
+
"\u30c6\u30f3\u30b0\u30b6\u30eb",
|
380 |
+
"\u30de\u30fc\u30e2\u30bb\u30c3\u30c8",
|
381 |
+
"\u30aa\u30de\u30ad\u30b6\u30eb",
|
382 |
+
"\u30db\u30a8\u30b6\u30eb",
|
383 |
+
"\u30c6\u30a3\u30c6\u30a3",
|
384 |
+
"\u30af\u30e2\u30b6\u30eb",
|
385 |
+
"\u30ea\u30b9\u30b6\u30eb",
|
386 |
+
"\u30de\u30c0\u30ac\u30b9\u30ab\u30eb\u732b",
|
387 |
+
"\u30a4\u30f3\u30c9\u30ea",
|
388 |
+
"\u30a4\u30f3\u30c9\u30be\u30a6",
|
389 |
+
"\u30a2\u30d5\u30ea\u30ab\u30be\u30a6",
|
390 |
+
"\u30ec\u30c3\u30b5\u30fc\u30d1\u30f3\u30c0",
|
391 |
+
"\u30b8\u30e3\u30a4\u30a2\u30f3\u30c8\u30d1\u30f3\u30c0",
|
392 |
+
"\u30d0\u30e9\u30af\u30fc\u30bf",
|
393 |
+
"\u30a6\u30ca\u30ae",
|
394 |
+
"\u30ae\u30f3\u30b6\u30b1",
|
395 |
+
"\u5ca9\u306e\u7f8e\u3057\u3055",
|
396 |
+
"\u30af\u30de\u30ce\u30df",
|
397 |
+
"\u30c1\u30e7\u30a6\u30b6\u30e1",
|
398 |
+
"\u30ac\u30fc",
|
399 |
+
"\u30df\u30ce\u30ab\u30b5\u30b4",
|
400 |
+
"\u30d5\u30b0",
|
401 |
+
"\u305d\u308d\u3070\u3093",
|
402 |
+
"\u30a2\u30d0\u30e4",
|
403 |
+
"\u30a2\u30ab\u30c7\u30df\u30c3\u30af\u30ac\u30a6\u30f3",
|
404 |
+
"\u30a2\u30b3\u30fc\u30c7\u30a3\u30aa\u30f3",
|
405 |
+
"\u30a2\u30b3\u30fc\u30b9\u30c6\u30a3\u30c3\u30af\u30ae\u30bf\u30fc",
|
406 |
+
"\u7a7a\u6bcd",
|
407 |
+
"\u65c5\u5ba2\u6a5f",
|
408 |
+
"\u98db\u884c\u8239",
|
409 |
+
"\u796d\u58c7",
|
410 |
+
"\u6551\u6025\u8eca",
|
411 |
+
"\u4e21\u751f\u985e",
|
412 |
+
"\u30a2\u30ca\u30ed\u30b0\u6642\u8a08",
|
413 |
+
"\u990a\u8702\u5834",
|
414 |
+
"\u30a8\u30d7\u30ed\u30f3",
|
415 |
+
"\u3054\u307f\u5165\u308c",
|
416 |
+
"\u30a2\u30b5\u30eb\u30c8\u30e9\u30a4\u30d5\u30eb",
|
417 |
+
"\u30d0\u30c3\u30af\u30d1\u30c3\u30af",
|
418 |
+
"\u30d9\u30fc\u30ab\u30ea\u30fc",
|
419 |
+
"\u5e73\u5747\u53f0",
|
420 |
+
"\u30d0\u30eb\u30fc\u30f3",
|
421 |
+
"\u30dc\u30fc\u30eb\u30da\u30f3",
|
422 |
+
"\u30d0\u30f3\u30c9\u30a8\u30a4\u30c9",
|
423 |
+
"\u30d0\u30f3\u30b8\u30e7\u30fc",
|
424 |
+
"\u30d0\u30cb\u30b9\u30bf\u30fc",
|
425 |
+
"\u30d0\u30fc\u30d9\u30eb",
|
426 |
+
"\u7406\u9aea\u5e97\u306e\u6905\u5b50",
|
427 |
+
"\u7406\u9aea\u5e97",
|
428 |
+
"\u7d0d\u5c4b",
|
429 |
+
"\u30d0\u30ed\u30e1\u30fc\u30bf\u30fc",
|
430 |
+
"\u30d0\u30ec\u30eb",
|
431 |
+
"\u30d0\u30ed\u30fc",
|
432 |
+
"\u91ce\u7403",
|
433 |
+
"\u30d0\u30b9\u30b1\u30c3\u30c8\u30dc\u30fc\u30eb",
|
434 |
+
"\u30d0\u30b7\u30cd\u30c3\u30c8",
|
435 |
+
"\u30d5\u30a1\u30b4\u30c3\u30c8",
|
436 |
+
"\u6c34\u6cf3\u5e3d",
|
437 |
+
"\u30d0\u30b9\u30bf\u30aa\u30eb",
|
438 |
+
"\u30d0\u30b9\u30bf\u30d6",
|
439 |
+
"\u30d3\u30fc\u30c1\u30ef\u30b4\u30f3",
|
440 |
+
"\u30d3\u30fc\u30b3\u30f3",
|
441 |
+
"\u30d3\u30fc\u30ab\u30fc",
|
442 |
+
"\u30d9\u30a2\u30b9\u30ad\u30f3",
|
443 |
+
"\u30d3\u30fc\u30eb\u74f6",
|
444 |
+
"\u30d3\u30fc\u30eb\u30b0\u30e9\u30b9",
|
445 |
+
"\u30d9\u30eb\u30b3\u30fc\u30c8",
|
446 |
+
"\u30d3\u30d6",
|
447 |
+
"\u81ea\u8ee2\u8eca",
|
448 |
+
"\u30d3\u30ad\u30cb",
|
449 |
+
"\u30d0\u30a4\u30f3\u30c0\u30fc",
|
450 |
+
"\u53cc\u773c\u93e1",
|
451 |
+
"\u5de3\u7bb1",
|
452 |
+
"\u30dc\u30fc\u30c8\u30cf\u30a6\u30b9",
|
453 |
+
"\u30dc\u30d6\u30b9\u30ec\u30fc",
|
454 |
+
"\u30eb\u30fc\u30d7\u30bf\u30a4",
|
455 |
+
"\u30dc\u30f3\u30cd\u30c3\u30c8",
|
456 |
+
"\u672c\u68da",
|
457 |
+
"\u66f8\u5e97",
|
458 |
+
"\u74f6\u306e\u30ad\u30e3\u30c3\u30d7",
|
459 |
+
"\u5f13",
|
460 |
+
"\u3061\u3087\u3046\u30cd\u30af\u30bf\u30a4",
|
461 |
+
"\u771f\u936e",
|
462 |
+
"\u30d6\u30e9\u30b8\u30e3\u30fc",
|
463 |
+
"\u9632\u6ce2\u5824",
|
464 |
+
"\u80f8\u5f53\u3066",
|
465 |
+
"\u307b\u3046\u304d",
|
466 |
+
"\u30d0\u30b1\u30c4",
|
467 |
+
"\u30d0\u30c3\u30af\u30eb",
|
468 |
+
"\u9632\u5f3e\u30c1\u30e7\u30c3\u30ad",
|
469 |
+
"\u65b0\u5e79\u7dda",
|
470 |
+
"\u7cbe\u8089\u5e97",
|
471 |
+
"\u30bf\u30af\u30b7\u30fc",
|
472 |
+
"\u5927\u91dc",
|
473 |
+
"\u30ad\u30e3\u30f3\u30c9\u30eb",
|
474 |
+
"\u5927\u7832",
|
475 |
+
"\u30ab\u30cc\u30fc",
|
476 |
+
"\u7f36\u5207\u308a",
|
477 |
+
"\u30ab\u30fc\u30c7\u30a3\u30ac\u30f3",
|
478 |
+
"\u8eca\u306e\u30df\u30e9\u30fc",
|
479 |
+
"\u56de\u8ee2\u6728\u99ac",
|
480 |
+
"\u5927\u5de5\u306e\u30ad\u30c3\u30c8",
|
481 |
+
"\u30ab\u30fc\u30c8\u30f3",
|
482 |
+
"\u8eca\u306e\u30db\u30a4\u30fc\u30eb",
|
483 |
+
"\u73fe\u91d1\u81ea\u52d5\u9810\u3051\u6255\u3044\u6a5f",
|
484 |
+
"\u30ab\u30bb\u30c3\u30c8",
|
485 |
+
"\u30ab\u30bb\u30c3\u30c8\u30fb\u30d7\u30ec\u30fc\u30e4\u30fc",
|
486 |
+
"\u57ce",
|
487 |
+
"\u30ab\u30bf\u30de\u30e9\u30f3",
|
488 |
+
"CD\u30d7\u30ec\u30fc\u30e4\u30fc",
|
489 |
+
"\u30c1\u30a7\u30ed",
|
490 |
+
"\u30b9\u30de\u30fc\u30c8\u30d5\u30a9\u30f3",
|
491 |
+
"\u9396",
|
492 |
+
"\u30c1\u30a7\u30fc\u30f3\u30ea\u30f3\u30af\u30d5\u30a7\u30f3\u30b9",
|
493 |
+
"\u30c1\u30a7\u30fc\u30f3\u30e1\u30fc\u30eb",
|
494 |
+
"\u30c1\u30a7\u30fc\u30f3\u30bd\u30fc",
|
495 |
+
"\u80f8",
|
496 |
+
"\u30b7\u30d5\u30a9\u30cb\u30a2",
|
497 |
+
"\u30c1\u30e3\u30a4\u30e0",
|
498 |
+
"\u4e2d\u56fd\u30ad\u30e3\u30d3\u30cd\u30c3\u30c8",
|
499 |
+
"\u30af\u30ea\u30b9\u30de\u30b9\u306e\u9774\u4e0b",
|
500 |
+
"\u6559\u4f1a",
|
501 |
+
"\u6620\u753b",
|
502 |
+
"\u30af\u30ea\u30fc\u30d0\u30fc",
|
503 |
+
"\u5d16\u306e\u4f4f\u5c45",
|
504 |
+
"\u30de\u30f3\u30c8",
|
505 |
+
"\u30af\u30ed\u30c3\u30b0",
|
506 |
+
"\u30ab\u30af\u30c6\u30eb\u30b7\u30a7\u30fc\u30ab\u30fc",
|
507 |
+
"\u30b3\u30fc\u30d2\u30fc\u30de\u30b0",
|
508 |
+
"\u30b3\u30fc\u30d2\u30fc\u30dd\u30c3\u30c8",
|
509 |
+
"\u30b3\u30a4\u30eb",
|
510 |
+
"\u30c0\u30a4\u30e4\u30eb\u9320",
|
511 |
+
"\u30b3\u30f3\u30d4\u30e5\u30fc\u30bf\u306e\u30ad\u30fc\u30dc\u30fc\u30c9",
|
512 |
+
"\u88fd\u83d3",
|
513 |
+
"\u30b3\u30f3\u30c6\u30ca\u8239",
|
514 |
+
"\u30b3\u30f3\u30d0\u30fc\u30c1\u30d6\u30eb",
|
515 |
+
"\u30b3\u30fc\u30af\u30b9\u30af\u30ea\u30e5\u30fc",
|
516 |
+
"\u30b3\u30eb\u30cd\u30c3\u30c8",
|
517 |
+
"\u30ab\u30a6\u30dc\u30fc\u30a4\u30d6\u30fc\u30c4",
|
518 |
+
"\u30ab\u30a6\u30dc\u30fc\u30a4\u30cf\u30c3\u30c8",
|
519 |
+
"\u30af\u30ec\u30fc\u30c9\u30eb",
|
520 |
+
"\u30af\u30ec\u30fc\u30f3",
|
521 |
+
"\u30af\u30e9\u30c3\u30b7\u30e5\u30d8\u30eb\u30e1\u30c3\u30c8",
|
522 |
+
"\u6728\u7bb1",
|
523 |
+
"\u30d9\u30d3\u30fc\u30d9\u30c3\u30c9",
|
524 |
+
"\u30af\u30ed\u30fc\u30af\u30dd\u30c3\u30c8",
|
525 |
+
"\u30af\u30ed\u30b1\u30c3\u30c8\u30dc\u30fc\u30eb",
|
526 |
+
"\u677e\u8449\u6756",
|
527 |
+
"\u80f8\u5f53\u3066",
|
528 |
+
"\u30c0\u30e0",
|
529 |
+
"\u673a",
|
530 |
+
"\u30c7\u30b9\u30af\u30c8\u30c3\u30d7\u30b3\u30f3\u30d4\u30e5\u30fc\u30bf\u30fc",
|
531 |
+
"\u30c0\u30a4\u30e4\u30eb\u96fb\u8a71",
|
532 |
+
"\u304a\u3080\u3064",
|
533 |
+
"\u30c7\u30b8\u30bf\u30eb\u6642\u8a08",
|
534 |
+
"\u30c7\u30b8\u30bf\u30eb\u8155\u6642\u8a08",
|
535 |
+
"\u30c0\u30a4\u30cb\u30f3\u30b0\u30c6\u30fc\u30d6\u30eb",
|
536 |
+
"\u610f\u6c17\u5730\u306a\u3057",
|
537 |
+
"\u98df\u5668\u6d17\u3044\u6a5f",
|
538 |
+
"\u30c7\u30a3\u30b9\u30af\u30d6\u30ec\u30fc\u30ad",
|
539 |
+
"\u30c9\u30c3\u30af",
|
540 |
+
"\u72ac\u305e\u308a",
|
541 |
+
"\u30c9\u30fc\u30e0",
|
542 |
+
"\u7384\u95a2\u30de\u30c3\u30c8",
|
543 |
+
"\u6398\u524a\u57fa\u5730",
|
544 |
+
"\u30c9\u30e9\u30e0",
|
545 |
+
"\u30c9\u30e9\u30e0\u30b9\u30c6\u30a3\u30c3\u30af",
|
546 |
+
"\u30c0\u30f3\u30d9\u30eb",
|
547 |
+
"\u30c0\u30c3\u30c1\u30aa\u30fc\u30d6\u30f3",
|
548 |
+
"\u6247\u98a8\u6a5f",
|
549 |
+
"\u30a8\u30ec\u30ad\u30ae\u30bf\u30fc",
|
550 |
+
"\u96fb\u6c17\u6a5f\u95a2\u8eca",
|
551 |
+
"\u5a2f\u697d\u65bd\u8a2d",
|
552 |
+
"\u5c01\u7b52",
|
553 |
+
"\u30a8\u30b9\u30d7\u30ec\u30c3\u30bd\u30de\u30b7\u30fc\u30f3",
|
554 |
+
"\u30d5\u30a7\u30fc\u30b9\u30d1\u30a6\u30c0\u30fc",
|
555 |
+
"\u30d5\u30a7\u30b6\u30fc\u30dc\u30a2",
|
556 |
+
"\u30d5\u30a1\u30a4\u30eb",
|
557 |
+
"\u6d88\u9632\u8247",
|
558 |
+
"\u6d88\u9632\u8eca",
|
559 |
+
"\u30d5\u30a1\u30a4\u30a2\u30fc\u30b9\u30af\u30ea\u30fc\u30f3",
|
560 |
+
"\u65d7\u7aff",
|
561 |
+
"\u30d5\u30eb\u30fc\u30c8",
|
562 |
+
"\u6298\u308a\u7573\u307f\u5f0f\u6905\u5b50",
|
563 |
+
"\u30d5\u30c3\u30c8\u30dc\u30fc\u30eb\u30d8\u30eb\u30e1\u30c3\u30c8",
|
564 |
+
"\u30d5\u30a9\u30fc\u30af\u30ea\u30d5\u30c8",
|
565 |
+
"\u5674\u6c34",
|
566 |
+
"\u4e07\u5e74\u7b46",
|
567 |
+
"\u56db\u67f1",
|
568 |
+
"\u8ca8\u8eca",
|
569 |
+
"\u30d5\u30ec\u30f3\u30c1\u30db\u30eb\u30f3",
|
570 |
+
"\u30d5\u30e9\u30a4\u30d1\u30f3",
|
571 |
+
"\u6bdb\u76ae\u306e\u30b3\u30fc\u30c8",
|
572 |
+
"\u3054\u307f\u53ce\u96c6\u8eca",
|
573 |
+
"\u30ac\u30b9\u30de\u30b9\u30af",
|
574 |
+
"\u30ac\u30bd\u30ea\u30f3\u30dd\u30f3\u30d7",
|
575 |
+
"\u30b4\u30d6\u30ec\u30c3\u30c8",
|
576 |
+
"\u30b4\u30fc\u30ab\u30fc\u30c8",
|
577 |
+
"\u30b4\u30eb\u30d5\u30dc\u30fc\u30eb",
|
578 |
+
"\u30b4\u30eb\u30d5\u30ab\u30fc\u30c8",
|
579 |
+
"\u30b4\u30f3\u30c9\u30e9",
|
580 |
+
"\u30b4\u30f3\u30b0",
|
581 |
+
"\u30ac\u30a6\u30f3",
|
582 |
+
"\u30b0\u30e9\u30f3\u30c9\u30d4\u30a2\u30ce",
|
583 |
+
"\u6e29\u5ba4",
|
584 |
+
"\u30b0\u30ea\u30eb",
|
585 |
+
"\u98df\u6599\u54c1\u5e97",
|
586 |
+
"\u30ae\u30ed\u30c1\u30f3",
|
587 |
+
"\u30d8\u30a2\u30b9\u30e9\u30a4\u30c9",
|
588 |
+
"\u30d8\u30a2\u30b9\u30d7\u30ec\u30fc",
|
589 |
+
"\u534a\u30c8\u30e9\u30c3\u30af",
|
590 |
+
"\u30cf\u30f3\u30de\u30fc",
|
591 |
+
"\u59a8\u3052\u307e\u3059",
|
592 |
+
"\u30cf\u30f3\u30c9\u30d6\u30ed\u30ef\u30fc",
|
593 |
+
"\u30bf\u30d6\u30ec\u30c3\u30c8",
|
594 |
+
"\u30cf\u30f3\u30ab\u30c1",
|
595 |
+
"\u30cf\u30fc\u30c9\u30c7\u30a3\u30b9\u30af",
|
596 |
+
"\u30cf\u30fc\u30e2\u30cb\u30ab",
|
597 |
+
"\u30cf\u30fc\u30d7",
|
598 |
+
"\u30cf\u30fc\u30d9\u30b9\u30bf",
|
599 |
+
"\u65a7",
|
600 |
+
"\u30db\u30eb\u30b9\u30bf\u30fc",
|
601 |
+
"\u30db\u30fc\u30e0\u30b7\u30a2\u30bf\u30fc",
|
602 |
+
"\u30cf\u30cb\u30ab\u30e0",
|
603 |
+
"\u30d5\u30c3\u30af",
|
604 |
+
"\u30d5\u30fc\u30d7\u30b9\u30ab\u30fc\u30c8",
|
605 |
+
"\u6c34\u5e73\u30d0\u30fc",
|
606 |
+
"\u99ac\u8eca",
|
607 |
+
"\u7802\u6642\u8a08",
|
608 |
+
"\u30a2\u30a4\u30d5\u30a9\u30fc\u30f3",
|
609 |
+
"\u9244",
|
610 |
+
"\u30b8\u30e3\u30c3\u30af\u30aa\u30fc\u30e9\u30f3\u30bf\u30f3",
|
611 |
+
"\u30b8\u30fc\u30f3\u30ba",
|
612 |
+
"\u30b8\u30fc\u30d7",
|
613 |
+
"\u30b8\u30e3\u30fc\u30b8\u30fc",
|
614 |
+
"\u30b8\u30b0\u30bd\u30fc\u30d1\u30ba\u30eb",
|
615 |
+
"\u4eba\u529b\u8eca",
|
616 |
+
"\u30b8\u30e7\u30a4\u30b9\u30c6\u30a3\u30c3\u30af",
|
617 |
+
"\u7740\u7269",
|
618 |
+
"\u819d\u30d1\u30c3\u30c9",
|
619 |
+
"\u7d50\u3073\u76ee",
|
620 |
+
"\u767d\u8863",
|
621 |
+
"\u3072\u3057\u3083\u304f",
|
622 |
+
"\u30e9\u30f3\u30d7\u306e\u304b\u3055",
|
623 |
+
"\u30ce\u30fc\u30c8\u30d1\u30bd\u30b3\u30f3",
|
624 |
+
"\u829d\u5208\u308a\u6a5f",
|
625 |
+
"\u30ec\u30f3\u30ba\u30ad\u30e3\u30c3\u30d7",
|
626 |
+
"\u30ec\u30bf\u30fc\u30aa\u30fc\u30d7\u30ca\u30fc",
|
627 |
+
"\u30e9\u30a4\u30d6\u30e9\u30ea",
|
628 |
+
"\u6551\u547d\u30dc\u30fc\u30c8",
|
629 |
+
"\u30e9\u30a4\u30bf\u30fc",
|
630 |
+
"\u30ea\u30e0\u30b8\u30f3",
|
631 |
+
"\u30e9\u30a4\u30ca\u30fc",
|
632 |
+
"\u53e3\u7d05",
|
633 |
+
"\u30ed\u30fc\u30d5\u30a1\u30fc",
|
634 |
+
"\u30ed\u30fc\u30b7\u30e7\u30f3",
|
635 |
+
"\u30b9\u30d4\u30fc\u30ab\u30fc",
|
636 |
+
"\u30eb\u30fc\u30da",
|
637 |
+
"\u88fd\u6750\u6240",
|
638 |
+
"\u78c1\u6c17\u30b3\u30f3\u30d1\u30b9",
|
639 |
+
"\u90f5\u888b",
|
640 |
+
"\u30e1\u30fc\u30eb\u30dc\u30c3\u30af\u30b9",
|
641 |
+
"\u30de\u30a4\u30e8",
|
642 |
+
"\u30de\u30a4\u30e8",
|
643 |
+
"\u30de\u30f3\u30db\u30fc\u30eb\u306e\u84cb",
|
644 |
+
"\u30de\u30e9\u30ab\u30b9",
|
645 |
+
"\u30de\u30ea\u30f3\u30d0",
|
646 |
+
"\u30de\u30b9\u30af",
|
647 |
+
"\u30de\u30c3\u30c1\u68d2",
|
648 |
+
"\u30e1\u30a4\u30dd\u30fc\u30eb",
|
649 |
+
"\u8ff7\u8def",
|
650 |
+
"\u8a08\u91cf\u30ab\u30c3\u30d7",
|
651 |
+
"\u85ac\u7bb1",
|
652 |
+
"\u5de8\u77f3",
|
653 |
+
"\u30de\u30a4\u30af",
|
654 |
+
"\u30de\u30a4\u30af\u30ed\u6ce2",
|
655 |
+
"\u8ecd\u670d",
|
656 |
+
"\u30df\u30eb\u30af\u7f36",
|
657 |
+
"\u30df\u30cb\u30d0\u30b9",
|
658 |
+
"\u30df\u30cb\u30b9\u30ab\u30fc\u30c8",
|
659 |
+
"\u30df\u30cb\u30d0\u30f3",
|
660 |
+
"\u30df\u30b5\u30a4\u30eb",
|
661 |
+
"\u30df\u30c8\u30f3",
|
662 |
+
"\u30df\u30ad\u30b7\u30f3\u30b0\u30dc\u30a6\u30eb",
|
663 |
+
"\u79fb\u52d5\u4f4f\u5b85",
|
664 |
+
"\u30e2\u30c7\u30ebT",
|
665 |
+
"\u30e2\u30c7\u30e0",
|
666 |
+
"\u4fee\u9053\u9662",
|
667 |
+
"\u30e2\u30cb\u30bf\u30fc",
|
668 |
+
"\u30e2\u30da\u30c3\u30c8",
|
669 |
+
"\u30e2\u30eb\u30bf\u30eb",
|
670 |
+
"\u30e2\u30eb\u30bf\u30eb\u30dc\u30fc\u30c9",
|
671 |
+
"\u30e2\u30b9\u30af",
|
672 |
+
"\u868a\u5e33",
|
673 |
+
"\u30b9\u30af\u30fc\u30bf\u30fc",
|
674 |
+
"\u30de\u30a6\u30f3\u30c6\u30f3\u30d0\u30a4\u30af",
|
675 |
+
"\u5c71\u306e\u30c6\u30f3\u30c8",
|
676 |
+
"\u30de\u30a6\u30b9",
|
677 |
+
"\u30cd\u30ba\u30df\u6355\u308a",
|
678 |
+
"\u5f15\u3063\u8d8a\u3057\u30c8\u30e9\u30c3\u30af",
|
679 |
+
"\u9283\u53e3",
|
680 |
+
"\u30cd\u30a4\u30eb",
|
681 |
+
"\u30cd\u30c3\u30af\u30d6\u30ec\u30fc\u30b9",
|
682 |
+
"\u30cd\u30c3\u30af\u30ec\u30b9",
|
683 |
+
"\u4e73\u9996",
|
684 |
+
"\u30ce\u30fc\u30c8",
|
685 |
+
"\u30aa\u30d9\u30ea\u30b9\u30af",
|
686 |
+
"\u30aa\u30fc\u30dc\u30a8",
|
687 |
+
"\u30aa\u30ab\u30ea\u30ca",
|
688 |
+
"\u30aa\u30c9\u30e1\u30fc\u30bf\u30fc",
|
689 |
+
"\u30aa\u30a4\u30eb\u30d5\u30a3\u30eb\u30bf\u30fc",
|
690 |
+
"\u5668\u5b98",
|
691 |
+
"\u30aa\u30b7\u30ed\u30b9\u30b3\u30fc\u30d7",
|
692 |
+
"\u30aa\u30fc\u30d0\u30fc\u30b9\u30ab\u30fc\u30c8",
|
693 |
+
"\u725b\u8eca",
|
694 |
+
"\u9178\u7d20\u30de\u30b9\u30af",
|
695 |
+
"\u30d1\u30b1\u30c3\u30c8",
|
696 |
+
"\u30d1\u30c9\u30eb",
|
697 |
+
"\u30d1\u30c9\u30eb\u30db\u30a4\u30fc\u30eb",
|
698 |
+
"\u5357\u4eac\u9320",
|
699 |
+
"\u7d75\u7b46",
|
700 |
+
"\u30d1\u30b8\u30e3\u30de",
|
701 |
+
"\u5bae\u6bbf",
|
702 |
+
"\u30d1\u30f3\u30d1\u30a4\u30d7",
|
703 |
+
"\u30da\u30fc\u30d1\u30fc\u30bf\u30aa\u30eb",
|
704 |
+
"\u30d1\u30e9\u30b7\u30e5\u30fc\u30c8",
|
705 |
+
"\u5e73\u884c\u68d2",
|
706 |
+
"\u516c\u5712\u306e\u30d9\u30f3\u30c1",
|
707 |
+
"\u30d1\u30fc\u30ad\u30f3\u30b0\u30e1\u30fc\u30bf\u30fc",
|
708 |
+
"\u4e57\u7528\u8eca",
|
709 |
+
"\u30d1\u30c6\u30a3\u30aa",
|
710 |
+
"\u6709\u6599\u96fb\u8a71",
|
711 |
+
"\u53f0\u5ea7",
|
712 |
+
"\u7b46\u7bb1",
|
713 |
+
"\u925b\u7b46\u524a\u308a",
|
714 |
+
"\u9999\u6c34",
|
715 |
+
"\u30da\u30c8\u30ea\u76bf",
|
716 |
+
"\u30b3\u30d4\u30fc\u6a5f",
|
717 |
+
"\u9078\u3076",
|
718 |
+
"\u30b9\u30d1\u30a4\u30af\u4ed8\u304d\u9244\u304b\u3076\u3068",
|
719 |
+
"\u676d\u67f5",
|
720 |
+
"\u62fe\u3046",
|
721 |
+
"\u685f\u6a4b",
|
722 |
+
"\u8caf\u91d1\u7bb1",
|
723 |
+
"\u9320\u5264\u74f6",
|
724 |
+
"\u6795",
|
725 |
+
"\u30d4\u30f3\u30dd\u30f3\u7403",
|
726 |
+
"\u98a8\u8eca",
|
727 |
+
"\u6d77\u8cca",
|
728 |
+
"\u30d4\u30c3\u30c1\u30e3\u30fc",
|
729 |
+
"\u98db\u884c\u6a5f",
|
730 |
+
"\u30d7\u30e9\u30cd\u30bf\u30ea\u30a6\u30e0",
|
731 |
+
"\u30d3\u30cb\u30fc\u30eb\u888b",
|
732 |
+
"\u76bf\u7acb\u3066",
|
733 |
+
"\u30d7\u30e9\u30a6",
|
734 |
+
"\u30d7\u30e9\u30f3\u30b8\u30e3\u30fc",
|
735 |
+
"\u30dd\u30e9\u30ed\u30a4\u30c9\u30ab\u30e1\u30e9",
|
736 |
+
"\u30dd\u30fc\u30eb",
|
737 |
+
"\u8b66\u5bdf\u8eca",
|
738 |
+
"\u30dd\u30f3\u30c1\u30e7",
|
739 |
+
"\u30d3\u30ea\u30e4\u30fc\u30c9\u53f0",
|
740 |
+
"\u30dd\u30c3\u30d7\u30fb\u30dc\u30c8\u30eb",
|
741 |
+
"\u30dd\u30c3\u30c8",
|
742 |
+
"\u308d\u304f\u308d",
|
743 |
+
"\u30d1\u30ef\u30fc\u30c9\u30ea\u30eb",
|
744 |
+
"\u793c\u62dd\u7528\u6577\u7269",
|
745 |
+
"\u30d7\u30ea\u30f3\u30bf",
|
746 |
+
"\u5211\u52d9\u6240",
|
747 |
+
"\u767a\u5c04\u4f53",
|
748 |
+
"\u30d7\u30ed\u30b8\u30a7\u30af\u30bf\u30fc",
|
749 |
+
"\u30d1\u30c3\u30af",
|
750 |
+
"\u30b5\u30f3\u30c9\u30d0\u30c3\u30b0",
|
751 |
+
"\u8ca1\u5e03",
|
752 |
+
"\u30af\u30a4\u30eb",
|
753 |
+
"\u30ad\u30eb\u30c8",
|
754 |
+
"\u30ec\u30fc\u30b5\u30fc",
|
755 |
+
"\u30e9\u30b1\u30c3\u30c8",
|
756 |
+
"\u30e9\u30b8\u30a8\u30fc\u30bf\u30fc",
|
757 |
+
"\u7121\u7dda",
|
758 |
+
"\u96fb\u6ce2\u671b\u9060\u93e1",
|
759 |
+
"\u5929\u6c34\u6876",
|
760 |
+
"RV\u8eca",
|
761 |
+
"\u30ea\u30fc\u30eb",
|
762 |
+
"\u30ec\u30d5\u30ec\u30c3\u30af\u30b9\u30ab\u30e1\u30e9",
|
763 |
+
"\u51b7\u8535\u5eab",
|
764 |
+
"\u30ea\u30e2\u30b3\u30f3",
|
765 |
+
"\u30ec\u30b9\u30c8\u30e9\u30f3",
|
766 |
+
"\u30ea\u30dc\u30eb\u30d0\u30fc",
|
767 |
+
"\u30e9\u30a4\u30d5\u30eb",
|
768 |
+
"\u30ed\u30c3\u30ad\u30f3\u30b0\u30c1\u30a7\u30a2",
|
769 |
+
"\u713c\u8089\u6599\u7406\u5e97",
|
770 |
+
"\u6d88\u3057\u30b4\u30e0",
|
771 |
+
"\u30e9\u30b0\u30d3\u30fc\u30dc\u30fc\u30eb",
|
772 |
+
"\u30eb\u30fc\u30eb",
|
773 |
+
"\u30e9\u30f3\u30cb\u30f3\u30b0\u30b7\u30e5\u30fc\u30ba",
|
774 |
+
"\u5b89\u5168",
|
775 |
+
"\u5b89\u5168\u30d4\u30f3",
|
776 |
+
"\u5869\u306e\u5165\u308c\u7269",
|
777 |
+
"\u30b5\u30f3\u30c0\u30eb",
|
778 |
+
"\u30b5\u30ed\u30f3",
|
779 |
+
"\u30b5\u30c3\u30af\u30b9",
|
780 |
+
"\u9798",
|
781 |
+
"\u898f\u6a21",
|
782 |
+
"\u30b9\u30af\u30fc\u30eb\u30d0\u30b9",
|
783 |
+
"\u30b9\u30af\u30fc\u30ca\u30fc",
|
784 |
+
"\u30b9\u30b3\u30a2\u30dc\u30fc\u30c9",
|
785 |
+
"\u753b\u9762",
|
786 |
+
"\u30b9\u30af\u30ea\u30e5\u30fc",
|
787 |
+
"\u30c9\u30e9\u30a4\u30d0\u30fc",
|
788 |
+
"\u30b7\u30fc\u30c8\u30d9\u30eb\u30c8",
|
789 |
+
"\u30df\u30b7\u30f3",
|
790 |
+
"\u30b7\u30fc\u30eb\u30c9",
|
791 |
+
"\u9774\u5c4b",
|
792 |
+
"\u969c\u5b50",
|
793 |
+
"\u8cb7\u3044\u7269\u304b\u3054",
|
794 |
+
"\u30b7\u30e7\u30c3\u30d4\u30f3\u30b0\u30ab\u30fc\u30c8",
|
795 |
+
"\u30b7\u30e3\u30d9\u30eb",
|
796 |
+
"\u30b7\u30e3\u30ef\u30fc\u30ad\u30e3\u30c3\u30d7",
|
797 |
+
"\u30b7\u30e3\u30ef\u30fc\u30ab\u30fc\u30c6\u30f3",
|
798 |
+
"\u30b9\u30ad\u30fc",
|
799 |
+
"\u30b9\u30ad\u30fc\u30de\u30b9\u30af",
|
800 |
+
"\u5bdd\u888b",
|
801 |
+
"\u8a08\u7b97\u5c3a",
|
802 |
+
"\u5f15\u304d\u6238",
|
803 |
+
"\u30b9\u30ed\u30c3\u30c8",
|
804 |
+
"\u30b9\u30ce\u30fc\u30b1\u30eb",
|
805 |
+
"\u30b9\u30ce\u30fc\u30e2\u30fc\u30d3\u30eb",
|
806 |
+
"\u9664\u96ea\u6a5f",
|
807 |
+
"\u30bd\u30fc\u30d7\u30c7\u30a3\u30b9\u30da\u30f3\u30b5\u30fc",
|
808 |
+
"\u30b5\u30c3\u30ab\u30fc\u30dc\u30fc\u30eb",
|
809 |
+
"\u9774\u4e0b",
|
810 |
+
"\u592a\u967d\u306e\u76bf",
|
811 |
+
"\u30bd\u30f3\u30d6\u30ec\u30ed",
|
812 |
+
"\u30b9\u30fc\u30d7\u76bf",
|
813 |
+
"\u30b9\u30da\u30fc\u30b9\u30ad\u30fc",
|
814 |
+
"\u30b9\u30da\u30fc\u30b9\u30d2\u30fc\u30bf\u30fc",
|
815 |
+
"\u30b9\u30da\u30fc\u30b9\u30b7\u30e3\u30c8\u30eb",
|
816 |
+
"\u3078\u3089",
|
817 |
+
"\u30b9\u30d4\u30fc\u30c9\u30dc\u30fc\u30c8",
|
818 |
+
"\u30af\u30e2\u306e\u5de3",
|
819 |
+
"\u30b9\u30d4\u30f3\u30c9\u30eb",
|
820 |
+
"\u30b9\u30dd\u30fc\u30c4\u30ab\u30fc",
|
821 |
+
"\u30b9\u30dd\u30c3\u30c8\u30e9\u30a4\u30c8",
|
822 |
+
"\u30b9\u30c6\u30fc\u30b8",
|
823 |
+
"\u84b8\u6c17\u6a5f\u95a2\u8eca",
|
824 |
+
"\u92fc\u30a2\u30fc\u30c1\u6a4b",
|
825 |
+
"\u30b9\u30c1\u30fc\u30eb\u30c9\u30e9\u30e0",
|
826 |
+
"\u8074\u8a3a\u5668",
|
827 |
+
"\u30b9\u30c8\u30fc\u30eb",
|
828 |
+
"\u77f3\u57a3",
|
829 |
+
"\u30b9\u30c8\u30c3\u30d7\u30a6\u30a9\u30c3\u30c1",
|
830 |
+
"\u30ec\u30f3\u30b8",
|
831 |
+
"\u30b9\u30c8\u30ec\u30fc\u30ca\u30fc",
|
832 |
+
"\u8def\u9762\u96fb\u8eca",
|
833 |
+
"\u30b9\u30c8\u30ec\u30c3\u30c1\u30e3\u30fc",
|
834 |
+
"\u30b9\u30bf\u30b8\u30aa\u30bd\u30d5\u30a1",
|
835 |
+
"\u4ecf\u820e\u5229\u5854",
|
836 |
+
"\u6f5c\u6c34\u8266",
|
837 |
+
"\u30b9\u30fc\u30c4",
|
838 |
+
"\u65e5\u6642\u8a08",
|
839 |
+
"\u30b5\u30f3\u30b0\u30e9\u30b9",
|
840 |
+
"\u30b5\u30f3\u30b0\u30e9\u30b9",
|
841 |
+
"\u65e5\u713c\u3051\u6b62\u3081\u5264",
|
842 |
+
"\u3064\u308a\u6a4b",
|
843 |
+
"\u7dbf\u68d2",
|
844 |
+
"\u30c8\u30ec\u30fc\u30ca\u30fc",
|
845 |
+
"\u6d77\u30d1\u30f3",
|
846 |
+
"\u30b9\u30a4\u30f3\u30b0",
|
847 |
+
"\u30b9\u30a4\u30c3\u30c1",
|
848 |
+
"\u6ce8\u5c04\u5668",
|
849 |
+
"\u96fb\u6c17\u30b9\u30bf\u30f3\u30c9",
|
850 |
+
"\u30bf\u30f3\u30af",
|
851 |
+
"\u30c6\u30fc\u30d7\u30d7\u30ec\u30fc\u30e4\u30fc",
|
852 |
+
"\u30c6\u30a3\u30fc\u30dd\u30c3\u30c8",
|
853 |
+
"\u30c6\u30c7\u30a3",
|
854 |
+
"\u30c6\u30ec\u30d3",
|
855 |
+
"\u30c6\u30cb\u30b9\u30dc\u30fc\u30eb",
|
856 |
+
"\u30b5\u30c3\u30c1",
|
857 |
+
"\u5287\u5834\u306e\u30ab\u30fc\u30c6\u30f3",
|
858 |
+
"\u6307\u306c\u304d",
|
859 |
+
"\u8131\u7a40\u6a5f",
|
860 |
+
"\u738b\u4f4d",
|
861 |
+
"\u74e6\u5c4b\u6839",
|
862 |
+
"\u30c8\u30fc\u30b9\u30bf\u30fc",
|
863 |
+
"\u30bf\u30d0\u30b3\u5c4b",
|
864 |
+
"\u4fbf\u5ea7",
|
865 |
+
"\u30c8\u30fc\u30c1",
|
866 |
+
"\u30c8\u30fc\u30c6\u30e0\u30dd\u30fc\u30eb",
|
867 |
+
"\u30ec\u30c3\u30ab\u30fc\u8eca",
|
868 |
+
"\u73a9\u5177\u5c4b",
|
869 |
+
"\u30c8\u30e9\u30af\u30bf\u30fc",
|
870 |
+
"\u30c8\u30ec\u30fc\u30e9\u30fc\u30c8\u30e9\u30c3\u30af",
|
871 |
+
"\u30c8\u30ec\u30a4",
|
872 |
+
"\u30c8\u30ec\u30f3\u30c1\u30b3\u30fc\u30c8",
|
873 |
+
"\u4e09\u8f2a\u8eca",
|
874 |
+
"\u4e09\u80f4\u8239",
|
875 |
+
"\u4e09\u811a",
|
876 |
+
"\u51f1\u65cb\u9580",
|
877 |
+
"\u30c8\u30ed\u30ea\u30fc\u30d0\u30b9",
|
878 |
+
"\u30c8\u30ed\u30f3\u30dc\u30fc\u30f3",
|
879 |
+
"\u30d0\u30b9\u30bf\u30d6",
|
880 |
+
"\u56de\u8ee2\u30c9\u30a2",
|
881 |
+
"\u30bf\u30a4\u30d7\u30e9\u30a4\u30bf\u30fc\u306e\u30ad\u30fc\u30dc\u30fc\u30c9",
|
882 |
+
"\u5098",
|
883 |
+
"\u4e00\u8f2a\u8eca",
|
884 |
+
"\u76f4\u7acb",
|
885 |
+
"\u771f\u7a7a",
|
886 |
+
"\u82b1\u74f6",
|
887 |
+
"\u30dc\u30fc\u30eb\u30c8",
|
888 |
+
"\u30d9\u30eb\u30d9\u30c3\u30c8",
|
889 |
+
"\u81ea\u52d5\u8ca9\u58f2\u6a5f",
|
890 |
+
"\u796d\u670d",
|
891 |
+
"\u9ad8\u67b6\u6a4b",
|
892 |
+
"\u30d0\u30a4\u30aa\u30ea\u30f3",
|
893 |
+
"\u30d0\u30ec\u30fc\u30dc\u30fc\u30eb",
|
894 |
+
"\u30ef\u30c3\u30d5\u30eb\u713c\u304d\u578b",
|
895 |
+
"\u58c1\u6642\u8a08",
|
896 |
+
"\u8ca1\u5e03",
|
897 |
+
"\u30ef\u30fc\u30c9\u30ed\u30fc\u30d6",
|
898 |
+
"\u6226\u95d8\u6a5f",
|
899 |
+
"\u6d17\u9762\u5668",
|
900 |
+
"\u30ef\u30c3\u30b7\u30e3\u30fc",
|
901 |
+
"\u6c34\u7b52",
|
902 |
+
"\u6c34\u5dee\u3057",
|
903 |
+
"\u7d66\u6c34\u5854",
|
904 |
+
"\u30a6\u30a4\u30b9\u30ad\u30fc\u30b8\u30e3\u30b0",
|
905 |
+
"\u30db\u30a4\u30c3\u30b9\u30eb",
|
906 |
+
"\u304b\u3064\u3089",
|
907 |
+
"\u7a93\u7db2\u6238",
|
908 |
+
"\u30d6\u30e9\u30a4\u30f3\u30c9",
|
909 |
+
"\u30a6\u30a3\u30f3\u30b6\u30fc\u30cd\u30af\u30bf\u30a4",
|
910 |
+
"\u30ef\u30a4\u30f3\u30dc\u30c8\u30eb",
|
911 |
+
"\u7ffc",
|
912 |
+
"\u4e2d\u83ef\u934b",
|
913 |
+
"\u6728\u88fd\u30b9\u30d7\u30fc\u30f3",
|
914 |
+
"\u30a6\u30fc\u30eb",
|
915 |
+
"\u30ef\u30fc\u30e0\u30d5\u30a7\u30f3\u30b9",
|
916 |
+
"\u96e3\u7834\u8239",
|
917 |
+
"\u30e8\u30fc\u30eb",
|
918 |
+
"\u30d1\u30aa",
|
919 |
+
"\u30b5\u30a4\u30c8",
|
920 |
+
"\u30b3\u30df\u30c3\u30af\u30d6\u30c3\u30af",
|
921 |
+
"\u30af\u30ed\u30b9\u30ef\u30fc\u30c9\u30d1\u30ba\u30eb",
|
922 |
+
"\u9053\u8def\u6a19\u8b58",
|
923 |
+
"\u4ea4\u901a\u4fe1\u53f7\u706f",
|
924 |
+
"\u30d6\u30c3\u30af\u30ab\u30d0\u30fc",
|
925 |
+
"\u30e1\u30cb\u30e5\u30fc",
|
926 |
+
"\u30d7\u30ec\u30fc\u30c8",
|
927 |
+
"\u30b0\u30a2\u30ab\u30e2\u30fc\u30ec",
|
928 |
+
"\u30b3\u30f3\u30bd\u30e1",
|
929 |
+
"\u30db\u30c3\u30c8\u30dd\u30c3\u30c8",
|
930 |
+
"\u30d1\u30d5\u30a7",
|
931 |
+
"\u30a2\u30a4\u30b9\u30af\u30ea\u30fc\u30e0",
|
932 |
+
"\u30a2\u30a4\u30b9\u30ad\u30e3\u30f3\u30c7\u30a3\u30fc",
|
933 |
+
"\u30d5\u30e9\u30f3\u30b9\u30d1\u30f3",
|
934 |
+
"\u30d9\u30fc\u30b0\u30eb",
|
935 |
+
"\u30d7\u30ec\u30c3\u30c4\u30a7\u30eb",
|
936 |
+
"\u30c1\u30fc\u30ba\u30d0\u30fc\u30ac\u30fc",
|
937 |
+
"\u30db\u30c3\u30c8\u30c9\u30c3\u30b0",
|
938 |
+
"\u30de\u30c3\u30b7\u30e5\u30dd\u30c6\u30c8",
|
939 |
+
"\u30ad\u30e3\u30d9\u30c4",
|
940 |
+
"\u30d6\u30ed\u30c3\u30b3\u30ea\u30fc",
|
941 |
+
"\u30ab\u30ea\u30d5\u30e9\u30ef\u30fc",
|
942 |
+
"\u30ba\u30c3\u30ad\u30fc\u30cb",
|
943 |
+
"\u305d\u3046\u3081\u3093\u304b\u307c\u3061\u3083",
|
944 |
+
"\u30c9\u30f3\u30b0\u30ea\u304b\u307c\u3061\u3083",
|
945 |
+
"\u30ab\u30dc\u30c1\u30e3",
|
946 |
+
"\u30ad\u30e5\u30a6\u30ea",
|
947 |
+
"\u30a2\u30fc\u30c6\u30a3\u30c1\u30e7\u30fc\u30af",
|
948 |
+
"\u30d4\u30fc\u30de\u30f3",
|
949 |
+
"\u30ab\u30eb\u30c9\u30f3",
|
950 |
+
"\u30ad\u30ce\u30b3",
|
951 |
+
"\u30ea\u30f3\u30b4",
|
952 |
+
"\u30a4\u30c1\u30b4",
|
953 |
+
"\u30aa\u30ec\u30f3\u30b8",
|
954 |
+
"\u30ec\u30e2\u30f3",
|
955 |
+
"\u30a4\u30c1\u30b8\u30af",
|
956 |
+
"\u30d1\u30a4\u30ca\u30c3\u30d7\u30eb",
|
957 |
+
"\u30d0\u30ca\u30ca",
|
958 |
+
"\u30d1\u30e9\u30df\u30c4",
|
959 |
+
"\u30ab\u30b9\u30bf\u30fc\u30c9\u30a2\u30c3\u30d7\u30eb",
|
960 |
+
"\u30b6\u30af\u30ed",
|
961 |
+
"\u5e72\u3057\u8349",
|
962 |
+
"\u30ab\u30eb\u30dc\u30ca\u30fc\u30e9",
|
963 |
+
"\u30c1\u30e7\u30b3\u30ec\u30fc\u30c8\u30bd\u30fc\u30b9",
|
964 |
+
"\u30d1\u30f3\u751f\u5730",
|
965 |
+
"\u30df\u30fc\u30c8\u30ed\u30fc\u30d5",
|
966 |
+
"\u30d4\u30b6",
|
967 |
+
"\u30dd\u30c3\u30c8\u30d1\u30a4",
|
968 |
+
"\u30d6\u30ea\u30c8\u30fc",
|
969 |
+
"\u8d64\u30ef\u30a4\u30f3",
|
970 |
+
"\u30a8\u30b9\u30d7\u30ec\u30c3\u30bd",
|
971 |
+
"\u30ab\u30c3\u30d7",
|
972 |
+
"\u30a8\u30c3\u30b0\u30ce\u30c3\u30b0",
|
973 |
+
"\u30a2\u30eb\u30d7\u30b9",
|
974 |
+
"\u30d0\u30d6\u30eb",
|
975 |
+
"\u5d16",
|
976 |
+
"\u30b5\u30f3\u30b4\u7901",
|
977 |
+
"\u9593\u6b20\u6cc9",
|
978 |
+
"\u6e56\u7554",
|
979 |
+
"\u5cac",
|
980 |
+
"\u7802\u5dde",
|
981 |
+
"\u6d77\u5cb8",
|
982 |
+
"\u8c37",
|
983 |
+
"\u706b\u5c71",
|
984 |
+
"\u91ce\u7403\u9078\u624b",
|
985 |
+
"\u65b0\u90ce",
|
986 |
+
"\u30b9\u30ad\u30e5\u30fc\u30d0\u30c0\u30a4\u30d0\u30fc",
|
987 |
+
"\u83dc\u7a2e",
|
988 |
+
"\u30c7\u30a4\u30b8\u30fc",
|
989 |
+
"\u862d",
|
990 |
+
"\u30c8\u30a6\u30e2\u30ed\u30b3\u30b7",
|
991 |
+
"\u30c9\u30f3\u30b0\u30ea",
|
992 |
+
"\u30d2\u30c3\u30d7",
|
993 |
+
"\u30c8\u30c1\u30ce\u30ad",
|
994 |
+
"\u30b5\u30f3\u30b4\u83cc",
|
995 |
+
"\u30cf\u30e9\u30bf\u30b1",
|
996 |
+
"\u30b7\u30e3\u30b0\u30de\u30a2\u30df\u30ac\u30b5\u30bf\u30b1",
|
997 |
+
"\u30b9\u30c3\u30dd\u30f3\u30bf\u30b1",
|
998 |
+
"\u30cf\u30e9\u30bf\u30b1",
|
999 |
+
"\u821e\u8338",
|
1000 |
+
"\u304d\u306e\u3053",
|
1001 |
+
"\u8033",
|
1002 |
+
"\u30c8\u30a4\u30ec\u30c3\u30c8\u30da\u30fc\u30d1\u30fc"
|
1003 |
+
]
|
1004 |
+
}
|
CLIP_benchmark/clip_benchmark/datasets/jp_zeroshot_classification_templates.json
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"imagenet1k": [
|
3 |
+
"{c}\u306e\u60aa\u3044\u5199\u771f",
|
4 |
+
"\u591a\u304f\u306e{c}\u306e\u5199\u771f",
|
5 |
+
"{c}\u306e\u5f6b\u523b",
|
6 |
+
"\u898b\u3065\u3089\u3044{c}\u306e\u5199\u771f",
|
7 |
+
"{c}\u306e\u4f4e\u89e3\u50cf\u5ea6\u5199\u771f",
|
8 |
+
"{c}\u306e\u30ec\u30f3\u30c0\u30ea\u30f3\u30b0",
|
9 |
+
"{c}\u306e\u843d\u66f8\u304d",
|
10 |
+
"{c}\u306e\u30c8\u30ea\u30df\u30f3\u30b0\u5199\u771f",
|
11 |
+
"{c}\u306e\u30bf\u30c8\u30a5\u30fc",
|
12 |
+
"\u523a\u7e4d\u3055\u308c\u305f{c}",
|
13 |
+
"{c}\u306e\u660e\u308b\u3044\u5199\u771f",
|
14 |
+
"\u304d\u308c\u3044\u306a{c}\u306e\u5199\u771f",
|
15 |
+
"\u6c5a\u308c\u305f{c}\u306e\u5199\u771f",
|
16 |
+
"{c}\u306e\u6697\u3044\u5199\u771f",
|
17 |
+
"{c}\u306e\u7d75",
|
18 |
+
"\u79c1\u306e{c}\u306e\u5199\u771f",
|
19 |
+
"\u30d7\u30e9\u30b9\u30c1\u30c3\u30af\u88fd\u306e{c}",
|
20 |
+
"\u304b\u3063\u3053\u3044\u3044{c}\u306e\u5199\u771f",
|
21 |
+
"{c}\u306e\u30af\u30ed\u30fc\u30ba\u30a2\u30c3\u30d7\u5199\u771f",
|
22 |
+
"{c}\u306e\u767d\u9ed2\u5199\u771f",
|
23 |
+
"{c}\u306e\u30d4\u30af\u30bb\u30eb\u5199\u771f",
|
24 |
+
"jpeg\u3067\u52a0\u5de5\u3057\u305f{c}\u306e\u5199\u771f",
|
25 |
+
"{c}\u306e\u307c\u3084\u3051\u305f\u5199\u771f",
|
26 |
+
"{c}\u306e\u5199\u771f",
|
27 |
+
"{c}\u306e\u826f\u3044\u5199\u771f",
|
28 |
+
"\u30b2\u30fc\u30e0\u306b\u767b\u5834\u3059\u308b{c}",
|
29 |
+
"\u6298\u308a\u7d19\u3067\u4f5c\u3063\u305f{c}",
|
30 |
+
"{c}\u306e\u30b9\u30b1\u30c3\u30c1",
|
31 |
+
"\u304a\u3082\u3061\u3083\u306e{c}",
|
32 |
+
"{c}\u306e\u6f14\u51fa",
|
33 |
+
"\u5927\u304d\u306a{c}\u306e\u5199\u771f",
|
34 |
+
"\u7d20\u6575\u306a{c}\u306e\u5199\u771f",
|
35 |
+
"\u5947\u5999\u306a{c}\u306e\u5199\u771f",
|
36 |
+
"\u6f2b\u753b\u306e{c}",
|
37 |
+
"{c}\u306e\u82b8\u8853",
|
38 |
+
"{c}\u306e\u306c\u3044\u3050\u308b\u307f",
|
39 |
+
"\u5c0f\u3055\u306a{c}\u306e\u5199\u771f"
|
40 |
+
]
|
41 |
+
}
|
CLIP_benchmark/clip_benchmark/datasets/kitti.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019 Google LLC.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Implements Kitti data class."""
|
17 |
+
|
18 |
+
from __future__ import absolute_import
|
19 |
+
from __future__ import division
|
20 |
+
from __future__ import print_function
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import task_adaptation.data.base as base
|
24 |
+
from task_adaptation.registry import Registry
|
25 |
+
import tensorflow.compat.v1 as tf
|
26 |
+
import tensorflow_datasets as tfds
|
27 |
+
|
28 |
+
|
29 |
+
def _count_all_pp(x):
|
30 |
+
"""Count all objects."""
|
31 |
+
# Count distribution (thresholded at 15):
|
32 |
+
|
33 |
+
label = tf.math.minimum(tf.size(x["objects"]["type"]) - 1, 8)
|
34 |
+
return {"image": x["image"], "label": label}
|
35 |
+
|
36 |
+
|
37 |
+
def _count_vehicles_pp(x):
|
38 |
+
"""Counting vehicles."""
|
39 |
+
# Label distribution:
|
40 |
+
|
41 |
+
vehicles = tf.where(x["objects"]["type"] < 3) # Car, Van, Truck.
|
42 |
+
# Cap at 3.
|
43 |
+
label = tf.math.minimum(tf.size(vehicles), 3)
|
44 |
+
return {"image": x["image"], "label": label}
|
45 |
+
|
46 |
+
|
47 |
+
def _count_left_pp(x):
|
48 |
+
"""Count objects on the left hand side of the camera."""
|
49 |
+
# Count distribution (thresholded at 15):
|
50 |
+
|
51 |
+
# Location feature contains (x, y, z) in meters w.r.t. the camera.
|
52 |
+
objects_on_left = tf.where(x["objects"]["location"][:, 0] < 0)
|
53 |
+
label = tf.math.minimum(tf.size(objects_on_left), 8)
|
54 |
+
return {"image": x["image"], "label": label}
|
55 |
+
|
56 |
+
|
57 |
+
def _count_far_pp(x):
|
58 |
+
"""Counts objects far from the camera."""
|
59 |
+
# Threshold removes ~half of the objects.
|
60 |
+
# Count distribution (thresholded at 15):
|
61 |
+
|
62 |
+
# Location feature contains (x, y, z) in meters w.r.t. the camera.
|
63 |
+
distant_objects = tf.where(x["objects"]["location"][:, 2] >= 25)
|
64 |
+
label = tf.math.minimum(tf.size(distant_objects), 8)
|
65 |
+
return {"image": x["image"], "label": label}
|
66 |
+
|
67 |
+
|
68 |
+
def _count_near_pp(x):
|
69 |
+
"""Counts objects close to the camera."""
|
70 |
+
# Threshold removes ~half of the objects.
|
71 |
+
# Count distribution:
|
72 |
+
|
73 |
+
# Location feature contains (x, y, z) in meters w.r.t. the camera.
|
74 |
+
close_objects = tf.where(x["objects"]["location"][:, 2] < 25)
|
75 |
+
label = tf.math.minimum(tf.size(close_objects), 8)
|
76 |
+
return {"image": x["image"], "label": label}
|
77 |
+
|
78 |
+
|
79 |
+
def _closest_object_distance_pp(x):
|
80 |
+
"""Predict the distance to the closest object."""
|
81 |
+
# Label distribution:
|
82 |
+
|
83 |
+
# Location feature contains (x, y, z) in meters w.r.t. the camera.
|
84 |
+
dist = tf.reduce_min(x["objects"]["location"][:, 2])
|
85 |
+
thrs = np.array([-100, 5.6, 8.4, 13.4, 23.4])
|
86 |
+
label = tf.reduce_max(tf.where((thrs - dist) < 0))
|
87 |
+
return {"image": x["image"], "label": label}
|
88 |
+
|
89 |
+
|
90 |
+
def _closest_vehicle_distance_pp(x):
|
91 |
+
"""Predict the distance to the closest vehicle."""
|
92 |
+
# Label distribution:
|
93 |
+
|
94 |
+
# Location feature contains (x, y, z) in meters w.r.t. the camera.
|
95 |
+
vehicles = tf.where(x["objects"]["type"] < 3) # Car, Van, Truck.
|
96 |
+
vehicle_z = tf.gather(params=x["objects"]["location"][:, 2], indices=vehicles)
|
97 |
+
vehicle_z = tf.concat([vehicle_z, tf.constant([[1000.0]])], axis=0)
|
98 |
+
dist = tf.reduce_min(vehicle_z)
|
99 |
+
# Results in a uniform distribution over three distances, plus one class for
|
100 |
+
# "no vehicle".
|
101 |
+
thrs = np.array([-100.0, 8.0, 20.0, 999.0])
|
102 |
+
label = tf.reduce_max(tf.where((thrs - dist) < 0))
|
103 |
+
return {"image": x["image"], "label": label}
|
104 |
+
|
105 |
+
|
106 |
+
def _closest_object_x_location_pp(x):
|
107 |
+
"""Predict the absolute x position of the closest object."""
|
108 |
+
# Label distribution:
|
109 |
+
|
110 |
+
# Location feature contains (x, y, z) in meters w.r.t. the camera.
|
111 |
+
idx = tf.math.argmin(x["objects"]["location"][:, 2])
|
112 |
+
xloc = x["objects"]["location"][idx, 0]
|
113 |
+
thrs = np.array([-100, -6.4, -3.5, 0.0, 3.3, 23.9])
|
114 |
+
label = tf.reduce_max(tf.where((thrs - xloc) < 0))
|
115 |
+
return {"image": x["image"], "label": label}
|
116 |
+
|
117 |
+
|
118 |
+
_TASK_DICT = {
|
119 |
+
"count_all": {
|
120 |
+
"preprocess_fn": _count_all_pp,
|
121 |
+
"num_classes": 16,
|
122 |
+
},
|
123 |
+
"count_left": {
|
124 |
+
"preprocess_fn": _count_left_pp,
|
125 |
+
"num_classes": 16,
|
126 |
+
},
|
127 |
+
"count_far": {
|
128 |
+
"preprocess_fn": _count_far_pp,
|
129 |
+
"num_classes": 16,
|
130 |
+
},
|
131 |
+
"count_near": {
|
132 |
+
"preprocess_fn": _count_near_pp,
|
133 |
+
"num_classes": 16,
|
134 |
+
},
|
135 |
+
"closest_object_distance": {
|
136 |
+
"preprocess_fn": _closest_object_distance_pp,
|
137 |
+
"num_classes": 5,
|
138 |
+
},
|
139 |
+
"closest_object_x_location": {
|
140 |
+
"preprocess_fn": _closest_object_x_location_pp,
|
141 |
+
"num_classes": 5,
|
142 |
+
},
|
143 |
+
"count_vehicles": {
|
144 |
+
"preprocess_fn": _count_vehicles_pp,
|
145 |
+
"num_classes": 4,
|
146 |
+
},
|
147 |
+
"closest_vehicle_distance": {
|
148 |
+
"preprocess_fn": _closest_vehicle_distance_pp,
|
149 |
+
"num_classes": 4,
|
150 |
+
},
|
151 |
+
}
|
152 |
+
|
153 |
+
|
154 |
+
@Registry.register("data.kitti", "class")
|
155 |
+
class KittiData(base.ImageTfdsData):
|
156 |
+
"""Provides Kitti dataset.
|
157 |
+
|
158 |
+
Six tasks are supported:
|
159 |
+
1. Count the number of objects.
|
160 |
+
2. Count the number of objects on the left hand side of the camera.
|
161 |
+
3. Count the number of objects in the foreground.
|
162 |
+
4. Count the number of objects in the background.
|
163 |
+
5. Predict the distance of the closest object.
|
164 |
+
6. Predict the x-location (w.r.t. the camera) of the closest object.
|
165 |
+
"""
|
166 |
+
|
167 |
+
def __init__(self, task, data_dir=None):
|
168 |
+
|
169 |
+
if task not in _TASK_DICT:
|
170 |
+
raise ValueError("Unknown task: %s" % task)
|
171 |
+
|
172 |
+
dataset_builder = tfds.builder("kitti:3.3.0", data_dir=data_dir)
|
173 |
+
dataset_builder.download_and_prepare()
|
174 |
+
|
175 |
+
tfds_splits = {
|
176 |
+
"train": "train",
|
177 |
+
"val": "validation",
|
178 |
+
"trainval": "train+validation",
|
179 |
+
"test": "test",
|
180 |
+
"train800": "train[:800]",
|
181 |
+
"val200": "validation[:200]",
|
182 |
+
"train800val200": "train[:800]+validation[:200]",
|
183 |
+
}
|
184 |
+
|
185 |
+
# Example counts are retrieved from the tensorflow dataset info.
|
186 |
+
train_count = dataset_builder.info.splits[tfds.Split.TRAIN].num_examples
|
187 |
+
val_count = dataset_builder.info.splits[tfds.Split.VALIDATION].num_examples
|
188 |
+
test_count = dataset_builder.info.splits[tfds.Split.TEST].num_examples
|
189 |
+
# Creates a dict with example counts for each split.
|
190 |
+
num_samples_splits = {
|
191 |
+
"train": train_count,
|
192 |
+
"val": val_count,
|
193 |
+
"trainval": train_count + val_count,
|
194 |
+
"test": test_count,
|
195 |
+
"train800": 800,
|
196 |
+
"val200": 200,
|
197 |
+
"train800val200": 1000,
|
198 |
+
}
|
199 |
+
|
200 |
+
task = _TASK_DICT[task]
|
201 |
+
base_preprocess_fn = task["preprocess_fn"]
|
202 |
+
super(KittiData, self).__init__(
|
203 |
+
dataset_builder=dataset_builder,
|
204 |
+
tfds_splits=tfds_splits,
|
205 |
+
num_samples_splits=num_samples_splits,
|
206 |
+
num_preprocessing_threads=400,
|
207 |
+
shuffle_buffer_size=10000,
|
208 |
+
base_preprocess_fn=base_preprocess_fn,
|
209 |
+
num_classes=task["num_classes"])
|
CLIP_benchmark/clip_benchmark/datasets/multilingual_mscoco.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from subprocess import call
|
2 |
+
import os, json
|
3 |
+
|
4 |
+
from torchvision.datasets import VisionDataset
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
|
8 |
+
GITHUB_MAIN_ORIGINAL_ANNOTATION_PATH = 'https://github.com/mehdidc/retrieval_annotations/releases/download/1.0.0/coco_{}_karpathy.json'
|
9 |
+
GITHUB_MAIN_PATH = 'https://raw.githubusercontent.com/adobe-research/Cross-lingual-Test-Dataset-XTD10/main/XTD10/'
|
10 |
+
SUPPORTED_LANGUAGES = ['es', 'it', 'ko', 'pl', 'ru', 'tr', 'zh', 'en']
|
11 |
+
|
12 |
+
IMAGE_INDEX_FILE = 'mscoco-multilingual_index.json'
|
13 |
+
IMAGE_INDEX_FILE_DOWNLOAD_NAME = 'test_image_names.txt'
|
14 |
+
|
15 |
+
CAPTIONS_FILE_DOWNLOAD_NAME = 'test_1kcaptions_{}.txt'
|
16 |
+
CAPTIONS_FILE_NAME = 'multilingual_mscoco_captions-{}.json'
|
17 |
+
|
18 |
+
ORIGINAL_ANNOTATION_FILE_NAME = 'coco_{}_karpathy.json'
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
class Multilingual_MSCOCO(VisionDataset):
|
23 |
+
|
24 |
+
def __init__(self, root, ann_file, transform=None, target_transform=None):
|
25 |
+
super().__init__(root, transform=transform, target_transform=target_transform)
|
26 |
+
self.ann_file = os.path.expanduser(ann_file)
|
27 |
+
with open(ann_file, 'r') as fp:
|
28 |
+
data = json.load(fp)
|
29 |
+
|
30 |
+
self.data = [(img_path, txt) for img_path, txt in zip(data['image_paths'], data['annotations'])]
|
31 |
+
|
32 |
+
def __getitem__(self, index):
|
33 |
+
img, captions = self.data[index]
|
34 |
+
|
35 |
+
# Image
|
36 |
+
img = Image.open(os.path.join(self.root, img)).convert("RGB")
|
37 |
+
if self.transform is not None:
|
38 |
+
img = self.transform(img)
|
39 |
+
|
40 |
+
# Captions
|
41 |
+
target = [captions, ]
|
42 |
+
if self.target_transform is not None:
|
43 |
+
target = self.target_transform(target)
|
44 |
+
|
45 |
+
return img, target
|
46 |
+
|
47 |
+
|
48 |
+
def __len__(self) -> int:
|
49 |
+
return len(self.data)
|
50 |
+
|
51 |
+
|
52 |
+
def _get_downloadable_file(filename, download_url, is_json=True):
|
53 |
+
if (os.path.exists(filename) == False):
|
54 |
+
print("Downloading", download_url)
|
55 |
+
call("wget {} -O {}".format(download_url, filename), shell=True)
|
56 |
+
with open(filename, 'r') as fp:
|
57 |
+
if (is_json):
|
58 |
+
return json.load(fp)
|
59 |
+
return [line.strip() for line in fp.readlines()]
|
60 |
+
|
61 |
+
|
62 |
+
def create_annotation_file(root, lang_code):
|
63 |
+
print("Downloading multilingual_ms_coco index file")
|
64 |
+
download_path = os.path.join(GITHUB_MAIN_PATH, IMAGE_INDEX_FILE_DOWNLOAD_NAME)
|
65 |
+
target_images = _get_downloadable_file("multilingual_coco_images.txt", download_path, False)
|
66 |
+
|
67 |
+
print("Downloading multilingual_ms_coco captions:", lang_code)
|
68 |
+
download_path = os.path.join(GITHUB_MAIN_PATH, CAPTIONS_FILE_DOWNLOAD_NAME.format(lang_code))
|
69 |
+
target_captions = _get_downloadable_file('raw_multilingual_coco_captions_{}.txt'.format(lang_code), download_path, False)
|
70 |
+
|
71 |
+
number_of_missing_images = 0
|
72 |
+
valid_images, valid_annotations, valid_indicies = [], [], []
|
73 |
+
for i, (img, txt) in enumerate(zip(target_images, target_captions)):
|
74 |
+
# Create a new file name that includes the root split
|
75 |
+
root_split = 'val2014' if 'val' in img else 'train2014'
|
76 |
+
filename_with_root_split = "{}/{}".format(root_split, img)
|
77 |
+
|
78 |
+
if (os.path.exists(filename_with_root_split)):
|
79 |
+
print("Missing image file", img)
|
80 |
+
number_of_missing_images += 1
|
81 |
+
continue
|
82 |
+
|
83 |
+
valid_images.append(filename_with_root_split)
|
84 |
+
valid_annotations.append(txt)
|
85 |
+
valid_indicies.append(i)
|
86 |
+
|
87 |
+
if (number_of_missing_images > 0):
|
88 |
+
print("*** WARNING *** missing {} files.".format(number_of_missing_images))
|
89 |
+
|
90 |
+
with open(os.path.join(root, CAPTIONS_FILE_NAME.format(lang_code)), 'w') as fp:
|
91 |
+
json.dump({'image_paths': valid_images, 'annotations': valid_annotations, 'indicies': valid_indicies}, fp)
|
CLIP_benchmark/clip_benchmark/datasets/nllb_dist13b_prompts.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
CLIP_benchmark/clip_benchmark/datasets/objectnet.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Code adapted from https://github.com/mlfoundations/wise-ft/blob/master/src/datasets/objectnet.py
|
3 |
+
Thanks to the authors of wise-ft
|
4 |
+
"""
|
5 |
+
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
from pathlib import Path
|
9 |
+
import PIL
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from torchvision import datasets
|
15 |
+
from torchvision.transforms import Compose
|
16 |
+
|
17 |
+
from pathlib import Path
|
18 |
+
|
19 |
+
def get_metadata(folder):
|
20 |
+
metadata = Path(folder)
|
21 |
+
|
22 |
+
with open(metadata / 'folder_to_objectnet_label.json', 'r') as f:
|
23 |
+
folder_map = json.load(f)
|
24 |
+
folder_map = {v: k for k, v in folder_map.items()}
|
25 |
+
with open(metadata / 'objectnet_to_imagenet_1k.json', 'r') as f:
|
26 |
+
objectnet_map = json.load(f)
|
27 |
+
|
28 |
+
with open(metadata / 'pytorch_to_imagenet_2012_id.json', 'r') as f:
|
29 |
+
pytorch_map = json.load(f)
|
30 |
+
pytorch_map = {v: k for k, v in pytorch_map.items()}
|
31 |
+
|
32 |
+
with open(metadata / 'imagenet_to_label_2012_v2', 'r') as f:
|
33 |
+
imagenet_map = {v.strip(): str(pytorch_map[i]) for i, v in enumerate(f)}
|
34 |
+
|
35 |
+
folder_to_ids, class_sublist = {}, []
|
36 |
+
classnames = []
|
37 |
+
for objectnet_name, imagenet_names in objectnet_map.items():
|
38 |
+
imagenet_names = imagenet_names.split('; ')
|
39 |
+
imagenet_ids = [int(imagenet_map[imagenet_name]) for imagenet_name in imagenet_names]
|
40 |
+
class_sublist.extend(imagenet_ids)
|
41 |
+
folder_to_ids[folder_map[objectnet_name]] = imagenet_ids
|
42 |
+
|
43 |
+
class_sublist = sorted(class_sublist)
|
44 |
+
class_sublist_mask = [(i in class_sublist) for i in range(1000)]
|
45 |
+
classname_map = {v: k for k, v in folder_map.items()}
|
46 |
+
return class_sublist, class_sublist_mask, folder_to_ids, classname_map
|
47 |
+
|
48 |
+
class ObjectNetDataset(datasets.ImageFolder):
|
49 |
+
|
50 |
+
def __init__(self, root, transform):
|
51 |
+
(self._class_sublist,
|
52 |
+
self.class_sublist_mask,
|
53 |
+
self.folders_to_ids,
|
54 |
+
self.classname_map) = get_metadata(root)
|
55 |
+
subdir = os.path.join(root, "objectnet-1.0", "images")
|
56 |
+
label_map = {name: idx for idx, name in enumerate(sorted(list(self.folders_to_ids.keys())))}
|
57 |
+
self.label_map = label_map
|
58 |
+
super().__init__(subdir, transform=transform)
|
59 |
+
self.samples = [
|
60 |
+
d for d in self.samples
|
61 |
+
if os.path.basename(os.path.dirname(d[0])) in self.label_map
|
62 |
+
]
|
63 |
+
self.imgs = self.samples
|
64 |
+
self.classes = sorted(list(self.folders_to_ids.keys()))
|
65 |
+
self.classes = [self.classname_map[c].lower() for c in self.classes]
|
66 |
+
|
67 |
+
def __len__(self):
|
68 |
+
return len(self.samples)
|
69 |
+
|
70 |
+
def __getitem__(self, index):
|
71 |
+
path, target = self.samples[index]
|
72 |
+
sample = self.loader(path)
|
73 |
+
if self.transform is not None:
|
74 |
+
sample = self.transform(sample)
|
75 |
+
label = os.path.basename(os.path.dirname(path))
|
76 |
+
return sample, self.label_map[label]
|
CLIP_benchmark/clip_benchmark/datasets/sugar_crepe.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from torch.utils.data import Dataset
|
3 |
+
from PIL import Image
|
4 |
+
import json
|
5 |
+
class SugarCrepe(Dataset):
|
6 |
+
|
7 |
+
def __init__(self, root, ann_file, transform=None):
|
8 |
+
self.root = root
|
9 |
+
self.ann = json.load(open(ann_file))
|
10 |
+
self.transform = transform
|
11 |
+
|
12 |
+
def __getitem__(self, idx):
|
13 |
+
data = self.ann[str(idx)]
|
14 |
+
img = Image.open(os.path.join(self.root, data['filename']))
|
15 |
+
if self.transform is not None:
|
16 |
+
img = self.transform(img)
|
17 |
+
caption = data['caption']
|
18 |
+
negative_caption = data['negative_caption']
|
19 |
+
return img, [caption, negative_caption]
|
20 |
+
|
21 |
+
def __len__(self):
|
22 |
+
return len(self.ann)
|
CLIP_benchmark/clip_benchmark/datasets/tfds.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
|
5 |
+
def download_tfds_dataset(name, data_dir=None):
|
6 |
+
import tensorflow_datasets as tfds
|
7 |
+
import timm
|
8 |
+
builder = tfds.builder(name, data_dir=data_dir)
|
9 |
+
builder.download_and_prepare()
|
10 |
+
|
11 |
+
def disable_gpus_on_tensorflow():
|
12 |
+
import tensorflow as tf
|
13 |
+
tf.config.set_visible_devices([], 'GPU')
|
14 |
+
|
15 |
+
class VTABIterableDataset(torch.utils.data.IterableDataset):
|
16 |
+
|
17 |
+
def __init__(self, tfds_dataset, split="test", input_name="image", label_name="label", input_mode="RGB", transform=None, target_transform=None, classes=None):
|
18 |
+
self.tfds_dataset = tfds_dataset
|
19 |
+
self.input_name = input_name
|
20 |
+
self.label_name = label_name
|
21 |
+
self.transform = transform
|
22 |
+
self.target_transform = target_transform
|
23 |
+
self.input_mode = input_mode
|
24 |
+
self.num_examples = tfds_dataset.get_num_samples(split)
|
25 |
+
self.split = split
|
26 |
+
if classes is None:
|
27 |
+
self.classes = tfds_dataset._dataset_builder.info.features['label'].names
|
28 |
+
else:
|
29 |
+
self.classes = classes
|
30 |
+
def __iter__(self):
|
31 |
+
worker_info = torch.utils.data.get_worker_info()
|
32 |
+
iterator = self.tfds_dataset.get_tf_data(self.split, batch_size=1, epochs=1, for_eval=True)
|
33 |
+
if worker_info is not None:
|
34 |
+
iterator = iterator.shard(index=worker_info.id, num_shards=worker_info.num_workers)
|
35 |
+
nb = 0
|
36 |
+
for data in iterator:
|
37 |
+
inputs = (data[self.input_name].numpy())
|
38 |
+
labels = data[self.label_name].numpy()
|
39 |
+
for input, label in zip(inputs, labels):
|
40 |
+
input = Image.fromarray(input, mode=self.input_mode)
|
41 |
+
if self.transform is not None:
|
42 |
+
input = self.transform(input)
|
43 |
+
if self.target_transform is not None:
|
44 |
+
label = self.target_transform(label)
|
45 |
+
yield input, label
|
46 |
+
|
47 |
+
def __len__(self):
|
48 |
+
return self.num_examples
|
CLIP_benchmark/clip_benchmark/datasets/voc2007.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Code from https://github.com/SsnL/dataset-distillation/blob/master/datasets/pascal_voc.py , thanks to the authors
|
2 |
+
"""Dataset setting and data loader for PASCAL VOC 2007 as a classification task.
|
3 |
+
|
4 |
+
Modified from
|
5 |
+
https://github.com/Cadene/pretrained-models.pytorch/blob/56aa8c921819d14fb36d7248ab71e191b37cb146/pretrainedmodels/datasets/voc.py
|
6 |
+
"""
|
7 |
+
|
8 |
+
import os
|
9 |
+
import os.path
|
10 |
+
import tarfile
|
11 |
+
import xml.etree.ElementTree as ET
|
12 |
+
|
13 |
+
import torch.utils.data as data
|
14 |
+
import torchvision
|
15 |
+
from PIL import Image
|
16 |
+
from urllib.parse import urlparse
|
17 |
+
import torch
|
18 |
+
|
19 |
+
object_categories = ['aeroplane', 'bicycle', 'bird', 'boat',
|
20 |
+
'bottle', 'bus', 'car', 'cat', 'chair',
|
21 |
+
'cow', 'diningtable', 'dog', 'horse',
|
22 |
+
'motorbike', 'person', 'pottedplant',
|
23 |
+
'sheep', 'sofa', 'train', 'tvmonitor']
|
24 |
+
|
25 |
+
category_to_idx = {c: i for i, c in enumerate(object_categories)}
|
26 |
+
|
27 |
+
urls = {
|
28 |
+
'devkit': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar',
|
29 |
+
'trainval_2007': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar',
|
30 |
+
'test_images_2007': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar',
|
31 |
+
'test_anno_2007': 'http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtestnoimgs_06-Nov-2007.tar',
|
32 |
+
}
|
33 |
+
|
34 |
+
|
35 |
+
def download_url(url, path):
|
36 |
+
root, filename = os.path.split(path)
|
37 |
+
torchvision.datasets.utils.download_url(url, root=root, filename=filename, md5=None)
|
38 |
+
|
39 |
+
|
40 |
+
def download_voc2007(root):
|
41 |
+
path_devkit = os.path.join(root, 'VOCdevkit')
|
42 |
+
path_images = os.path.join(root, 'VOCdevkit', 'VOC2007', 'JPEGImages')
|
43 |
+
tmpdir = os.path.join(root, 'tmp')
|
44 |
+
|
45 |
+
# create directory
|
46 |
+
if not os.path.exists(root):
|
47 |
+
os.makedirs(root)
|
48 |
+
|
49 |
+
if not os.path.exists(path_devkit):
|
50 |
+
|
51 |
+
if not os.path.exists(tmpdir):
|
52 |
+
os.makedirs(tmpdir)
|
53 |
+
|
54 |
+
parts = urlparse(urls['devkit'])
|
55 |
+
filename = os.path.basename(parts.path)
|
56 |
+
cached_file = os.path.join(tmpdir, filename)
|
57 |
+
|
58 |
+
if not os.path.exists(cached_file):
|
59 |
+
download_url(urls['devkit'], cached_file)
|
60 |
+
|
61 |
+
# extract file
|
62 |
+
print('[dataset] Extracting tar file {file} to {path}'.format(file=cached_file, path=root))
|
63 |
+
cwd = os.getcwd()
|
64 |
+
tar = tarfile.open(cached_file, "r")
|
65 |
+
os.chdir(root)
|
66 |
+
tar.extractall()
|
67 |
+
tar.close()
|
68 |
+
os.chdir(cwd)
|
69 |
+
print('[dataset] Done!')
|
70 |
+
|
71 |
+
# train/val images/annotations
|
72 |
+
if not os.path.exists(path_images):
|
73 |
+
|
74 |
+
# download train/val images/annotations
|
75 |
+
parts = urlparse(urls['trainval_2007'])
|
76 |
+
filename = os.path.basename(parts.path)
|
77 |
+
cached_file = os.path.join(tmpdir, filename)
|
78 |
+
|
79 |
+
if not os.path.exists(cached_file):
|
80 |
+
download_url(urls['trainval_2007'], cached_file)
|
81 |
+
|
82 |
+
# extract file
|
83 |
+
print('[dataset] Extracting tar file {file} to {path}'.format(file=cached_file, path=root))
|
84 |
+
cwd = os.getcwd()
|
85 |
+
tar = tarfile.open(cached_file, "r")
|
86 |
+
os.chdir(root)
|
87 |
+
tar.extractall()
|
88 |
+
tar.close()
|
89 |
+
os.chdir(cwd)
|
90 |
+
print('[dataset] Done!')
|
91 |
+
|
92 |
+
# test annotations
|
93 |
+
test_anno = os.path.join(path_devkit, 'VOC2007/ImageSets/Main/aeroplane_test.txt')
|
94 |
+
if not os.path.exists(test_anno):
|
95 |
+
|
96 |
+
# download test annotations
|
97 |
+
parts = urlparse(urls['test_images_2007'])
|
98 |
+
filename = os.path.basename(parts.path)
|
99 |
+
cached_file = os.path.join(tmpdir, filename)
|
100 |
+
|
101 |
+
if not os.path.exists(cached_file):
|
102 |
+
download_url(urls['test_images_2007'], cached_file)
|
103 |
+
|
104 |
+
# extract file
|
105 |
+
print('[dataset] Extracting tar file {file} to {path}'.format(file=cached_file, path=root))
|
106 |
+
cwd = os.getcwd()
|
107 |
+
tar = tarfile.open(cached_file, "r")
|
108 |
+
os.chdir(root)
|
109 |
+
tar.extractall()
|
110 |
+
tar.close()
|
111 |
+
os.chdir(cwd)
|
112 |
+
print('[dataset] Done!')
|
113 |
+
|
114 |
+
# test images
|
115 |
+
test_image = os.path.join(path_devkit, 'VOC2007/JPEGImages/000001.jpg')
|
116 |
+
if not os.path.exists(test_image):
|
117 |
+
|
118 |
+
# download test images
|
119 |
+
parts = urlparse(urls['test_anno_2007'])
|
120 |
+
filename = os.path.basename(parts.path)
|
121 |
+
cached_file = os.path.join(tmpdir, filename)
|
122 |
+
|
123 |
+
if not os.path.exists(cached_file):
|
124 |
+
download_url(urls['test_anno_2007'], cached_file)
|
125 |
+
|
126 |
+
# extract file
|
127 |
+
print('[dataset] Extracting tar file {file} to {path}'.format(file=cached_file, path=root))
|
128 |
+
cwd = os.getcwd()
|
129 |
+
tar = tarfile.open(cached_file, "r")
|
130 |
+
os.chdir(root)
|
131 |
+
tar.extractall()
|
132 |
+
tar.close()
|
133 |
+
os.chdir(cwd)
|
134 |
+
print('[dataset] Done!')
|
135 |
+
|
136 |
+
|
137 |
+
def read_split(root, dataset, split):
|
138 |
+
base_path = os.path.join(root, 'VOCdevkit', dataset, 'ImageSets', 'Main')
|
139 |
+
filename = os.path.join(base_path, object_categories[0] + '_' + split + '.txt')
|
140 |
+
|
141 |
+
with open(filename, 'r') as f:
|
142 |
+
paths = []
|
143 |
+
for line in f.readlines():
|
144 |
+
line = line.strip().split()
|
145 |
+
if len(line) > 0:
|
146 |
+
assert len(line) == 2
|
147 |
+
paths.append(line[0])
|
148 |
+
|
149 |
+
return tuple(paths)
|
150 |
+
|
151 |
+
|
152 |
+
def read_bndbox(root, dataset, paths):
|
153 |
+
xml_base = os.path.join(root, 'VOCdevkit', dataset, 'Annotations')
|
154 |
+
instances = []
|
155 |
+
for path in paths:
|
156 |
+
xml = ET.parse(os.path.join(xml_base, path + '.xml'))
|
157 |
+
for obj in xml.findall('object'):
|
158 |
+
c = obj[0]
|
159 |
+
assert c.tag == 'name', c.tag
|
160 |
+
c = category_to_idx[c.text]
|
161 |
+
bndbox = obj.find('bndbox')
|
162 |
+
xmin = int(bndbox[0].text) # left
|
163 |
+
ymin = int(bndbox[1].text) # top
|
164 |
+
xmax = int(bndbox[2].text) # right
|
165 |
+
ymax = int(bndbox[3].text) # bottom
|
166 |
+
instances.append((path, (xmin, ymin, xmax, ymax), c))
|
167 |
+
return instances
|
168 |
+
|
169 |
+
|
170 |
+
class PASCALVoc2007(data.Dataset):
|
171 |
+
"""
|
172 |
+
Multi-label classification problem for voc2007
|
173 |
+
labels are of one hot of shape (C,), denoting the presence/absence
|
174 |
+
of each class in each image, where C is the number of classes.
|
175 |
+
"""
|
176 |
+
def __init__(self, root, set, transform=None, download=False, target_transform=None):
|
177 |
+
self.root = root
|
178 |
+
self.path_devkit = os.path.join(root, 'VOCdevkit')
|
179 |
+
self.path_images = os.path.join(root, 'VOCdevkit', 'VOC2007', 'JPEGImages')
|
180 |
+
self.transform = transform
|
181 |
+
self.target_transform = target_transform
|
182 |
+
|
183 |
+
# download dataset
|
184 |
+
if download:
|
185 |
+
download_voc2007(self.root)
|
186 |
+
|
187 |
+
paths = read_split(self.root, 'VOC2007', set)
|
188 |
+
bndboxes = read_bndbox(self.root, 'VOC2007', paths)
|
189 |
+
labels = torch.zeros(len(paths), len(object_categories))
|
190 |
+
path_index = {}
|
191 |
+
for i, p in enumerate(paths):
|
192 |
+
path_index[p] = i
|
193 |
+
for path, bbox, c in bndboxes:
|
194 |
+
labels[path_index[path], c] = 1
|
195 |
+
self.labels = labels
|
196 |
+
self.classes = object_categories
|
197 |
+
self.paths = paths
|
198 |
+
|
199 |
+
def __getitem__(self, index):
|
200 |
+
path = self.paths[index]
|
201 |
+
img = Image.open(os.path.join(self.path_images, path + '.jpg')).convert('RGB')
|
202 |
+
target = self.labels[index]
|
203 |
+
if self.transform is not None:
|
204 |
+
img = self.transform(img)
|
205 |
+
if self.target_transform is not None:
|
206 |
+
target = self.target_transform(target)
|
207 |
+
return img, target
|
208 |
+
|
209 |
+
def __len__(self):
|
210 |
+
return len(self.paths)
|
211 |
+
|
212 |
+
class PASCALVoc2007Cropped(data.Dataset):
|
213 |
+
"""
|
214 |
+
voc2007 is originally object detection and multi-label.
|
215 |
+
In this version, we just convert it to single-label per image classification
|
216 |
+
problem by looping over bounding boxes in the dataset and cropping the relevant
|
217 |
+
object.
|
218 |
+
"""
|
219 |
+
def __init__(self, root, set, transform=None, download=False, target_transform=None):
|
220 |
+
self.root = root
|
221 |
+
self.path_devkit = os.path.join(root, 'VOCdevkit')
|
222 |
+
self.path_images = os.path.join(root, 'VOCdevkit', 'VOC2007', 'JPEGImages')
|
223 |
+
self.transform = transform
|
224 |
+
self.target_transform = target_transform
|
225 |
+
|
226 |
+
# download dataset
|
227 |
+
if download:
|
228 |
+
download_voc2007(self.root)
|
229 |
+
|
230 |
+
paths = read_split(self.root, 'VOC2007', set)
|
231 |
+
self.bndboxes = read_bndbox(self.root, 'VOC2007', paths)
|
232 |
+
self.classes = object_categories
|
233 |
+
|
234 |
+
print('[dataset] VOC 2007 classification set=%s number of classes=%d number of bndboxes=%d' % (
|
235 |
+
set, len(self.classes), len(self.bndboxes)))
|
236 |
+
|
237 |
+
def __getitem__(self, index):
|
238 |
+
path, crop, target = self.bndboxes[index]
|
239 |
+
img = Image.open(os.path.join(self.path_images, path + '.jpg')).convert('RGB')
|
240 |
+
img = img.crop(crop)
|
241 |
+
if self.transform is not None:
|
242 |
+
img = self.transform(img)
|
243 |
+
if self.target_transform is not None:
|
244 |
+
target = self.target_transform(target)
|
245 |
+
return img, target
|
246 |
+
|
247 |
+
def __len__(self):
|
248 |
+
return len(self.bndboxes)
|
CLIP_benchmark/clip_benchmark/metrics/__init__.py
ADDED
File without changes
|
CLIP_benchmark/clip_benchmark/metrics/captioning.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from open_clip import tokenize
|
3 |
+
from tqdm.auto import tqdm
|
4 |
+
from open_clip.tokenizer import _tokenizer
|
5 |
+
|
6 |
+
|
7 |
+
from pycocoevalcap.tokenizer.ptbtokenizer import PTBTokenizer
|
8 |
+
from pycocoevalcap.bleu.bleu import Bleu
|
9 |
+
from pycocoevalcap.meteor.meteor import Meteor
|
10 |
+
from pycocoevalcap.rouge.rouge import Rouge
|
11 |
+
from pycocoevalcap.cider.cider import Cider
|
12 |
+
from pycocoevalcap.spice.spice import Spice
|
13 |
+
|
14 |
+
|
15 |
+
"""
|
16 |
+
Code adapted from https://github.com/salaniz/pycocoevalcap/blob/master/eval.py
|
17 |
+
Thanks to @salaniz for the code!
|
18 |
+
"""
|
19 |
+
class COCOEvalCap:
|
20 |
+
def __init__(self, results):
|
21 |
+
self.evalImgs = []
|
22 |
+
self.eval = {}
|
23 |
+
self.imgToEval = {}
|
24 |
+
self.results = results
|
25 |
+
def evaluate(self):
|
26 |
+
gts = {}
|
27 |
+
res = {}
|
28 |
+
for imgId, r in enumerate(self.results):
|
29 |
+
gts[imgId] = r['true']
|
30 |
+
res[imgId] = r['gen']
|
31 |
+
# =================================================
|
32 |
+
# Set up scorers
|
33 |
+
# =================================================
|
34 |
+
print('tokenization...')
|
35 |
+
tokenizer = PTBTokenizer()
|
36 |
+
gts = tokenizer.tokenize(gts)
|
37 |
+
res = tokenizer.tokenize(res)
|
38 |
+
|
39 |
+
# =================================================
|
40 |
+
# Set up scorers
|
41 |
+
# =================================================
|
42 |
+
print('setting up scorers...')
|
43 |
+
scorers = [
|
44 |
+
(Bleu(4), ["Bleu_1", "Bleu_2", "Bleu_3", "Bleu_4"]),
|
45 |
+
(Meteor(),"METEOR"),
|
46 |
+
(Rouge(), "ROUGE_L"),
|
47 |
+
(Cider(), "CIDEr"),
|
48 |
+
(Spice(), "SPICE")
|
49 |
+
]
|
50 |
+
|
51 |
+
# =================================================
|
52 |
+
# Compute scores
|
53 |
+
# =================================================
|
54 |
+
for scorer, method in scorers:
|
55 |
+
print('computing %s score...'%(scorer.method()))
|
56 |
+
score, scores = scorer.compute_score(gts, res)
|
57 |
+
if type(method) == list:
|
58 |
+
for sc, scs, m in zip(score, scores, method):
|
59 |
+
self.setEval(sc, m)
|
60 |
+
self.setImgToEvalImgs(scs, gts.keys(), m)
|
61 |
+
print("%s: %0.3f"%(m, sc))
|
62 |
+
else:
|
63 |
+
self.setEval(score, method)
|
64 |
+
self.setImgToEvalImgs(scores, gts.keys(), method)
|
65 |
+
print("%s: %0.3f"%(method, score))
|
66 |
+
self.setEvalImgs()
|
67 |
+
|
68 |
+
def setEval(self, score, method):
|
69 |
+
self.eval[method] = score
|
70 |
+
|
71 |
+
def setImgToEvalImgs(self, scores, imgIds, method):
|
72 |
+
for imgId, score in zip(imgIds, scores):
|
73 |
+
if not imgId in self.imgToEval:
|
74 |
+
self.imgToEval[imgId] = {}
|
75 |
+
self.imgToEval[imgId]["image_id"] = imgId
|
76 |
+
self.imgToEval[imgId][method] = score
|
77 |
+
|
78 |
+
def setEvalImgs(self):
|
79 |
+
self.evalImgs = [eval for imgId, eval in self.imgToEval.items()]
|
80 |
+
|
81 |
+
def evaluate(model, dataloader, batch_size, device, transform, train_dataloader=None, num_workers=None, amp=True, verbose=False):
|
82 |
+
results = []
|
83 |
+
image_id = 0
|
84 |
+
gt = []
|
85 |
+
for idx, (img, captions) in enumerate(tqdm(dataloader)):
|
86 |
+
out = model.generate(img.to(device))
|
87 |
+
decoded = [_tokenizer.decode(i).split("<end_of_text>")[0].replace("<start_of_text>", "").strip() for i in out.cpu().numpy()]
|
88 |
+
for pred, true in zip(decoded, captions):
|
89 |
+
true = [{'caption': t} for t in true]
|
90 |
+
pred = [{'caption': pred}]
|
91 |
+
results.append({"image_id":image_id, "gen":pred, "true": true})
|
92 |
+
image_id += 1
|
93 |
+
coco_eval = COCOEvalCap(results)
|
94 |
+
coco_eval.evaluate()
|
95 |
+
metrics = coco_eval.eval
|
96 |
+
# print output evaluation scores
|
97 |
+
for metric, score in metrics.items():
|
98 |
+
print(f'{metric}: {score:.3f}')
|
99 |
+
return metrics
|