File size: 16,145 Bytes
e1aaaac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import json
import os
import sys
import time

import numpy as np
import open_clip
import torch
import torch.nn.functional as F
from torchvision.transforms import Resize
from torchvision import transforms
from open_flamingo.eval.classification_utils import IMAGENET_1K_CLASS_ID_TO_LABEL
import wandb
import argparse
from robustbench import benchmark
from robustbench.data import load_clean_dataset
from autoattack import AutoAttack
from robustbench.model_zoo.enums import BenchmarkDataset
from CLIP_eval.eval_utils import compute_accuracy_no_dataloader, load_clip_model
from train.utils import str2bool

parser = argparse.ArgumentParser(description="Script arguments")

parser.add_argument('--clip_model_name', type=str, default='none', help='ViT-L-14, ViT-B-32, don\'t use if wandb_id is set')
parser.add_argument('--pretrained', type=str, default='none', help='Pretrained model ckpt path, don\'t use if wandb_id is set')
parser.add_argument('--wandb_id', type=str, default='none', help='Wandb id of training run, don\'t use if clip_model_name and pretrained are set')
parser.add_argument('--logit_scale', type=str2bool, default=True, help='Whether to scale logits')
parser.add_argument('--full_benchmark', type=str2bool, default=False, help='Whether to run full RB benchmark')
parser.add_argument('--dataset', type=str, default='imagenet')
parser.add_argument('--imagenet_root', type=str, default='/mnt/datasets/imagenet', help='Imagenet dataset root directory')
parser.add_argument('--cifar10_root', type=str, default='/mnt/datasets/CIFAR10', help='CIFAR10 dataset root directory')
parser.add_argument('--cifar100_root', type=str, default='/mnt/datasets/CIFAR100', help='CIFAR100 dataset root directory')
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--n_samples_imagenet', type=int, default=5000, help='Number of samples from ImageNet for benchmark')
parser.add_argument('--n_samples_cifar', type=int, default=1000, help='Number of samples from CIFAR for benchmark')
parser.add_argument('--template', type=str, default='ensemble', help='Text template type; std, ensemble')
parser.add_argument('--norm', type=str, default='linf', help='Norm for attacks; linf, l2')
parser.add_argument('--eps', type=float, default=4., help='Epsilon for attack')
parser.add_argument('--beta', type=float, default=0., help='Model interpolation parameter')
parser.add_argument('--alpha', type=float, default=2., help='APGD alpha parameter')
parser.add_argument('--experiment_name', type=str, default='', help='Experiment name for logging')
parser.add_argument('--blackbox_only', type=str2bool, default=False, help='Run blackbox attacks only')
parser.add_argument('--save_images', type=str2bool, default=False, help='Save images during benchmarking')
parser.add_argument('--wandb', type=str2bool, default=True, help='Use Weights & Biases for logging')
parser.add_argument('--devices', type=str, default='', help='Device IDs for CUDA')


CIFAR10_LABELS = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

class ClassificationModel(torch.nn.Module):
    def __init__(self, model, text_embedding, args, input_normalize, resizer=None, logit_scale=True):
        super().__init__()
        self.model = model
        self.args = args
        self.input_normalize = input_normalize
        self.resizer = resizer if resizer is not None else lambda x: x
        self.text_embedding = text_embedding
        self.logit_scale = logit_scale

    def forward(self, vision, output_normalize=True):
        assert output_normalize
        embedding_norm_ = self.model.encode_image(
            self.input_normalize(self.resizer(vision)),
            normalize=True
        )
        logits = embedding_norm_ @ self.text_embedding
        if self.logit_scale:
            logits *= self.model.logit_scale.exp()
        return logits

def interpolate_state_dict(m1, beta=0.2):
    m = {}

    m2 = torch.load("/path/to/ckpt.pt", map_location='cpu')
    for k in m1.keys():
        # print(m1[k].shape, m2[k].shape)
        m[k] = beta * m1[k] + (1 - beta) * m2[k]
    return m


if __name__ == '__main__':
    # set seeds
    torch.manual_seed(0)
    np.random.seed(0)

    # Parse command-line arguments
    args = parser.parse_args()
    # print args
    print(f"Arguments:\n{'-' * 20}", flush=True)
    for arg, value in vars(args).items():
        print(f"{arg}: {value}")
    print(f"{'-' * 20}")

    args.eps /= 255
    # make sure there is no string in args that should be a bool
    assert not any(
        [isinstance(x, str) and x in ['True', 'False'] for x in args.__dict__.values(
        )])

    if args.dataset == 'imagenet':
        num_classes = 1000
        data_dir = args.imagenet_root
        n_samples = args.n_samples_imagenet
        resizer = None
    elif args.dataset == 'cifar100':
        num_classes = 100
        data_dir = args.cifar100_root
        n_samples = args.n_samples_cifar
        resizer = Resize(size=224, interpolation=transforms.InterpolationMode.BICUBIC, max_size=None, antialias=False)
    elif args.dataset == 'cifar10':
        num_classes = 10
        data_dir = args.cifar10_root
        n_samples = args.n_samples_cifar
        resizer = Resize(size=224, interpolation=transforms.InterpolationMode.BICUBIC, max_size=None, antialias=False)
    eps = args.eps

    # init wandb
    os.environ['WANDB__SERVICE_WAIT'] = '300'
    wandb_user, wandb_project = None, None
    while True:
        try:
            run_eval = wandb.init(
                project=wandb_project,
                job_type='eval',
                name=f'{"rb" if args.full_benchmark else "aa"}-clip-{args.dataset}-{args.norm}-{eps:.2f}'
                     f'-{args.wandb_id if args.wandb_id is not None else args.pretrained}-{args.blackbox_only}-{args.beta}',
                save_code=True,
                config=vars(args),
                mode='online' if args.wandb else 'disabled'
            )
            break
        except wandb.errors.CommError as e:
            print('wandb connection error', file=sys.stderr)
            print(f'error: {e}', file=sys.stderr)
            time.sleep(1)
            print('retrying..', file=sys.stderr)

    if args.devices != '':
        # set cuda visible devices
        os.environ["CUDA_VISIBLE_DEVICES"] = args.devices
    main_device = 0
    num_gpus = torch.cuda.device_count()
    if num_gpus > 1:
        print(f"Number of GPUs available: {num_gpus}")
    else:
        print("No multiple GPUs available.")

    if not args.blackbox_only:
        attacks_to_run = ['apgd-ce', 'apgd-t']
    else:
        attacks_to_run = ['square']
    print(f'[attacks_to_run] {attacks_to_run}')


    if args.wandb_id not in [None, 'none', 'None']:
        assert args.pretrained in [None, 'none', 'None']
        assert args.clip_model_name in [None, 'none', 'None']
        api = wandb.Api()
        run_train = api.run(f'{wandb_user}/{wandb_project}/{args.wandb_id}')
        clip_model_name = run_train.config['clip_model_name']
        print(f'clip_model_name: {clip_model_name}')
        pretrained = run_train.config["output_dir"]
        if pretrained.endswith('_temp'):
            pretrained = pretrained[:-5]
        pretrained += "/checkpoints/final.pt"
    else:
        clip_model_name = args.clip_model_name
        pretrained = args.pretrained
        run_train = None
    del args.clip_model_name, args.pretrained

    print(f'[loading pretrained clip] {clip_model_name} {pretrained}')

    model, preprocessor_without_normalize, normalize = load_clip_model(clip_model_name, pretrained, args.beta)

    if args.dataset != 'imagenet':
        # make sure we don't resize outside the model as this influences threat model
        preprocessor_without_normalize = transforms.ToTensor()
    print(f'[resizer] {resizer}')
    print(f'[preprocessor] {preprocessor_without_normalize}')

    model.eval()
    model.to(main_device)
    with torch.no_grad():
        # Get text label embeddings of all ImageNet classes
        if not args.template == 'ensemble':
            if args.template == 'std':
                template = 'This is a photo of a {}'
            else:
                raise ValueError(f'Unknown template: {args.template}')
            print(f'template: {template}')
            if args.dataset == 'imagenet':
                texts = [template.format(c) for c in IMAGENET_1K_CLASS_ID_TO_LABEL.values()]
            elif args.dataset == 'cifar10':
                texts = [template.format(c) for c in CIFAR10_LABELS]
            text_tokens = open_clip.tokenize(texts)
            embedding_text_labels_norm = []
            text_batches = [text_tokens[:500], text_tokens[500:]] if args.dataset == 'imagenet' else [text_tokens]
            for el in text_batches:
                # we need to split the text tokens into two batches because otherwise we run out of memory
                # note that we are accessing the model directly here, not the CustomModel wrapper
                # thus its always normalizing the text embeddings
                embedding_text_labels_norm.append(
                    model.encode_text(el.to(main_device), normalize=True).detach().cpu()
                )
            model.cpu()
            embedding_text_labels_norm = torch.cat(embedding_text_labels_norm).T.to(main_device)
        else:
            assert args.dataset == 'imagenet', 'ensemble only implemented for imagenet'
            with open('CLIP_eval/zeroshot-templates.json', 'r') as f:
                templates = json.load(f)
            templates = templates['imagenet1k']
            print(f'[templates] {templates}')
            embedding_text_labels_norm = []
            for c in IMAGENET_1K_CLASS_ID_TO_LABEL.values():
                texts = [template.format(c=c) for template in templates]
                text_tokens = open_clip.tokenize(texts).to(main_device)
                class_embeddings = model.encode_text(text_tokens)
                class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0)
                class_embedding /= class_embedding.norm()
                embedding_text_labels_norm.append(class_embedding)
            embedding_text_labels_norm = torch.stack(embedding_text_labels_norm, dim=1).to(main_device)

        assert torch.allclose(
            F.normalize(embedding_text_labels_norm, dim=0),
            embedding_text_labels_norm
        )
        if clip_model_name == 'ViT-B-32':
            assert embedding_text_labels_norm.shape == (512, num_classes), embedding_text_labels_norm.shape
        elif clip_model_name == 'ViT-L-14':
            assert embedding_text_labels_norm.shape == (768, num_classes), embedding_text_labels_norm.shape
        else:
            raise ValueError(f'Unknown model: {clip_model_name}')

    # get model
    model = ClassificationModel(
        model=model,
        text_embedding=embedding_text_labels_norm,
        args=args,
        resizer=resizer,
        input_normalize=normalize,
        logit_scale=args.logit_scale,
    )

    if num_gpus > 1:
        model = torch.nn.DataParallel(model)
    model = model.cuda()
    model.eval()

    model_name = None
    # device = [torch.device(el) for el in range(num_gpus)]  # currently only single gpu supported
    device = torch.device(main_device)
    torch.cuda.empty_cache()

    dataset_short = (
        'img' if args.dataset == 'imagenet' else
        'c10' if args.dataset == 'cifar10' else
        'c100' if args.dataset == 'cifar100' else
        'unknown'
    )

    start = time.time()
    if args.full_benchmark:
        clean_acc, robust_acc = benchmark(
            model, model_name=model_name, n_examples=n_samples,
            batch_size=args.batch_size,
            dataset=args.dataset, data_dir=data_dir,
            threat_model=args.norm.replace('l', 'L'), eps=eps,
            preprocessing=preprocessor_without_normalize,
            device=device, to_disk=False
            )
        clean_acc *= 100
        robust_acc *= 100
        duration = time.time() - start
        print(f"[Model] {pretrained}")
        print(
            f"[Clean Acc] {clean_acc:.2f}% [Robust Acc] {robust_acc:.2f}% [Duration] {duration / 60:.2f}m"
            )
        if run_train is not None:
            # reload the run to make sure we have the latest summary
            del api, run_train
            api = wandb.Api()
            run_train = api.run(f'{wandb_user}/{wandb_project}/{args.wandb_id}')
            eps_descr = str(int(eps * 255)) if args.norm == 'linf' else str(eps)
            run_train.summary.update({f'rb/acc-{dataset_short}': clean_acc})
            run_train.summary.update({f'rb/racc-{dataset_short}-{args.norm}-{eps_descr}': robust_acc})
            run_train.update()
    else:
        adversary = AutoAttack(
            model, norm=args.norm.replace('l', 'L'), eps=eps, version='custom', attacks_to_run=attacks_to_run,
            alpha=args.alpha, verbose=True
        )

        x_test, y_test = load_clean_dataset(
            BenchmarkDataset(args.dataset), n_examples=n_samples, data_dir=data_dir,
            prepr=preprocessor_without_normalize,)

        acc = compute_accuracy_no_dataloader(model, data=x_test, targets=y_test, device=device, batch_size=args.batch_size) * 100
        print(f'[acc] {acc:.2f}%', flush=True)
        x_adv, y_adv = adversary.run_standard_evaluation(x_test, y_test, bs=args.batch_size, return_labels=True)  # y_adv are preds on x_adv
        racc = compute_accuracy_no_dataloader(model, data=x_adv, targets=y_test, device=device, batch_size=args.batch_size) * 100
        print(f'[acc] {acc:.2f}% [racc] {racc:.2f}%')

        # save adv images
        if args.save_images:
            # save the adversarial images
            img_save_path = (f'/path/to/save/dir/'
                             f'{args.dataset}/{args.wandb_id}-{args.pretrained}-{args.norm}-{eps:.3f}-'
                             f'alph{args.alpha:.3f}-{n_samples}smpls-{time.strftime("%Y-%m-%d_%H-%M-%S")}')
            os.makedirs(img_save_path, exist_ok=True)

            print(f'[saving images to] {img_save_path}')
            x_adv = x_adv.detach().cpu()
            y_adv = y_adv.detach().cpu()
            x_clean = x_test.detach().cpu()
            y_clean = y_test.detach().cpu()
            torch.save(x_adv, f'{img_save_path}/x_adv.pt')
            torch.save(y_adv, f'{img_save_path}/y_adv.pt')
            torch.save(x_clean, f'{img_save_path}/x_clean.pt')
            torch.save(y_clean, f'{img_save_path}/y_clean.pt')
            with open(f'{img_save_path}/args.json', 'w') as f:
                json.dump(vars(args), f)
            with open(f'{img_save_path}/results.json', 'w') as f:
                f.write(f"acc:{acc:.2f}%")
                f.write(f"Racc:{racc:.2f}%")

        # write to wandb
        if run_train is not None:
            # reload the run to make sure we have the latest summary
            del api, run_train
            api = wandb.Api()
            run_train = api.run(f'{wandb_user}/{wandb_project}/{args.wandb_id}')
            if args.dataset == 'imagenet':
                assert args.norm == 'linf'
                eps_descr = str(int(eps * 255))
                if eps_descr == '4':
                    descr = dataset_short
                else:
                    descr = f'{dataset_short}-eps{eps_descr}'
                if n_samples != 5000:
                    acc = f'{acc:.2f}*'
                    racc = f'{racc:.2f}*'
            elif args.dataset == 'cifar10':
                if args.norm == 'linf':
                    descr = dataset_short
                else:
                    descr = f'{dataset_short}-{args.norm}'
                if n_samples != 10000:
                    acc = f'{acc:.2f}*'
                    racc = f'{racc:.2f}*'
            else:
                raise ValueError(f'Unknown dataset: {args.dataset}')
            run_train.summary.update({f'aa/acc-{dataset_short}': acc})
            run_train.summary.update({f'aa/racc-{descr}': racc})
            run_train.summary.update()
            run_train.update()
    run_eval.finish()