File size: 16,145 Bytes
e1aaaac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import json
import os
import sys
import time
import numpy as np
import open_clip
import torch
import torch.nn.functional as F
from torchvision.transforms import Resize
from torchvision import transforms
from open_flamingo.eval.classification_utils import IMAGENET_1K_CLASS_ID_TO_LABEL
import wandb
import argparse
from robustbench import benchmark
from robustbench.data import load_clean_dataset
from autoattack import AutoAttack
from robustbench.model_zoo.enums import BenchmarkDataset
from CLIP_eval.eval_utils import compute_accuracy_no_dataloader, load_clip_model
from train.utils import str2bool
parser = argparse.ArgumentParser(description="Script arguments")
parser.add_argument('--clip_model_name', type=str, default='none', help='ViT-L-14, ViT-B-32, don\'t use if wandb_id is set')
parser.add_argument('--pretrained', type=str, default='none', help='Pretrained model ckpt path, don\'t use if wandb_id is set')
parser.add_argument('--wandb_id', type=str, default='none', help='Wandb id of training run, don\'t use if clip_model_name and pretrained are set')
parser.add_argument('--logit_scale', type=str2bool, default=True, help='Whether to scale logits')
parser.add_argument('--full_benchmark', type=str2bool, default=False, help='Whether to run full RB benchmark')
parser.add_argument('--dataset', type=str, default='imagenet')
parser.add_argument('--imagenet_root', type=str, default='/mnt/datasets/imagenet', help='Imagenet dataset root directory')
parser.add_argument('--cifar10_root', type=str, default='/mnt/datasets/CIFAR10', help='CIFAR10 dataset root directory')
parser.add_argument('--cifar100_root', type=str, default='/mnt/datasets/CIFAR100', help='CIFAR100 dataset root directory')
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--n_samples_imagenet', type=int, default=5000, help='Number of samples from ImageNet for benchmark')
parser.add_argument('--n_samples_cifar', type=int, default=1000, help='Number of samples from CIFAR for benchmark')
parser.add_argument('--template', type=str, default='ensemble', help='Text template type; std, ensemble')
parser.add_argument('--norm', type=str, default='linf', help='Norm for attacks; linf, l2')
parser.add_argument('--eps', type=float, default=4., help='Epsilon for attack')
parser.add_argument('--beta', type=float, default=0., help='Model interpolation parameter')
parser.add_argument('--alpha', type=float, default=2., help='APGD alpha parameter')
parser.add_argument('--experiment_name', type=str, default='', help='Experiment name for logging')
parser.add_argument('--blackbox_only', type=str2bool, default=False, help='Run blackbox attacks only')
parser.add_argument('--save_images', type=str2bool, default=False, help='Save images during benchmarking')
parser.add_argument('--wandb', type=str2bool, default=True, help='Use Weights & Biases for logging')
parser.add_argument('--devices', type=str, default='', help='Device IDs for CUDA')
CIFAR10_LABELS = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
class ClassificationModel(torch.nn.Module):
def __init__(self, model, text_embedding, args, input_normalize, resizer=None, logit_scale=True):
super().__init__()
self.model = model
self.args = args
self.input_normalize = input_normalize
self.resizer = resizer if resizer is not None else lambda x: x
self.text_embedding = text_embedding
self.logit_scale = logit_scale
def forward(self, vision, output_normalize=True):
assert output_normalize
embedding_norm_ = self.model.encode_image(
self.input_normalize(self.resizer(vision)),
normalize=True
)
logits = embedding_norm_ @ self.text_embedding
if self.logit_scale:
logits *= self.model.logit_scale.exp()
return logits
def interpolate_state_dict(m1, beta=0.2):
m = {}
m2 = torch.load("/path/to/ckpt.pt", map_location='cpu')
for k in m1.keys():
# print(m1[k].shape, m2[k].shape)
m[k] = beta * m1[k] + (1 - beta) * m2[k]
return m
if __name__ == '__main__':
# set seeds
torch.manual_seed(0)
np.random.seed(0)
# Parse command-line arguments
args = parser.parse_args()
# print args
print(f"Arguments:\n{'-' * 20}", flush=True)
for arg, value in vars(args).items():
print(f"{arg}: {value}")
print(f"{'-' * 20}")
args.eps /= 255
# make sure there is no string in args that should be a bool
assert not any(
[isinstance(x, str) and x in ['True', 'False'] for x in args.__dict__.values(
)])
if args.dataset == 'imagenet':
num_classes = 1000
data_dir = args.imagenet_root
n_samples = args.n_samples_imagenet
resizer = None
elif args.dataset == 'cifar100':
num_classes = 100
data_dir = args.cifar100_root
n_samples = args.n_samples_cifar
resizer = Resize(size=224, interpolation=transforms.InterpolationMode.BICUBIC, max_size=None, antialias=False)
elif args.dataset == 'cifar10':
num_classes = 10
data_dir = args.cifar10_root
n_samples = args.n_samples_cifar
resizer = Resize(size=224, interpolation=transforms.InterpolationMode.BICUBIC, max_size=None, antialias=False)
eps = args.eps
# init wandb
os.environ['WANDB__SERVICE_WAIT'] = '300'
wandb_user, wandb_project = None, None
while True:
try:
run_eval = wandb.init(
project=wandb_project,
job_type='eval',
name=f'{"rb" if args.full_benchmark else "aa"}-clip-{args.dataset}-{args.norm}-{eps:.2f}'
f'-{args.wandb_id if args.wandb_id is not None else args.pretrained}-{args.blackbox_only}-{args.beta}',
save_code=True,
config=vars(args),
mode='online' if args.wandb else 'disabled'
)
break
except wandb.errors.CommError as e:
print('wandb connection error', file=sys.stderr)
print(f'error: {e}', file=sys.stderr)
time.sleep(1)
print('retrying..', file=sys.stderr)
if args.devices != '':
# set cuda visible devices
os.environ["CUDA_VISIBLE_DEVICES"] = args.devices
main_device = 0
num_gpus = torch.cuda.device_count()
if num_gpus > 1:
print(f"Number of GPUs available: {num_gpus}")
else:
print("No multiple GPUs available.")
if not args.blackbox_only:
attacks_to_run = ['apgd-ce', 'apgd-t']
else:
attacks_to_run = ['square']
print(f'[attacks_to_run] {attacks_to_run}')
if args.wandb_id not in [None, 'none', 'None']:
assert args.pretrained in [None, 'none', 'None']
assert args.clip_model_name in [None, 'none', 'None']
api = wandb.Api()
run_train = api.run(f'{wandb_user}/{wandb_project}/{args.wandb_id}')
clip_model_name = run_train.config['clip_model_name']
print(f'clip_model_name: {clip_model_name}')
pretrained = run_train.config["output_dir"]
if pretrained.endswith('_temp'):
pretrained = pretrained[:-5]
pretrained += "/checkpoints/final.pt"
else:
clip_model_name = args.clip_model_name
pretrained = args.pretrained
run_train = None
del args.clip_model_name, args.pretrained
print(f'[loading pretrained clip] {clip_model_name} {pretrained}')
model, preprocessor_without_normalize, normalize = load_clip_model(clip_model_name, pretrained, args.beta)
if args.dataset != 'imagenet':
# make sure we don't resize outside the model as this influences threat model
preprocessor_without_normalize = transforms.ToTensor()
print(f'[resizer] {resizer}')
print(f'[preprocessor] {preprocessor_without_normalize}')
model.eval()
model.to(main_device)
with torch.no_grad():
# Get text label embeddings of all ImageNet classes
if not args.template == 'ensemble':
if args.template == 'std':
template = 'This is a photo of a {}'
else:
raise ValueError(f'Unknown template: {args.template}')
print(f'template: {template}')
if args.dataset == 'imagenet':
texts = [template.format(c) for c in IMAGENET_1K_CLASS_ID_TO_LABEL.values()]
elif args.dataset == 'cifar10':
texts = [template.format(c) for c in CIFAR10_LABELS]
text_tokens = open_clip.tokenize(texts)
embedding_text_labels_norm = []
text_batches = [text_tokens[:500], text_tokens[500:]] if args.dataset == 'imagenet' else [text_tokens]
for el in text_batches:
# we need to split the text tokens into two batches because otherwise we run out of memory
# note that we are accessing the model directly here, not the CustomModel wrapper
# thus its always normalizing the text embeddings
embedding_text_labels_norm.append(
model.encode_text(el.to(main_device), normalize=True).detach().cpu()
)
model.cpu()
embedding_text_labels_norm = torch.cat(embedding_text_labels_norm).T.to(main_device)
else:
assert args.dataset == 'imagenet', 'ensemble only implemented for imagenet'
with open('CLIP_eval/zeroshot-templates.json', 'r') as f:
templates = json.load(f)
templates = templates['imagenet1k']
print(f'[templates] {templates}')
embedding_text_labels_norm = []
for c in IMAGENET_1K_CLASS_ID_TO_LABEL.values():
texts = [template.format(c=c) for template in templates]
text_tokens = open_clip.tokenize(texts).to(main_device)
class_embeddings = model.encode_text(text_tokens)
class_embedding = F.normalize(class_embeddings, dim=-1).mean(dim=0)
class_embedding /= class_embedding.norm()
embedding_text_labels_norm.append(class_embedding)
embedding_text_labels_norm = torch.stack(embedding_text_labels_norm, dim=1).to(main_device)
assert torch.allclose(
F.normalize(embedding_text_labels_norm, dim=0),
embedding_text_labels_norm
)
if clip_model_name == 'ViT-B-32':
assert embedding_text_labels_norm.shape == (512, num_classes), embedding_text_labels_norm.shape
elif clip_model_name == 'ViT-L-14':
assert embedding_text_labels_norm.shape == (768, num_classes), embedding_text_labels_norm.shape
else:
raise ValueError(f'Unknown model: {clip_model_name}')
# get model
model = ClassificationModel(
model=model,
text_embedding=embedding_text_labels_norm,
args=args,
resizer=resizer,
input_normalize=normalize,
logit_scale=args.logit_scale,
)
if num_gpus > 1:
model = torch.nn.DataParallel(model)
model = model.cuda()
model.eval()
model_name = None
# device = [torch.device(el) for el in range(num_gpus)] # currently only single gpu supported
device = torch.device(main_device)
torch.cuda.empty_cache()
dataset_short = (
'img' if args.dataset == 'imagenet' else
'c10' if args.dataset == 'cifar10' else
'c100' if args.dataset == 'cifar100' else
'unknown'
)
start = time.time()
if args.full_benchmark:
clean_acc, robust_acc = benchmark(
model, model_name=model_name, n_examples=n_samples,
batch_size=args.batch_size,
dataset=args.dataset, data_dir=data_dir,
threat_model=args.norm.replace('l', 'L'), eps=eps,
preprocessing=preprocessor_without_normalize,
device=device, to_disk=False
)
clean_acc *= 100
robust_acc *= 100
duration = time.time() - start
print(f"[Model] {pretrained}")
print(
f"[Clean Acc] {clean_acc:.2f}% [Robust Acc] {robust_acc:.2f}% [Duration] {duration / 60:.2f}m"
)
if run_train is not None:
# reload the run to make sure we have the latest summary
del api, run_train
api = wandb.Api()
run_train = api.run(f'{wandb_user}/{wandb_project}/{args.wandb_id}')
eps_descr = str(int(eps * 255)) if args.norm == 'linf' else str(eps)
run_train.summary.update({f'rb/acc-{dataset_short}': clean_acc})
run_train.summary.update({f'rb/racc-{dataset_short}-{args.norm}-{eps_descr}': robust_acc})
run_train.update()
else:
adversary = AutoAttack(
model, norm=args.norm.replace('l', 'L'), eps=eps, version='custom', attacks_to_run=attacks_to_run,
alpha=args.alpha, verbose=True
)
x_test, y_test = load_clean_dataset(
BenchmarkDataset(args.dataset), n_examples=n_samples, data_dir=data_dir,
prepr=preprocessor_without_normalize,)
acc = compute_accuracy_no_dataloader(model, data=x_test, targets=y_test, device=device, batch_size=args.batch_size) * 100
print(f'[acc] {acc:.2f}%', flush=True)
x_adv, y_adv = adversary.run_standard_evaluation(x_test, y_test, bs=args.batch_size, return_labels=True) # y_adv are preds on x_adv
racc = compute_accuracy_no_dataloader(model, data=x_adv, targets=y_test, device=device, batch_size=args.batch_size) * 100
print(f'[acc] {acc:.2f}% [racc] {racc:.2f}%')
# save adv images
if args.save_images:
# save the adversarial images
img_save_path = (f'/path/to/save/dir/'
f'{args.dataset}/{args.wandb_id}-{args.pretrained}-{args.norm}-{eps:.3f}-'
f'alph{args.alpha:.3f}-{n_samples}smpls-{time.strftime("%Y-%m-%d_%H-%M-%S")}')
os.makedirs(img_save_path, exist_ok=True)
print(f'[saving images to] {img_save_path}')
x_adv = x_adv.detach().cpu()
y_adv = y_adv.detach().cpu()
x_clean = x_test.detach().cpu()
y_clean = y_test.detach().cpu()
torch.save(x_adv, f'{img_save_path}/x_adv.pt')
torch.save(y_adv, f'{img_save_path}/y_adv.pt')
torch.save(x_clean, f'{img_save_path}/x_clean.pt')
torch.save(y_clean, f'{img_save_path}/y_clean.pt')
with open(f'{img_save_path}/args.json', 'w') as f:
json.dump(vars(args), f)
with open(f'{img_save_path}/results.json', 'w') as f:
f.write(f"acc:{acc:.2f}%")
f.write(f"Racc:{racc:.2f}%")
# write to wandb
if run_train is not None:
# reload the run to make sure we have the latest summary
del api, run_train
api = wandb.Api()
run_train = api.run(f'{wandb_user}/{wandb_project}/{args.wandb_id}')
if args.dataset == 'imagenet':
assert args.norm == 'linf'
eps_descr = str(int(eps * 255))
if eps_descr == '4':
descr = dataset_short
else:
descr = f'{dataset_short}-eps{eps_descr}'
if n_samples != 5000:
acc = f'{acc:.2f}*'
racc = f'{racc:.2f}*'
elif args.dataset == 'cifar10':
if args.norm == 'linf':
descr = dataset_short
else:
descr = f'{dataset_short}-{args.norm}'
if n_samples != 10000:
acc = f'{acc:.2f}*'
racc = f'{racc:.2f}*'
else:
raise ValueError(f'Unknown dataset: {args.dataset}')
run_train.summary.update({f'aa/acc-{dataset_short}': acc})
run_train.summary.update({f'aa/racc-{descr}': racc})
run_train.summary.update()
run_train.update()
run_eval.finish()
|