JonahYixMAD's picture
Update README.md
8edf197 verified
|
raw
history blame
1.97 kB
metadata
library_name: transformers
license: llama3.2
base_model:
  - meta-llama/Llama-3.2-1B-Instruct

This model has been xMADified!

This repository contains meta-llama/Llama-3.2-1B-Instruct quantized from 16-bit floats to 4-bit integers, using xMAD.ai proprietary technology.

How to Run Model

Loading the model checkpoint of this xMADified model requires less than 2 GiB of VRAM. Hence it can be efficiently run on most laptop GPUs.

Package prerequisites: Run the following commands to install the required packages.

pip install -q --upgrade transformers accelerate optimum
pip install -q --no-build-isolation auto-gptq

Sample Inference Code

from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM

model_id = "xmadai/Llama-3.2-1B-Instruct-xMADai-4bit"
prompt = [
  {"role": "system", "content": "You are a helpful assistant, that responds as a pirate."},
  {"role": "user", "content": "What's Deep Learning?"},
]

tokenizer = AutoTokenizer.from_pretrained(model_id)

inputs = tokenizer.apply_chat_template(
  prompt,
  tokenize=True,
  add_generation_prompt=True,
  return_tensors="pt",
  return_dict=True,
).to("cuda")

model = AutoGPTQForCausalLM.from_quantized(
    model_id,
    device_map='auto',
    trust_remote_code=True,
)

outputs = model.generate(**inputs, do_sample=True, max_new_tokens=256)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

Other xMADified models and their GPU memory requirements are listed below.

Model GPU Memory Requirement
Llama-3.2-3B-Instruct-xMADai-4bit 6.5 GB → 3.5 GB
Llama-3.2-1B-Instruct-xMADai-4bit 2.5 → 2 GB
Llama-3.1-405B-Instruct-xMADai-4bit 258.14 GB → 250 GB
Llama-3.1-8B-Instruct-xMADai-4bit 16 → 7 GB

For additional xMADified models, access to fine-tuning, and general questions, please contact us at [email protected] and join our waiting list.