Direct Use
Run the model
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer
model_id = "xinping/Mixtral-instruction-zh_V0.1-nf4"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(model_id)
streamer = TextStreamer(tokenizer,skip_prompt=True, skip_special_tokens=True)
text = "今天是星期五,后天是星期几?"
print(text)
model_input = tokenizer(text, return_tensors="pt").to("cuda")
result = model.generate(**model_input,streamer=streamer, max_new_tokens=2048, repetition_penalty=1.15)
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
- Downloads last month
- 16