metadata
license: apache-2.0
language:
- en
pipeline_tag: text-generation
tags:
- chat
base_model: Qwen/Qwen2-0.5B
Qwen2-0.5B-Instruct-Wukong
Requirements
The code of Qwen2 has been in the latest Hugging face transformers and we advise you to install transformers>=4.37.0
, or you might encounter the following error:
KeyError: 'qwen2'
Quickstart
Here provides a code snippet with apply_chat_template
to show you how to load the tokenizer and model and how to generate contents.
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained(
"xiaotinghe/Qwen2.5-7B-Instruct-Wukong",
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("xiaotinghe/Qwen2.5-7B-Instruct-Wukong")
prompt = '以下是关于黑神话:悟空的单项选择题,请直接给出正确答案的选项。\n\n题目:百目真人的精魄属于哪种类型?\nA. 特品精魄\nB. 普通材料\nC. 普通精魄\nD. 稀有精魄\n答案:'
messages = [
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)
generated_ids = model.generate(
model_inputs.input_ids,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]