wav2vec2-common_voice_13_0-eo-10, an Esperanto speech recognizer
This model is a fine-tuned version of facebook/wav2vec2-large-xlsr-53 on the mozilla-foundation/common_voice_13_0 Esperanto dataset. It achieves the following results on the evaluation set:
- Loss: 0.0453
- Cer: 0.0118
- Wer: 0.0657
The first 10 examples in the evaluation set:
Actual Predicted |
CER |
---|---|
la orienta parto apud benino kaj niĝerio estis nomita sklavmarbordo la orienta parto apud benino kaj niĝerio estis nomita sklafmarbordo |
0.014925373134328358 |
en la sekva jaro li ricevis premion en la sekva jaro li ricevis premion |
0.0 |
ŝi studis historion ĉe la universitato de brita kolumbio ŝi studis historion ĉe la universitato de brita kolumbio |
0.0 |
larĝaj ŝtupoj kuras al la fasado larĝaj ŝtupoj kuras al la fasado |
0.0 |
la municipo ĝuas duan epokon de etendo kaj disvolviĝo la municipo ĝuas duan eepokon de etendo kaj disvolviĝo |
0.018867924528301886 |
li estis ankaŭ katedrestro kaj dekano li estis ankaŭ katedristo kaj dekano |
0.05405405405405406 |
librovendejo apartenas al la muzeo librovendejo apartenas al la muzeo |
0.0 |
ĝi estas kutime malfacile videbla kaj troviĝas en subkreskaĵaro de arbaroj ĝi estas kutime malfacile videbla kaj troviĝas en subkreskaĵo de arbaroj |
0.02702702702702703 |
unue ili estas ruĝaj poste brunaj unue ili estas ruĝaj poste brunaj |
0.0 |
la loĝantaro laboras en la proksima ĉefurbo la loĝantaro laboras en la proksima ĉefurbo |
0.0 |
Model description
See facebook/wav2vec2-large-xlsr-53.
Intended uses & limitations
Speech recognition for Esperanto. The base model was pretrained and finetuned on 16kHz sampled speech audio. When using the model make sure that your speech input is also sampled at 16KHz.
The output is all lowercase, no punctuation.
Training and evaluation data
The training split was set to train
while the eval split was set to validation
. Some files were filtered out of the train and validation dataset due to bad data; see xekri/wav2vec2-common_voice_13_0-eo-3 for a detailed discussion. In summary, I used xekri/wav2vec2-common_voice_13_0-eo-3
as a detector to detect bad files, then hardcoded those files into the trainer code to be filtered out.
Training procedure
I used a modified version of run_speech_recognition_ctc.py
for training. See run_speech_recognition_ctc.py
in this repo.
The parameters to the trainer are in train.json in this repo.
The key changes between this training run and xekri/wav2vec2-common_voice_13_0-eo-3
, aside from the filtering and use of the full training and validation sets are:
- Layer drop probability is 20%
- Train only for 5 epochs
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- layerdrop: 0.2
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
---|---|---|---|---|---|
2.9894 | 0.22 | 1000 | 1.0 | 2.9257 | 1.0 |
0.7104 | 0.44 | 2000 | 0.0457 | 0.2129 | 0.2538 |
0.2853 | 0.67 | 3000 | 0.0274 | 0.1109 | 0.1583 |
0.2327 | 0.89 | 4000 | 0.0231 | 0.0909 | 0.1320 |
0.1917 | 1.11 | 5000 | 0.0206 | 0.0775 | 0.1188 |
0.1803 | 1.33 | 6000 | 0.0184 | 0.0698 | 0.1055 |
0.1661 | 1.56 | 7000 | 0.0169 | 0.0645 | 0.0961 |
0.1635 | 1.78 | 8000 | 0.0170 | 0.0639 | 0.0964 |
0.1555 | 2.0 | 9000 | 0.0156 | 0.0592 | 0.0881 |
0.1386 | 2.22 | 10000 | 0.0147 | 0.0559 | 0.0821 |
0.1338 | 2.45 | 11000 | 0.0146 | 0.0548 | 0.0831 |
0.1307 | 2.67 | 12000 | 0.0137 | 0.0529 | 0.0759 |
0.1297 | 2.89 | 13000 | 0.0134 | 0.0504 | 0.0745 |
0.1201 | 3.11 | 14000 | 0.0131 | 0.0499 | 0.0734 |
0.1152 | 3.34 | 15000 | 0.0128 | 0.0484 | 0.0712 |
0.1144 | 3.56 | 16000 | 0.0125 | 0.0477 | 0.0695 |
0.1179 | 3.78 | 17000 | 0.0122 | 0.0468 | 0.0679 |
0.1112 | 4.0 | 18000 | 0.0121 | 0.0468 | 0.0676 |
0.1141 | 4.23 | 19000 | 0.0121 | 0.0462 | 0.0668 |
0.1085 | 4.45 | 20000 | 0.0119 | 0.0458 | 0.0664 |
0.105 | 4.67 | 21000 | 0.0119 | 0.0456 | 0.0660 |
0.1072 | 4.89 | 22000 | 0.0119 | 0.0454 | 0.0658 |
Framework versions
- Transformers 4.29.2
- Pytorch 2.0.1+cu117
- Datasets 2.12.0
- Tokenizers 0.13.3
- Downloads last month
- 4
Evaluation results
- WER on mozilla-foundation/common_voice_13_0validation set self-reported0.066
- CER on mozilla-foundation/common_voice_13_0validation set self-reported0.012